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Introduction

The original Bayes proposal leads to likelihood and confidence for many sim-
ple examples. More generally it gives approximate confidence but to achieve exact
confidence reliability it needs refinement of the argument and needs more than
just the usual minimum of the likelihood function from observed data. A general
Bayes approach provides a flexible and fruitful methodology that has blossomed
in contrast to the widely-based long-standing frequentist testing with focus on the
5% level. We examine some key events in the evolution of the Bayes approach
promoted as an alternative to the present likelihood based frequentist analysis of
data with model, the evidence-based approach of central statistics. And we are led
to focus on the bane of Bayes: parameter curvature.

1. Bayes, 1763

Bayes (1763) examined the Binomial model f(y; θ) =
(
n
θ

)
θy(1 − θ)n−y and

proposed the flat prior π(θ) = 1 on [0, 1]. Then with data y0 he used a lemma from
probability calculus to derive the posterior π(θ|y0) = cθy

0
(1−θ)n−y0

on [0, 1]. And
then for an interval say (θ, 1) he calculated the integral of the posterior,

s(θ) =
∫ 1

θ

θy
0
(1− θ)n−y

0
dθ/

∫ 1

0

θy
0
(1− θ)n−y

0
dθ

and referred to it as probability that the parameter belonged to the interval (θ, 1).
Many endorsed the proposed calculation and many disputed it.

As part of his presentation he used an analogy. A ball was rolled on a level
table, perhaps an available billiard table, and was viewed as having equal proba-
bility of stopping in any equal sized area. The table was then divided conceptually
by a North-South line through the position where the ball stopped, with area θ to
the West and (1− θ) to the East. The ball was then rolled n further times and the
number y0 of time that it stopped left of the line observed. In the analogy itself,
the posterior probability calculation given data seems entirely appropriate.

2. The Economist, 2000

In an article entitled ”In praise of Bayes”, the Economist (2000) speaks of an
“increasingly popular approach to statistics (but) not everyone is persuaded of its
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validity”. The article mentions many areas of recent application of the Bayesian
approach, and cites “the essence . . . is to provide a mathematical rule explaining
how you should change your existing beliefs in the light of new evidence”. The
indicated areas of application are wide spread and there is emphasis on attaining
definitive answers. And this is set in full contrast to “traditional ways of presenting
results” indicated to be the mid-twentieth-centure decision theoretic view of ac-
cepting a null view 95% to 5% on some departure scale. The article does offer some
caution for “when used indiscriminently” in the form of a quotation from Larry
Wasserman that it can become “more a religion than a science”.

The mathematical rule cited as the essence of the Bayesian approach is a
very broad expansion from Bayes original proposal where a statistical model f(y; θ)
evaluated at an observed data value y0 giving f(y0; θ) is combined with a constant
mathematical prior π(θ) = 1 and treated as a conditional density. The force of the
rule is that with new model-data information the new likelihood would be folded
with the old. But this is of course standard practice in statistics: use the up-to-
date likelihood, and possibly refine such a procedure with meta-analysis. What
is different is that the Bayesian method essentially overlooks evidence beyond the
observed likelihood function and does so on principle.

3. Validity or Analogy

Bayes considered a uniform prior and a Binomial (n, p) model, and used anal-
ogy to justify combining them by a standard lemma from probability calculus. For
the analogy involving balls on a billiard table, the calculations seem entirely proper
and appropriate. The more generally interpreted Bayes approach has a statistical
model f(y; θ) with data y0 coupled with a mathematical prior π(θ) representing
symmetries or other properties of the model or context. Analogies can be great for
explaining an argument but not to be the argument itself: there is no billiard table
equivalent in the typical binomial or more general context.

There is an explicit time line: There is a context with a true value θ∗ for the
parameter θ; there is an investigation f(y; θ) yielding an observed y0 from the true
value model f(y; θ∗); and possibilities for θ are then to be assessed. Thus in order:
θ∗ is realized but unknown; y0 is observed; then assess θ. The values θ∗ and y0 are
realized and are in the past. And the issue is what can be said about θ given the
model f(y; θ) and data y0.

If θ is understood in fact to come from an objective source π(θ) with realized
value θ∗; then the time line is longer. Accordingly: π(θ) produces θ∗; f(y; θ∗)
produces y0; and the issue is to assess θ. In this situation π(θ) is properly an
objective prior. And an option is of course is to examine and present the composite
model π(θ)f(y; θ) with observed y0. But an even more compelling option is to
examine and present π(θ) and to separately examine and present f(y; θ) with y0.

Now consider the model f(y; θ) with data y0; and the mathematical prior
π(θ) as proposed by Bayes. The lemma from the probability calculus has two prob-
ability inputs say π(x) and f(y|x) and it has one probability output π(x|y0); the
output records the behavior of x that is associated with the observed value y = y0.
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For the Bayes case π(x) would be π(θ) and π(x|y0) would be π(θ|y0). Is the lemma
applicable or relevant in the Bayes case? In the Bayes case there is just one prob-
ability input f(y; θ); and the other nominal input is π(θ), a mathematical object
that refers to symmetry or patterns in the model and has no probability status
whatsoever. Thus the assumptions of the lemma do not hold, and consequently
the output of the lemma is ... by analogy ... not by derivation. The usage of the
lemma in the proposed argument is not proper and can be viewed as fraudulent
logic.

The standard frequentist would refer to f(y0; θ) as likelihood L(θ; y0) =
L0(θ). An exploration with weighted likelihood π(θ)L0(θ) can be a very natu-
ral, obvious and sensible procedure ... for just that, for exploring possibilities for
θ. But for obtaining probabilities, perhaps a pipe dream!

4. Likelihood and Confidence

Bayes’ (1763) original approach suggested a density cπ(θ)f(y0; θ) as a de-
scription of an unknown θ in the presence of observed data y0. As such it records
likelihood L0(θ) or weighted likelihood. And this was long before the formal in-
troduction (Fisher, 1922) of likelihood. Both viewpoints record the same formal
information concerning the parameter; the differences are in the color or flavor
associated with the particular argument; and with properties attributed to the
output.

Bayes (1763) also offered a distribution as a summary of information con-
cerning the parameter θ; the distribution had density cπ(θ)f(y0; θ) = cπ(θ)L0(θ).
The majority of models at that time had least-squares location structure and for
such models the posterior π(θ)L0(θ) using a natural prior just reproduces what is
now called confidence (Fisher, 1930, 1935).

It thus seems appropriate to acknowledge that Bayes introduced the primary
concepts of likelihood and confidence long before Fisher (1922, 1930) and long
before the refinement offered by Neyman (1937). For likelihood he offered the extra
flexibility of the weight function but for confidence he did not have the statistical
refinement that later provided the logical extension to non-location models; this
latter can be viewed as a matter of reasonable fine tuning of the argument, of
intellectual evolution, and of the familiar iterative processes of science.

5. Laplace and Venn

Laplace (1812) seems to have fully endorsed the proposals arising from Bayes
(1763). And Venn (1886) seems equally to have rejected them. Certainly asserting
the conclusions of a theorem or lemma when one of the premises does not hold
is unacceptable from a mathematical or logical viewpoint. Nonetheless the results
were impressive and filled a substantial need, but indeed with downstream risks.
And it does have, as is now becoming apparent, the support of approximate confi-
dence (Fraser, 2010). At present Bayes and confidence lead a coexistence, perhaps
an uneasy unstable coexistence!
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6. Priors and Priors

The original Bayes prior was a flat prior π(θ) = 1 for a probability θ that
then in sequence becomes the parameter in a Binomial (n, θ) model; the resulting
posterior is π(θ)L0(θ), which focally uses the observed likelihood from the Binomial
context. Some aspects of invariance were invoked to support the particular choice.
The possible plausible extensions are immense.

For a location model f{y−β(θ)} the natural prior would be π(θ)dθ = dβ(θ) =
β′(θ)dθ. Thus for f(y − Xβ) we would have π(β)dβ = dXβ = cdβ, giving a flat
prior for the regression coefficients. Motivation would come by noting that y−β(θ)
has a fixed θ-free distribution.

Extensions are possible by seeking approximate θ-free distributions. This
was initiated by Jeffreys (1939) and then fine-tuned to acknowledge various types
of parameters (Jeffreys, 1946). These extensions use expected information i(θ) =
E{−`θθ(θ; y); θ} in the model to calibrate the scale for θ; here −`θθ(θ) is the
negative second derivative of likelihood and the initial Jeffreys prior is π(θ)dθ =
|i(θ)|1/2dθ, and it is parameterization invariant. For the regression model, where
y = Xβ + σ with N(0, 1) error, the Jeffreys (1939) prior is π(θ)dθ = dβdσ/σr+1

where r is the column rank of X. The second or modified Jeffreys (1946) is
π(θ)dθ = dβdσ/σ and gives generally more acceptable results, often in agreement
with confidence.

The approximate approach can be modified (Fraser et al, 2010) to work more
closely with the location invariance indicated by the initial Bayes (1763) approach.
In many regular problems continuity within the model leads to a relationship dθ̂ =
W (θ)dθ where W (θ) is a p × p matrix; the dθ̂ refers to an increment at the data
y0 and the dθ refers to an increment dθ at θ. This immediately indicates the
prior π(θ)dθ = |W (θ)|dθ based on simple extension of the translation invariance
dy = β′(θ)dθ for the model f(y−β(θ))dθ; and it widely agrees with preferred priors
in many problems. But the parameter must not have curvature: the bane of Bayes!

The approximate approach can also be modified to make use of an asymptotic
result that to second order the statistical model can be treated as an exponential
model (Reid & Fraser, 2010; Fraser, Reid, Marras, Yi, 2010). This uses continuity
to obtain a nominal reparameterization ϕ(θ) that yields second and third order
inference by acting as if the model were just g(s; θ) = exp{`(θ) + ϕ(θ)s}h(s) with
data s0 = 0. This allows information to be calculated within the approximating
model using the information function jϕϕ(θ; s) = −`ϕϕ{θ(ϕ)}; this draws attention
to marginalization and to curvature effects that are not usually apparent in the
search for default priors (Fraser, Reid, Marras, Yi, 2010).

The preceding can also be viewed as a somewhat natural evolution from the
original Bayes proposal with some reference to location invariance. The evolution
has been assisted by the fact that many posterior distributions have appealing and
sensible properties. It is our view here that these sensible properties are precisely
the approximate confidence properties that have become evident quite separately.
In any case the priors just described can all be classified as default priors, priors
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that one might choose to use as a default without strong arguments for something
different.

The Bayesian approach is committed to using a weight function applied to
an observed likelihood and thus to formally omitting other properties of the model.
Within this approach the default priors are widely called objective priors. But
the term objective means objective reference, and this as a property is specifically
absent here; there is a strong flavour of deception. Thus using the term objective
for default priors seems highly inappropriate, but could be viewed as just a seeking
for a wider area of application. The author was present at the Bayesian convention
when the term was being chosen and did not register an objection, being perhaps
somewhat of an outsider, not a good defense! We will however explicitly refer to
them as default priors, and keep the term objective for contexts where the prior
does have an explicit reference in context.

A difficulty with the use of default priors is that a posterior probability ob-
tained by marginalization from a full posterior distribution may not be equal the
posterior probability calculated directly from the appropriate marginal model; this
was given prominence by Dawid et al (1973) and applies equally to confidence dis-
tributions and other attempts to present model-data information as a distribution
for the parameter. The complication in any of these cases derives from parameter
curvature: for some discussion see Fraser, Reid, Marras, Yi (2010) and Fraser &
Sun (2010).

The wealth of possibilities available from a weight-function combined with
likelihood is well documented in the development of the Bayesian methods as just
described. Its success can amply be supported as “approximate confidence” but
derived by a route that is typically much easier. Approximate confidence provides
full support for the acceptable, often meritorious behavior of Bayes posterior prob-
abilities. We address later whether there can be anything beyond approximate
confidence in support of the Bayesian approach.

Another approach, somewhat different from the original Bayes way of obtain-
ing a weight function is derived from Kullback-Leibler distance on measure spaces
(Bernardo, 1971): this chooses a prior to maximize the statistical distance from
prior to posterior. Modifications of this distance approach have been developed
to obtain specialized priors for different component parameters of interest, often
parameters that have a statistical curvature.

The richness available from using just a likelihood function is clearly evident
to Bayesians if not to frequentists; but is not widely acknowledged. Much of recent
likelihood theory divides on whether or not to use more than the observed likeli-
hood, specifically sampling properties that are associated with likelihood charac-
teristics but are not widely or extensively available. In many ways central statistics
has ignored the extra in going beyond likelihood, and indeed has ignored the wealth
available from just likelihood alone.

Meanwhile those committed to using just the weighted likelihoods, those asso-
ciated with the development of the Bayes approach as we have just described, have
aggressively sought to use the weighted likelihood approach as a general approach
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to updating information and to producing decisions. Central to this direction is
the subjective approach with a major initiative coming from Savage (1972). This
takes a prior to represent the views, the understanding, the personal probabilities
concerning the true value of the parameter; these might come from highly personal
thoughts, from detailed elicitation from knowledgeable people, from gut feelings as
one approaches a game at a casino; and they can have the benefit of intuition or the
merits of a seasoned gambler, with or without insider information. But who should
use it? Certainly the chronic gambler will. But from the statistical perspective here
there is nothing of substance to say that such prior ‘information’ π(θ) should be
combined with likelihood. With due respect it can be presented as π(θ) alongside
a presentation of the evidence-based well calculated confidence. If a user would
like to combine them, it would certainly be plausible for him to do so but it would
not be an imperative despite Bayesian persuasion. Certainly place than both to be
seen and available. In wide generality combining them is not a necessary statistical
step, although sometimes expedient.

7. Lindley and Territory

Fisher’s (1930, 1935) proposal for confidence with effective support from Ney-
man (1937) offered strong alternatives to a prominent sympathy for the Bayesian
approach. Then Jeffreys (1939, 1946) with great prominence in geophysics pro-
vided reinforcement for the use of the Bayesian approach in the physical sciences.
Meanwhile the confidence approach gained strength both in mathematics depart-
ments and in scientific applications. Both approaches lead from model and data to
a distribution for the parameter, but the results were often in conflict. Both sides
clearly felt threatened, and each side in a practical sense had territory to defend.

Lindley (1958) focussed on the very basic case, a scalar parameter and a
scalar variable, say with distribution function F (y; θ). The Bayesian answer with
prior π(θ) is given by the posterior distribution cπ(θ)Fy(y; θ)dθ where the subscript
y denotes differentiation with respect to the argument y thus giving the density
or likelihood function. By contrast the Fisher (1930, 1935) approach gives the
confidence distribution |Fθ(y; θ)|dθ. Lindley examined when these would be equal
and solved for π(θ) :

π(θ) = c
F;θ(y; θ)
Fy(y; θ)

= c
∂

∂θ
y(u; θ);

the right hand expression records the derivative of the quantile function for fixed
p-value u = f(y; θ) as pursued in Fraser, Reid, Marras, Yi (2010). The equation is
actually a differential equation that asserts that the model must be a location model,
the form of model actually found in Section 6 to have good Bayesian answers. In
Fraser, Reid, Marras, Yi (ibid) the equation is used to determine the data dependent
priors that give posterior probabilities having objective validation.

Lindley was concerned that the confidence approach did not follow the primal
Bayesian concept that a probability statement concerning a parameter should be
updated by multiplication by new likelihood and his criticism had a profound effect
suggesting that the confidence distribution approach was defective. We now know
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that the defect is the attempt to use a distribution as the summary, either by Bayes
or by confidence. And if there were to be a lesser of two evils then calling confidence
probability and calling Bayes approximate confidence would be safer.

Another view might be that this was just a territorial dispute as to who had
the rights to provide a distributional description of the parameter in the model
data context. But the social conflict aspects were not in evidence. Rather there
was a wide spread perception that giving a distribution of confidence was wrong.
Neyman (1937) of course had provided a route around. But nonetheless, the judge-
ment stuck: a confidence distribution was wrong and a Bayesian analysis was all
right. Of course, in Dawid, Stone, and Zidek (1973), there is a clear message that
neither approach can handle vector parameters without special fine-tuning. Clearly
Lindley had focused on a substantive issue but the arguments invoked had not quite
attained the point of acknowledging that an effective prior must in general be data
dependent; for some current discussion see Fraser, Reid, Marras, Yi (2010).

8. Bayesian analysis and imperatives

Bayesian (1763) analysis has been around for a long time, but alternative
views perhaps now identified as frequentist are perhaps older although somewhat
less formalized. These approaches have cross dialogued and often been in open
conflict. Each has made various appeals to holding the truth. And they have
actively sought territorial advantage. In particular Fisher’s (1930) initial steps
towards confidence were directly to provide an alternative to inverse probability,
the name at the time attached to the Bayesian approach. So it is not surprising
that there would be a very focal reverse criticism (Lindley, 1958) of the confidence
approach.

Those favoring the Bayesian approach have frequently felt they were under-
dogs, often for example having their articles rejected by journals for just being
Bayesian. It thus seems rather natural that the Bayesian supporters would seek
to broaden their methodology and their community. The subjective approach as
strongly initiated by Savage (1954) has led to a powerful following in an area where
prior probabilities are extended to include personal feelings, elicited feelings, and
betting view points. Certainly such extensions are a guide for gambling and much
more. But there is nothing of substance to assert that they should be ... the imper-
ative ... used for the analysis. The prior subjective assessment and the objective
evidence-based assessment can be placed side by side for anyone to see and to use
as deemed appropriate. And the Bayes combination of these can also be presented
for any one to use if so inclined. Perhaps the Bayesian expansion was ill advised to
promote the imperative: that the proper analysis was that of the Bayes paradigm.

What is perhaps even more dangerous is the widely promoted hierarchical
model where each parameter is given a prior distribution, and then parameters in
the prior distributions are themselves given priors, perhaps then multilevel. Often
an impressive edifice that seems only equalled by the lack of evidence for the various
introduced elements and the impressive resort to McMC. The resort to multilevel
Bayes modeling would seemingly be best viewed as one of expediency, to extend
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the base of Bayes without supporting evidence.
And then of course there are model data situations where the true parameter

has come from a source with a known frequency distribution. In such cases the
obvious name for the prior would be objective prior. But assembled Bayesian as
mentioned earlier have adopted that name for the opposite situation, where there
is in fact no objective reference, and the prior is purely a mathematical construct.
But what about the multitude of cases where there is an identified source for the
true parameter value? These can arise widely when the entity being examined
has been obtained by sampling from some identified subpopulation; or they can
arise by genetics or by Mendel or perhaps by updated genetic laws. Or much
more. In reality this is just a modeling issue: what aspect of the context, of the
immediate environment, or the more extended environment should be modeled. It
is a modeling issue. It is perhaps only natural that Bayesian promotion should
seek to subsume wider and wider contexts as part of the evolution of the approach.
Especially when traditional statistics has been widely immersed in technical criteria
connected with some global optimization or with decision rules to reject at some
5% level or accept at some 19/20 level, even when it was becoming abundantly
apparent that these rule for scientific publication have serious defects.

But if there is an objective source π(θ) for a true value in a model-data
context, there is nothing that says it should be folded into a combined model
for analysis. The prior source π(θ) can be set in parallel with the more directly
evidence-based analysis of the model-data combination. And of course even the
combined model-data-prior analysis presented. But again there is no substantive
precept that says the combined analysis is the statistical inference. Such a step
would be purely an assertion of extended territory for Bayesian analysis.

9. Curvature: The Bane of Bayes

Contours of a parameter can have obvious curvature. A simple example can
throw light on the effects of such curvature.

Consider (y1, y2) with a Normal {(θ1, θ2); I} distribution on the plane. With
data (y0

1 , y
0
2) the basic original Bayes approach would say that (θ1, θ2) was Normal

{(y0
1 , y

0
2); I}. First we examine an obviously linear parameter ψ = θ1 and assess

say the value ψ = 0 on the basis of data, say (y0
1 , y

0
2) = (0, 0).

In an obvious way y1 measures ψ and has the Normal(ψ; 1) distribution.
Accordingly the p-value for ψ from the observed data is

p(ψ) = Φ{(y0
1 − ψ)/1} = Φ(−ψ).

And for assessing the value ψ = 0 we have p(0) = 50%.
Now consider the Bayesian assessment of the value ψ. the marginal posterior

distribution of ψ is N(y0
1 , 1) and the corresponding posterior survivor value is

s(ψ) = 1− Φ((ψ − y0
1)/1) = 1− Φ(ψ)
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at the observed data. In particular for assessing ψ = 0 we would have s(0) = 50%.
the Bayesian and frequentist values are equal for the special ψ = 0 and also for
general ψ.

Now consider a clearly curved parameter, the distance ψ on the parameter
space from the point (−1, 0) to the parameter value (θ1, θ2),

ψ = {(θ1 + 1)2 + θ22}1/2.

An obvious way to measure this parameter is by using the distance r from the
point (−1, 0); thus r = {(y1 + 1)2 + y2

2}1/2. The distribution of r2 is noncentral
Chi-square with 2 degrees of freedom and noncentrality δ2 = ψ2. The indicated
p-value for assessing ψ is then

p(ψ) = H2(r2;ψ2)

where H2 is the noncentral Chi-square distribution function with 2 degrees of free-
dem and noncentrality δ2 = ψ2. This is readily available in R. In particular for
assessing ψ = 1 we would have

p(1) = H2(1; 1) = 26.7%

which is substantially less than 50%.
Now consider the Bayesian assessment of the curved parameter ψ. The pos-

terior distribution of ψ2 from the observed data is noncentral Chi-square with 2
degrees of freedom and noncentrality δ2 = 1. If follows that the posterior survivor
value for assessing ψ = 1 is

s(1) = 1−H2(1; 1) = 73.3%

which is substantially larger than 50%.
For this simple example we have seen that the p-value and the survivor value

are equal for a linear parameter. This happens generally for linear parameters
(Fraser & Reid, 2002). And with the introduction of a curvature change to the
parameter, the Bayesian and frequentist values go in opposite directions. This
happens widely with curved parameters: as a parameter contour is changed from
linear to curved, the Bayesian survivor changes in the opposite direction from the
frequentist. Thus the Bayesian can be viewed as correcting negativity, that is
making an adjustment opposite to what is appropriate in a context. For some
recent discussion see Fraser (2010). The example above suggests that curvature is
precisely the reason that Bayes fails to correctly assess parameters.

Consider y with a Normal {θ, σ2(θ)} distribution where the variance σ2(θ)
depends weakly on the mean θ. Precise p-values are available for assessing θ:

p(θ) = Φ{(y − θ)/σ(θ)}

with a clear frequency interpretations. The confidence inversion is well established
(Fisher; 1930, 1935). The Bayesian inversion does not seem to have an obvious
prior that targets the parameter θ.
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How does one assess the merits of a proposed distribution for a parameter?
The use of two-sided intervals provides a slippery slope. Strange tradeoffs can be
made between two interval bounds; see for example Fraser, Reid & Wong (2004)
on statistics for discovering new particles in High Energy Physics. A more direct
approach is to examine a particular quantile of a proposed distribution, say the
β-th quantile θ̂β which has posterior probability β to the right and (1 − β) to the
left. One can certainly simulate or have an oracle and determine what proportion
of the time the true value is larger than the particular quantile being considered;
and determine whether the true proportion bears a sensible relation to the alleged
value β. This has been addressed at length in Fraser (2010).

In particular for the Normal{θ, σ2(θ)} example there is no determination of
a prior that will give the third order accuracy that is available from the confidence
approach unless the prior is directly specific to the observed data value. This result
holds wide generality: the use of a default or Bayesian prior can not lead to the third
order accuracy readily available from the evidence-based procedures of frequentist
inference. And parameter curvature is the number one culprit.

10. Why Bayes?

Linear approximations are widely used throughout statistics, mathematics,
physics, the sciences generally, and much more. They provide a local replica of
something that might be intangible otherwise and when used iteratively can provide
exploration of something unknown otherwise. There is substantial evidence that the
Bayes procedure provides an excellent first order approximation for the analysis of
a statistical model. There are also ample warnings that global acceptance of Bayes
results can be extremely hazardous. Use but be cautious!

The Bayes calculus asserts that the posterior results are probabilities. And
the name itself is assertive. The Bayesian supporters have also been vocal, asserting
that confidence results do not have the status of probabilities calculated by the
Bayes paradigm; some indication of this is implicit in Lindley (1958); and further
indication is found in the active broadening of the application area for Bayesian
analysis. From an evidence-based approach it is clear that the direct use of the
likelihood function provides substantial information, first order information. And
higher order results are available with the careful choice of prior. But beyond that,
the Bayes procedure comes up short, unless the priors become data dependent and
the calculations are carefully targetted using an evidence-based formulation.

Thus linear approximations can be hugely useful but they can carry substan-
tial risks. The assertion of probability status is directly contradicted by reality!
And no indications seem available that a Bayesian calculation could yield more
than just approximate confidence. The promotional assertiveness that accompa-
nies current Bayes development is misleading and misleading to the extent of being
fraudulent.

Of course there can be contexts where there is an objective prior π(θ) that
records how the true value was generated. The Bayes paradigm can be applied but
it is inappropriate; the direct approach is a matter of modeling, of what aspect of the
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context is appropriate to include. From this viewpoint the indicated methodology
predates Bayes; it is just probablity analysis. Even then it allows that the prior
information and the evidence based information to be presented separately, thus of
course allowing the end user to combine if needed or wanted.

There is no imperative that says the prior and the evidence-based should be
combined. It is an option. And it is an option with risks!
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