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Abstract

The likelihood statistic guides statistical analysis in almost all areas of
application. A precise definition of likelihood statistic is given, and simple
and easy to use criteria are proposed to establish under weak conditions that
minimal sufficiency in statistics emerges from observed likelihood functions.
Some examples are presented.
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1 Introduction

With model fθ(x), the observed likelihood function from x0 is cfθ(x0) where c is an
arbitrary positive constant; this can be formalized in terms of an equivalence class
R(fθ(x0)) = {cfθ(x0), c ∈ R+} of functions on the parameter space, say Ω. The
likelihood map L(θ|x) is defined as the mapping that carries a point x in the sample
space X to R(fθ(x)), see Naderi [14] or Fraser et al [8]. Fisher [4]-[7] noted that the
general dependence of L(θ|x) on x is that of minimal sufficiency but did this without
detailed formulation. Neyman [15], Halmos and Savage [10], Lehmann and Scheffé
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[12], Dynkin [3] and Bahadur [1] extended Fisher’s results. The theory of minimal
sufficiency was initiated by Lehmann and Scheffé [12] and Dynkin [3]. Pitcher [16]
constructed a family of probability measures for which a minimal sufficient statistic
did not exist. Landers and Rogge [11] showed that even for a dominated family of
probability measures a minimal sufficient statistic did not exist. Barndorff-Nielsen et
al [2] and Fraser et al [8] however showed that the minimal sufficient statistic exists
under some regularity conditions. This paper establishes that minimal sufficiency in
statistics emerges from the observed likelihood functions under weak conditions.

2 Likelihood Partition

For each θ in Ω, let (X,B, Pθ) be a probability space, Pθ be absolutely continuous with
respect to a σ-finite measure µ, and fθ(x) be the probability density of Pθ with respect
to µ. Suppose P = {Pθ : θ ∈ Ω} and F = {fθ(x) : θ ∈ Ω}. For each θ, fθ(x) is unique
up to a set of µ-measure zero. The general uniqueness of fθ(x) however, is required
for the definition of our mappings. This may be achived by defining the probability
density fθ(x) as the limn→∞

Pθ(En)
µ(En) for all sequences {En} converging regularly to x

and possessing some covering properties. For a detailed treatment see for example
Naderi [14] or Fraser et al [8]. The question of the existence, in general, of a minimal
sufficient partition or the associated statistic involves measure theoretic difficulties and
some regularity conditions need to be imposed on F . Two such regularity conditions
are:
Separability Condition. F is separable if there exists a fixed countable subset
F0 = {fθ(x) : θ ∈ Ω0} of F such that for each fθ(x) in F there is a sequence {fθn(x)}
in F0 for which ∫

X
|fθ(x) − fθn(x)|dµ(x) → 0

as n → ∞. In this case F0 is said to be dense in F . When X is a Euclidean space,
the class of probability densities is a separable metric space with distance defined by
d(g, h) =

∫
X |g(x) − h(x)|dµ(x).

Continuity Condition. F is continuous on Ω if Ω is a separable metric space and if,
for each x in X, fθ(x) is continuous in θ. The Continuity Condition is stronger than
the Separability Condition.
Let RΩ

+ be the class of all functions from Ω to R+ = [0,∞) and let RΩ∗ = {R(g) : g ∈
RΩ

+} where R(g) = {cg : c > 0} is the same class reduced modulo the scale group. An
element R(fθ(x)) of RΩ∗ is called the likelihood function from x. The likelihood map
L is the function from X to RΩ∗ that maps x in X to R(fθ(x)). For countable Ω the
likelihood map is always minimal sufficient. For a general Ω, however, the likelihood
map is minimal sufficient under the Continuity Condition, and the restricted likelihood
map to Ω0 say L|Ω0, is minimal sufficient under the Separability Condition, see Naderi
[14] or Fraser et al [8]. The partition of X induced by both L and L|Ω0 coincides with



Fraser and Naderi: Minimal sufficient statistics emerge 3

the minimal sufficient partition proposed by Lehmann and Scheffé [12] a.e.[P ], see
McDunnough et al [13].
The standardized likelihood map is defined as follows. There is a countable subfamily
{Pθ∗n , n ≥ 1} of P which is equivalent to P (Halmos and Savage [10]), and a Probability
measure λ on B defined by

λ(E) =
∞∑

n=1

αnPθ∗n(E) ,
∞∑

n=1

αn = 1 , αn > 0,

which is equivalent to P . Let f be the probability density of λ with respect to µ. Then

f(x) =
∞∑

n=1

αnfθ∗n(x)

except on a set N1 of µ measure zero. Let N2 = {x : f(x) = 0}, then λ(N2) = 0. Since
λ is equivalent to P , Pθ(N2) = 0 for every θ in Ω. If N = N1∪N2, since µ dominates P
and N2 is a null set for P , then N is a null set for P . The standardized likelihood map
is a mapping r from X to RΩ that carries x in X − N to qθ = dPθ/dλ = fθ(x)/f(x).
The values of r on N are immaterial and may be defined arbitrarily.

Barndorff-Nielsen et al [2] have shown that r is minimal sufficient under the Con-
tinuity Condition in the Bahadur sense. Their result may also be obtained via the
following theorem and the fact that the likelihood map is minimal sufficient under the
Continuity Condition; or more directly by showing that the partition of X induced
by r coincides a.e.[P ] with the minimal sufficient partition proposed by Lehmann and
Scheffé [12], see McDunnough et al [13]. As L|Ω0 is a minimal sufficient statistic under
the Separability Condition this theorem also implies that r|Ω0, the restriction of r to
Ω0, is minimal sufficient statistic under the Separability Condition.
Theorem 1. L and r induce the same partition of X,a.e.[P ].
Proof. For each x and y in X − N let r(x) = r(y). Then qθ(x) = qθ(y) or
fθ(x)/f(x) = fθ(y)/f(y). This may be written as

fθ(x) =
f(x)
f(y)

fθ(y) or fθ(y) =
f(y)
f(x)

fθ(x)·

Hence R(fθ(x)) = R(fθ(y)) and thus L(x) = L(y). Now for each x and y in X − N
let L(x) = L(y). Then by definition R(fθ(x)) = R(fθ(y)).This implies that there is a
nonnegative function h(x, y) such that for each θ, fθ(x) = h(x, y)fθ(y). But

f(x) =
∞∑

n=1

αn fθ∗n(x) =
∞∑

n=1

αnh(x, y)fθ∗n(y)

= h(x, y)f(y)·
Hence h(x, y) = f(x)/f(y) and thus fθ(x) = (f(x)/f(y))fθ(y). This implies that
fθ(x)/f(x) = fθ(y)/f(y) or r(x) = r(y). Hence for each x and y in X−N , L(x) = L(y)
if and only if r(x) = r(y) and thus L and r induce the same partition of X,a.e.[P ].
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3 Likelihood Statistic

We shall call a statistic T a likelihood statistic if the partition of X induced by T
coincides with the partition of X induced by the likelihood map L, a.e.[P ]. The like-
lihood statistic is essentially unique up to a one to one equivalence. Clearly L is a
likelihood statistic and by Theorem 1, r is also a likelihood statistic. The definition
of likelihood statistic implies that a likelihood statistic is minimal sufficient if and
only if the likelihood map is minimal sufficient. Hence when Ω is countable, or more
generally when F is continuous on Ω, a likelihood statistic is minimal sufficient. The
Likelihood statistic guides statistical analysis in almost all areas of application. Some
important likelihood statistics, for example, (x̄, s2

x), arise from the likelihood function
with a normal random sample. The next theorm gives a simple criteria to establish
the minimal sufficiency of such statistics.
Theorem 2. Suppose θ0 is an arbitrary but fixed point in Ω such that for each x in
X − N , fθ0(x) > 0. Suppose t is a statistic such that for each θ in Ω , gθ|θ0

(t(x)) =
fθ(x)/fθ0(x) is a function of t(x) for x in X − N . If gθ|θ0

(t(x)) = gθ|θ0
(t(y)), θ in Ω

implies that t(x) = t(y), then t is a likelihood statistic.
Proof. For each x and y in X − N , t(x) = t(y) implies that gθ|θ0

(t(x)) = gθ|θ0
(t(y))

and hence that fθ(x)/fθ0(x) = fθ(y)/fθ0(y). This in turn implies that fθ(x) =
(fθ0(x)/fθ0(y))fθ(y) and that fθ(y) = (fθ0(y)/fθ0(x))fθ(x). Hence R(fθ(x)) = R(fθ(y))
and thus L(x) = L(y). Now for each x and y in X − N , let L(x) = L(y). Then by
definition R(fθ(x)) = R(fθ(y)). Thus there is a nonnegative function h(x, y), free of
θ, such that for each θ in Ω, fθ(x) = h(x, y)fθ(y). But, as in the proof of Thearem 1,
h(x, y) = f(x)/f(y). Hence for each θ in Ω, fθ(x) = (f(x)/f(y))fθ(y). The last equa-
tion implies that for an arbitrary but fixed point θ0 in Ω, fθ0(x) = (f(x)/f(y))fθ0(y).
Hence for each θ in Ω, fθ(x)/fθ0(x) = fθ(y)/fθ0(y) or gθ|θ0

(t(x)) = gθ|θ0
(t(y)) and thus

by the assumption t(x) = t(y). Since for each x and y in X − N , t(x) = t(y) if and
only if L(x) = L(y), the partition of X induced by t coincides with the partition of X
induced by L, a.e[P ] and hence t is a likelihood statistic.
When Ω is Countable or more generally when F is continuous on Ω the likelihood
statistic t in Theorem 2 is minimal sufficient. When the Continuity Condition is not
fulfilled the criteria given in the next theorem may be used to establish the minimal
sufficiency of the statistic t.
Theorem 3. Suppose F is separable and F0 = {fθ(x) : θ ∈ Ω0} is dense in F . Define
gθ|θ0

(t(x)) as in Theorem 2. If gθ|θ0
(t(x)) = gθ|θ0

(t(y)), θ in Ω0, results in t(x) = t(y)
then t is a minimal sufficient statistic for P .
Proof. Consider L|Ω0, the restriction of the likelihood map L to Ω0. A similar ar-
gument as in the proof of Theorem 2 implies that L|Ω0(x) = L|Ω0(y) if and only if
t(x) = t(y), a.e.[P ]. Thus both L|Ω0 and t induce the same partition of X,a.e.[P ]. But
L|Ω0 is minimal sufficient under the Separability Condition for P , hence t is minimal
sufficient for P .
Note that the Separability Condition holds when X is a Euclidean space. Hence the
criteria in Theorem 3 are widely applicable. In practice the conditions of Theorems
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2 and 3 are verified by showing that t(x) = t(y) is a θ-free solution to the equation
gθ|θ0

(t(x)) = gθ|θ0
(t(y)), for θ in Ω for the continuity case and for θ in Ω0 for the

separability case.

4 Examples

1. Consider a random sample from the Normal (θ, σ2
0) distribution with σ2

0 known
and (θ, σ2

0) in R × R+ (location normal model). If θ0 = 0 and t(x) = x̄ then
gθ|θ0

(t(x)) = exp(− n
2σ2

0
(θ2 − 2θx̄)). For each θ in R, gθ|θ0

(t(x)) = gθ|θ0
(t(y)) if

and only if for each θ in R, exp(nθ
σ2
0
(x̄− ȳ)) = 1. A θ-free solution to the equation

is x̄ = ȳ. Hence t(x) = t(y) and thus t(x) = x̄ is a minimal sufficient statistic.

2. Consider a random sample from Normal (µ, σ2) distribution with µ, σ2 both
unknown and θ = (µ, σ2) in R×R+ (location-scale normal model). If θ0 = (0, 1)
and t(x) = (x̄, s2

x) then

gθ|θ0
(t(x)) = σ−n exp(−nµ2

2σ2
− n

2
(

1
σ2

− 1)x̄2 +
nµ

σ2
x̄ − (n − 1)

2
(

1
σ2

− 1)s2
x)·

For each θ in R ×R+, gθ|θ0
(t(x)) = gθ|θ0

(t(y)) if and only if for each µ in R and
each σ2 in R2,

exp(−n

2
(

1
σ2

− 1)(x̄2 − ȳ2) +
n

σ2
µ(x̄ − ȳ) − (n − 1)

2
(

1
σ2

− 1)(s2
x − s2

y)) = 1·

A θ-free solution to the equation is x̄ = ȳ and s2
x = s2

y. Hence t(x) = (x̄, s2
x) =

(ȳ, s2
y) = t(y) and thus t(x) = (x̄, s2

x) is a minimal sufficient statistic.

3. Consider a random sample from an exponential model with probability density

fθ(x) = γ(θ) exp{t1(x)ϕ1(θ) + · · · + tr(x)ϕr(θ)}h(x)

where 1, ϕ1(θ), · · · , ϕr(θ) are linearly independent on Ω (exponential family). If
t(x) = (t1(x), · · · , tr(x) then

gθ|θ0
(t(x)) =

γ(θ)
γ(θ0)

exp{
r∑

i=1

ti(x)(ϕi(θ) − ϕi(θ0))}

For each θ, gθ|θ0
(t(x)) = gθ|θ0

(t(y)) if and only if for each θ,

exp{
r∑

i=1

(ti(x) − ti(y))(ϕi(θ) − ϕi(θ0))} = 1·

A θ-free solution to the equation is ti(x) = ti(y) for i = 1, · · · , r. Hence t(x) =
(t1(x), · · · , tr(x)) = (t1(y), · · · , tr(y)) = t(y) and thus t(x) = (t1(x), · · · , tr(x))
is a minimal sufficient statistic.



6 International Journal of Statistical Sciences, Vol.5s, 2006

4. Consider a random sample from Uniform (0, θ) distribution, θ > 0. If θ0 = 1 and
t(x) = x(n) = max(x1, · · · , xn) then gθ|θ0

(t(x)) = θ−nI[x(n),∞)(θ). For each θ > 0,
gθ|θ0

(t(x)) = gθ|θ0
(t(y)) if and only if for each θ > 0, I[x(n),∞)(θ) = I[y(n),∞)(θ).

A θ-free solution to the equation is x(n) = y(n). Hence t(x) = t(y) and thus
t(x) = x(n) is a minimal sufficient statistic.

Acknowledgments

This work was financially supported by Isfahan University of Technology, Isfahan,
Iran and the Natural Sciences and Engineering Research Council of Canada.



Fraser and Naderi: Minimal sufficient statistics emerge 7

References

1. Bahadur, R.R. (1954). Sufficiency and statistical decision functions, Ann. Math.
Statist., 25, 423-462.

2. Barndorff-Nielsen, O., Hoffmann-Jorgensen, J., and Pedersen, L. (1976). On the
minimal sufficiency of the likelihood function, Scand. J. Statist., 3, 37-38.

3. Dynkin, E.B. (1951). Necessary and sufficient statistics for a family of probability
distributions, English translation in Select. Transl. Math. Statist. Prob., 1,
1961, 23-41.

4. Fisher, R.A. (1921). On the “probable error” of a coefficient of correlation
deduced from a small sample, Metron I, 3-32.

5. Fisher, R.A. (1922). On the mathematical foundations of theoretical statistics,
Philos. Trans. Roy. Sor. London Ser., A 222, 309-368.

6. Fisher, R.A.(1934). Two new properties of mathematical likelihood, Proc. Roy.
Soc. Ser., A 144, 285-307.

7. Fisher, R.A. (1956). Statistical Methods and Scientific Inference, Oliver and
Boyd, London.

8. Fraser, D.A.S., McDunnough, P., Naderi, A. and Plante, A. (1995). On the
definition of probability densities and sufficiency of the likelihood map, Prob.
Math. Statist., 15, 301-310.

9. Fraser, D.A.S., McDunnough, P., Naderi, A., and Plante, A. (1997). From the
likelihood map to Euclidean minimal sufficiency, Prob. Math. Statist., 17, 223-
230.

10. Halmos, P.R. and Savage, L.J. (1949). Application of the Radon-Nikodym the-
orem to the theory of sufficient statistics, Ann. Math. Statist., 20, 225-241.

11. Landers, D. and Rogge, L. (1972). Minimal sufficient σ-fields and minimal suf-
ficient statistics. Two counterexamples, Ann. Math. Stat., 43, 2045-2049.
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