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ABSTRACT

Ancillary statistics, one of R. A. Fisher’s most fundamental contributions to statistical

inference, are statistics whose distributions do not depend on the model parameters.

However, in conjunction with some other statistics, typically the maximum likelihood

estimate, they provide valuable information about the parameters of interest.

The present article is a review of some of the uses and limitations of ancillary statistics.

Due to the vastness of the subject, the present account is, by no means, comprehensive.

The topics selected reflect our interest, and clearly many important contributions to the

subject are left out.

We touch upon both exact and asymptotic inference based on ancillary statistics.

The discussion includes Barndorff-Nielsen’s p∗ formula, the role of ancillary statistics in

the elimination of nuisance parameters, and in finding optimal estimating functions. We

also discuss some approximate ancillary statistics, Bayesian ancillarity and the ancillarity

paradox.

Keywords: ancillarity paradox, approximate ancillary, asymptotic ancillarity, Bayesian

ancillarity, estimating functions, hierarchical Bayes, location, location-scale, multiple an-

cillaries, nuisance parameters, p-values, P-ancillarity, S-ancillarity, saddlepoint approxi-

mation.
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1 INTRODUCTION

Ancillary statistics are one of R.A. Fisher’s many pioneering contributions to statistical

inference. Over the decades, there has been a steady stream of research in this general

area, albeit the topic does not enjoy as much popularity as some of Sir Ronald’s other

contributions such as p-values, randomization, sufficiency, maximum likelihood, just to

name a few.

What are ancillary statistics? These are the statistics with distributions not depend-

ing on the model parameters. So, why are they useful? It was pointed out by Fisher

(1925, 1934, 1935) that though an ancillary statistic by itself failed to provide any in-

formation about the parameter, yet in conjunction with another statistic, typically the

maximum likelihood estimator (MLE), it could provide valuable information about the

parameter.

To be specific suppose X has probability density function (pdf) fθ(X), and the MLE

T ≡ T (X) of θ has pdf gθ(T ). We write I(θ) = Eθ
[

− ∂2 log fθ(X)
∂θ2

]

, the Fisher information

contained in X and IT (θ) = Eθ
[

− ∂2 log gθ(T )
∂θ2

]

, the Fisher information contained in T . We

assume any needed regularity conditions to justify these definitions. It is easy to show

that I(θ) ≥ IT (θ) with equality if and only if T is sufficient. In the above, and in what

follows, we will not make a distinction between the random variables and the values that

they assume, and use capital letters for both.

Thus, when the MLE T itself is not sufficient, there is loss of information in the

Fisherian sense. How to recover this apparent loss of information? If U is an ancillary

statistic, but (T, U) is sufficient, then U is then referred to as ancillary complement of T .

Letting hθ(T |U) be the conditional pdf of T given U , we have I(θ) = Eθ[IT (θ|U)], where

IT (θ|U) = Eθ
[

− ∂2 log hθ(T |U)
∂θ2

|U
]

is the Fisher information contained in the conditional

distribution of T given U . According to Fisher, it is a mistake to calculate the information

content of T with respect to the marginal distribution of T : the appropriate measure is

IT (θ|U) and not IT (θ).

Example 1. Let (Xi, Yi) (i = 1, · · · , n) be independent and identically distributed (iid)

with common pdf

fθ(x, y) = exp(−θx− y/θ)χ[x>0,y>0](x, y); θ > 0,

where χA(t) is 1 if t ∈ A, and is 0 otherwise. This example is usually referred to as Fisher’s

gamma hyperbola (Fisher, 1956; Efron and Hinkley, 1978; Barndorff-Nielsen and Cox,
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1994; Reid, 2003). Defining T = (
∑n

i=1 Yi/
∑n

i=1Xi)
1

2 , U = (
∑n

i=1Xi)
1

2 (
∑n

i=1 Yi)
1

2 , it

is easy to check that (i) T is the MLE of θ; (ii) U is ancillary; (iii) (T, U) is jointly

minimal sufficient for θ. In this case, I(θ) = 2n
θ2

, and IT (θ) = 2n
θ2

· 2n
2n+1

, so that the loss

of information is I(θ) − IT (θ) = 2n
(2n+1)θ2

. However, according to Fisher, based on T ,

one should not report the information concerning θ as IT (θ), but instead should report

IT (θ|U) = 2n
θ2
· K1(2U)
K0(2U)

, where K0 and K1 are certain Bessel functions. For fixed n, IT (θ|U)

converges to zero as U → 0 and to ∞ as U → ∞.

Thus, following Fisher’s recommendation, one needs to condition on an ancillary

complement U to report the information content of T , the MLE, when T itself is not

sufficient. Stretching Fisher’s ideas further, one can even think of constructing inferential

procedures in general, which are based on such conditioning. In Section 2 of this article,

we will provide some examples to illustrate this.

However, situations may arise when an ancillary U may not exist. Indeed, Pena

et al. (1992) have demonstrated this phenomenon for general discrete models. Basu

pointed out that if X1, · · · , Xn (n ≥ 2) are iid uniform (θ, θ2), θ > 1, then the MLE

of θ is T = [max(X1, · · · , Xn)]
1/2. But, in this case, there does not exist any ancillary

complement U of T . On the other hand, it is shown in Basu (1964) that in many other

situations there may exist multiple ancillary complements of the MLE T of θ, and it may

not be clear which one to condition on.

One possible solution is to condition on the maximal ancillary statistic (Basu, 1959)

if it exists. A maximal ancillary statistic is one such that every ancillary statistic is a

function of the same. Indeed, such a statistic exists in some simple cases such as the

location or location-scale models. However, in general, such a statistic may not exist.

We will introduce in Section 3 some of Basu’s examples, and the response of Barnard

and Sprott (1971), Cox (1971) and Cox and Hinkley (1974) on additional criteria needed

to pick suitable ancillary complements of T .

Fraser (2004), in a recent article, has argued very strongly in favor of conditional

inference, and has provided many compelling examples to illustrate his point. We consider

in Section 4 two of his examples involving the general location or location-scale family

of distributions. These examples are also considered elsewhere (see e.g. Reid, 1988). In

both these examples, the dimension of the minimal sufficient statistic exceeds that of

the parameter(s) of interest. However, Fraser has shown that when one conditions on a

suitable ancillary statistic, it is possible to achieve the necessary dimension reduction,

and the answer matches perfectly with the ones in the corresponding normal examples
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where the dimension of the minimal sufficient statistic equals that of the parameter(s).

Thus, in this problem, while dimension reduction through sufficiency is possible only in

the normal case, the same is possible through ancillarity in more general situations where

the former fails, and nothing is lost when it holds.

Section 5 introduces some approximate ancillary statistics, particularly those pro-

posed by Efron and Hinkley (1978). In Section 6, we discuss briefly the role of ancillary

statistics in deriving some higher order asymptotic results related to maximum likelihood

estimation, generalized likelihood ratio tests and p-values. In particular, we introduce

the p*-formula of Barndorff-Nielsen (1983), and discuss some of its uses.

In Section 7, we bring out the issues of marginalization and conditioning with the ob-

jective of elimination of nuisance parameters, and discuss the role of some variations of

ancillary statistics in this context. Section 8 introduces the notion of Bayesian ancillarity

as given in Severini (1995). Section 9 contains some miscellaneous remarks which include

the role of ancillary statistics in finding optimal estimating functions as discussed in Go-

dambe (1976, 1980), as well as the ancillarity paradox of Brown (1990). Some concluding

remarks are made in Section 10.

There are some earlier reviews of ancillary statistics. We would like to draw attention

in particular to Fraser (1979) and Buehler (1982).

2 CONDITIONAL INFERENCE USING ANCIL-

LARY STATISTICS

We begin with an example originally considered in Welch (1939), and subsequently re-

visited by many authors, such as Barndorff-Nielsen and Cox (1994), and most recently

by Fraser (2004).

Example 2. Suppose X1 and X2 are iid uniform (θ − 1, θ + 1), θ real. The minimal

sufficient statistic is (Y1 = min(X1, X2), Y2 = max(X1, X2)). Let T = 1
2
(Y1 + Y2) and

U = 1
2
(Y2 − Y1). Then (Y1, Y2) is one-to-one with (T, U). Also the dimension of the

minimal sufficient statistic exceeds that of the parameter. Here the MLE of θ is any

point in the interval (Y2−1, Y1 +1). In particular, T is an MLE of θ. Also, U is ancillary.

The conditional pdf of T given U = u is

fθ(T |U) = [2(1 − U)]−1χ[θ−1+U<T<θ+1−U ](T ), (1)
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where χA(T ) is 1 or 0 according as T ∈ A or T ∈ Ac. Based on this conditional pdf, a

100(1−α)% confidence interval for θ is given by (T − (1−U)(1−α), T +(1−U)(1−α)).

It may be noted also that when U is close to 1, then θ is very precisely determined, while

if U is close to zero, the conditional distribution of T given U is essentially uniform over

the whole interval (θ − 1, θ + 1). Thus while U carries no direct location information

concerning θ, it carries extensive information on precision.

On the other hand, the marginal pdf of T is

fθ(T ) = T − θ + 1 if θ − 1 < T < θ

= θ + 1 − T if θ ≤ T < θ + 1.

If this marginal pdf is used to form, say, a confidence interval for θ, it can lead “con-

fidence” in θ values that are absurd when U is close to 1. Then θ is essentially known

exactly, but the unconditional confidence region for θ may lead to values which are im-

possible in the light of the data; see also Fraser (2004, pp 335-336).

Welch (1939), in a similar example, argued strongly against conditional inference by

producing two different 100(1 − α)% confidence intervals for θ based on two different

optimality criteria, both with rather extreme properties. The first, a likelihood ratio

based unbiased confidence interval for θ, gives full range of possible θ values for large

U . The second, the shortest on average symmetric confidence interval, is either the full

range of possible θ values or the empty set. The details are given in equations (2.4) and

(2.5) of Fraser (2004, pp 335-336). However, the interval as mentioned earlier does not

suffer from this problem, and the arguments put forward by Barndorff-Nielsen and Cox

(1994, pp 34-35) seem quite convincing to favor a conditional inference.

Welch (1939) was arguing from a Neyman-Pearson viewpoint where the optimality

property was based on maximizing the power subject to a constraint given by the test

size. The phenomenon, however, is much more general; see Fraser and McDunnough

(1980). If one optimizes a criterion subject to a constraint conditional on an ancillary

statistic, and then decides to require the constraint only marginally, then one can always

increase optimality, or at least not reduce it, by allowing more for some values of the

ancillary statistic, and less for others; or in a confidence context, give bigger intervals in

the high precision cases, and smaller intervals in the low precision cases, thus shortening

the average interval length (Fraser, 2004, pp 335-336) at a given confidence level.

The next example provides an empirical Bayes (EB) scenario where conditioning with
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respect to an ancillary statistic can produce quite a meaningful answer.

Example 3. This example appears in Hill (1990). Let Xi|θi ind∼ N(θi, 1) and θi
iid∼ N(µ,A)

(i = 1, · · · , k). Here A(> 0) is known, but µ(real) is possibly unknown. Suppose one

needs a confidence interval for one of the θi, say θ1. Writing B = (1+A)−1, the posterior

distribution of θ1 is N((1 − B)X1 + Bµ, 1 − B). In an EB method, one estimates µ

from the marginal distribution of (X1, · · · , Xk). Since marginally Xi
iid∼ N(µ,B−1), X̄ =

k−1
∑k

i=1Xi is complete sufficient for µ and the estimated posterior of θ1 is N((1 −
B)X1 + BX̄, 1 − B). Based on this, the shortest 100(1 − α)% confidence interval for θ1

is (1 − B)X1 + BX̄ ± zα/2
√

1 −B, where zα/2 is the upper 100α% point of the N(0, 1)

distribution.

It is clear that the above EB method does not account for the uncertainty due to

estimation of µ. To see how an ancillary argument can overcome this, we may note

that marginally U = X1 − X̄ is ancillary and U ∼ N(0, k−1
kB

). It is easy to check also

that θ1 − {(1 − B)X1 + BX̄}|U ∼ N(0, 1 − B + Bk−1). Thus the shortest 100(1 − α)%

confidence interval for θ1 based on this conditional distribution is (1 − B)X1 + BX̄ ±
zα/2

√
1 −B +Bk−1.

Alternatively, if one takes a hierarchical Bayesian (HB) approach where (i)Xi|θ1, · · · , θk, µ ind∼
N(θi, 1), (ii) θ1, · · · , θk|µ iid∼ N(µ,A)(A > 0), and (iii) µ ∼ uniform(−∞,∞), it turns out

that θ1|X1, · · · , Xk, µ ∼ N((1 − B)X1 + Bµ, 1 − B) and µ|X1, · · · , Xk ∼ N(X̄, (kB)−1).

Together, they imply θ1|X1, · · · , Xk ∼ N((1 − B)X1 + BX̄, 1 − B + Bk−1). Thus the

100(1−α)% confidence interval for θ1 based on this hierarchical prior is the same as the

one conditioned on the ancillary U . Noting that Bk−1 = V (Bµ|X1, · · · , Xk), it may be

noted that in this case ancillarity accounts for the uncertainty due to estimation µ as

much as the HB procedure. While the above coincidence between the two procedures

need not always be true, conditioning on an ancillary statistic, can often correct the

problem faced by a naive EB procedure.

Datta et al. (2002) demonstrated this in a framework slightly more general than

that of Hill. Once again, we consider the model where Xi|θi ind∼ N(θi, 1) and θi
iid∼

N(µ,A). However, this time both µ and A are unknown. Let S2 = k−1
∑k

i=1(Xi − X̄)2.

Since the Xi are marginally iid N(µ,B−1), (X̄, S) is complete sufficient for µ,A, while

U = (X1 − X̄)/S is ancillary. Consider the EB estimator (1 − B̂)X1 + B̂X̄ of θ1, where

B̂ ≡ B̂d(S) = min[{(k − d)/(k − 1)S2}, (k − d)/(k − 1)] for some bounded d > 1 not

depending on k. Then writing
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t ≡ t(B̂, U.α) = zα/2

[

1 + k−1

{

(1+z2
α/2

)B̂2

4(1−B̂)2
+ (2U2+4−d)B̂

2(1−B̂)

}]

,

where zα/2 is the upper 100α/2% point of the N(0,1) distribution,

P (θ1 ∈ (1 − B̂)X1 + B̂X̄ ± t(1 − B̂)1/2|U ] = 1 − α +Op(k
−3/2).

This shows that with a suitable bias correction, asymptotically an EB confidence in-

terval, conditioned on an ancillary statistic, meets the target coverage probability quite

accurately.

3 NONUNIQUENESS OF ANCILLARY STATIS-

TICS

Basu (1964,1992) pointed out many difficulties with the actual use of ancillary statistics.

First two statistics U1 and U2 may be individually ancillary, but (U1, U2) may not jointly

be so. Thus, in the case of a controversy as to which one of U1 and U2 should determine

the reference set, the dilemma cannot be solved by conditioning on (U1, U2) jointly. The

following simple example illustrates this.

Example 4. Let
(

Xi

Yi

)

iid∼ N

[(

0

0

)

,

(

1 ρ

ρ 1

)]

i = 1, · · · , n, where ρ ∈ (−1, 1) is unknown. We let U1 =
∑n

i=1X
2
i , U2 =

∑n
i=1 Y

2
i and

W =
∑n

i=1XiYi. It is easy to recognize both U1 and U2 as ancillary, each having the χ2
n

distribution. But jointly (U1, U2) is not ancillary as it is readily checked by calculating

corr(U1, U2) = ρ2 which depends on ρ. Thus, while W
U1

and W
U2

are both unbiased estima-

tors of ρ (unconditionally or conditionally), V (W
U1

|U1) = 1−ρ2

U1

and V (W
U2

|U2) = 1−ρ2

U2

. It is

tempting to opt for the larger one of U1 and U2 as the ancillary statistic in this example,

but then the choice of the ancillary statistic becomes data-dependent, which is counter to

the usual frequentist paradigm. However, the problem disappears when one conditions

on an approximate ancillary statistic (see Section 6).

Cox (1971) suggested a way to deal with multiple ancillaries. By the identity I(θ) =

E[IT (θ|U)], Cox argued that the basic role of conditioning on an ancillary U is to discrim-

inate between samples with varying degrees of information. In the presence of multiple

ancillaries, choose that U for which IT (θ|U) is most variable, i.e., Vθ[IT (θ|U)] is maxi-
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mum. Unfortunately, in most instances Vθ[IT (θ|U)] is a function of the unknown θ, and

there may not be a unique U which maximizes Vθ[IT (θ|U)] for all θ. Moreover, in Exam-

ple 4, since Vθ[IT (θ|U1)] = Vθ[IT (θ|U2)], the Cox method will fail to distinguish between

U1 and U2.

Example 5. The next example of Basu (1964) involves a random variable X assuming

values 1, 2, · · · , 6 such that

Pθ(X = j) =

{

(j − θ)/12, j = 1, 2, 3;

(j − 3 + θ)/12, j = 4, 5, 6.

where θ ∈ [−1, 1]. Here the MLE of θ is given by T (X), where T (1) = T (2) = T (3) = −1

and T (4) = T (5) = T (6) = 1. There are six possible ancillary complements of T given

by

X 1 2 3 4 5 6

U1(X) 0 1 2 0 1 2

U2(X) 0 1 2 0 2 1

U3(X) 0 1 2 1 0 2

U4(X) 0 1 2 2 0 1

U5(X) 0 1 2 1 2 0

U6(X) 0 1 2 2 1 0

A natural question concerns which ancillary complement to choose under the given cir-

cumstance. Basu left this example with a question mark. Also, there is no clearcut choice

among U1, · · · , U6 if one computes the information content of T based on its conditional

distributions given these six ancillary statistics since no strict inequality exists between

the IT (θ|Uj) (j = 1, · · · , 6) for all θ and all values of Uj. However, after some tedious

algebra, one can check that Vθ[IT (θ|U1)] > Vθ[IT (θ|Uj)] (j = 2, · · · , 6) for all θ, so that

following Cox’s guidelines, one chooses U1 as the ancillary statistic to condition on. From

another point of view (Barnard and Sprott, 1971), under the transformation gX = X+3

(mod 6) which gives the induced transformation g∗θ = −θ, it turns out that the only

ancillary statistic unaffected by this transformation is U1. Thus, with this constraint as

well, U1 seems to be the most appropriate one.

Example 6. Basu’s third example deals with X ∼ uniform[ θ, θ + 1), 0 ≤ θ < ∞. The
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sample space is X = [ 0,∞), and the likelihood function

L(θ) =

{

1, if X − 1 < θ ≤ X;

0, otherwise.

Thus, every point in the interval (X − 1, X] is an MLE of θ. One such choice is T = [X],

the integer part of X. Let φ(X) = X− [X]. Then φ(X) ∼ uniform[0, 1), and is ancillary.

Since X = [X]+φ(X), ([X], φ(X)) is one-to-one with the minimal sufficient X. So φ(X)

is the ancillary complement of [X]. Note that

[X]

{

= [θ], if φ(X) ≥ φ(θ) ⇔ θ ≤ X < [θ] + 1;

= [θ + 1] = [θ] + 1, if φ(X) < φ(θ) ⇔ [θ] + 1 ≤ X < θ + 1.

Also, it is easy to check that

Pθ[[X] = [θ]|φ(X)] = 1, if φ(θ) ≤ φ(X);

Pθ[[X] = [θ + 1]|φ(X)] = 1, if φ(θ) > φ(X).

Thus, the conditional distribution of the MLE [X] given φ(X) is degenerate at [θ]

or [θ + 1] depending on whether φ(X) ≥ φ(θ) or φ(X) < φ(θ). This changes the status

of [X] from a random variable to an unknown constant. However, Barnard and Sprott

(1971) did not find any anomaly in this. In their view, the likelihood is defined in [X]

in the ratio 1 − φ(X) : φ(X). Thus [X] measures position of the likelihood, and φ(X)

measures its shape in the sense of the proportion into which [X] divides the likelihood.

Thus, holding φ(X) fixed will also result in holding [X] fixed as well.

4 LOCATION AND LOCATION-SCALE FAMILIES

OF DISTRIBUTIONS

The models discussed in this section are treated in more detail in Fraser (2004). It is

well-known that for most examples of the location or location-scale family of distributions

(other than the normal), the dimension of the minimal sufficient statistic exceeds that

of the parameter of the distribution. However, for the location family of distributions,

inference about the location parameters can be based on the conditional distribution of

the sample average given some suitable ancillary statistic. For the location-scale family
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of distributions, similar calculations can be carried out from the conditional distribution

of a t-statistic. The end result is identical to the result in the normal distribution case

where the dimension of the minimal sufficient statistic is equal to the dimension of the

parameter. Thus, conditioning on an ancillary statistic reduces the dimensionality in

general location or location-scale problems, while nothing is lost when the distribution is

normal. We make this more specific in the following two examples.

Example 7. Let X1, · · · , Xn be iid N(θ, 1), θ real. Then any inference for θ will be based

on X̄ = n−1
∑n

i=1Xi which is the minimal sufficient statistic.

Suppose now we dispense with the normality assumption and assume that X1, · · · , Xn

(n ≥ 2) are iid with common pdf f(X − θ), θ real, and f is some specified pdf other

than normal. The the maximal ancillary statistic is (U1, · · · , Un), where Uj = Xj − X̄,

j = 1, · · · , n. (Note that only n − 1 of U1, · · · , Un are linearly independent.) Then the

conditional pdf of X̄ given U1, · · · , Un is

fθ(X̄|U1, · · · , Un) = k
n
∏

j=1

f(X̄ + Uj − θ), (2)

where k is the normalizing constant, which typically depends on the Uj. This condition-

ality argument reduces the dimension of the problem from n to 1. In the normal case, the

conditional density given in (2) becomes the unconditional density of X̄ since by Basu’s

theorem (Basu, 1955), the complete sufficient statistic X̄ is independent of the ancillary

U1, · · · , Un. Fraser (2004) illustrated this dimension reduction through p-values. One can

work instead with the conditional pdf of θ̂, the MLE of θ, given the ancillary statistics

(U1, · · · , Un), since θ̂ is also location equivariant and in the normal case, θ̂ equals X̄.

Example 8. We now extend the previous problem to location-scale family of distribu-

tions. Once again we begin with X1, · · · , Xn (n ≥ 2) which are iid N(θ, σ2). Then

the usual inferential procedure for θ is based on the t-pivot T =
√
n(X − µ)/S, where

S2 = (n− 1)−1Σn
i=1(Xi −X)2.

Instead, now we begin with the location-scale family of densities, where X1, · · · , Xn

are iid with a common pdf f(X|θ, σ) = σ−1f((X − θ)/σ), where f is some specified pdf

other than normal. Then Uj = (Xj − X̄)/S (j = 1, · · · , n) are ancillary (only n − 2 of

the Uj are linearly independent for n ≥ 3) and the joint pdf of X̄ and S conditional on
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the Uj’s is given by

f(X̄, S|U1, · · · , Un; θ, σ) = kσ−n

n
∏

j=1

f

(

X̄ + SUj − θ

σ

)

Sn−2, (3)

where k is the normalizing constant. The dimensionality of the problem is now reduced

to 2. In the normal case, the complete sufficient (X̄, S) is independent of the ancillary

U1, · · · , Un, and the conditional pdf given in (3) becomes the unconditional pdf.

5 APPROXIMATE ANCILLARIES

Efron and Hinkley (1978) introduced the notion of approximate ancillarity in the context

of conditioning with respect to the observed Fisher information. They motivated their

approach with the following example from Cox (1958).

Example 9. Suppose there are two instruments each designed to measure some unknown θ.

Suppose using instrument k, the observed measurements X1, · · · , Xn of θ are iid N(θ, σ2
k),

k = 0, 1, where σ2
0 and σ2

1 are known and unequal. When a measurement is obtained,

one notes also the instrument used, so that the observed data are (X1, U1), · · · , (Xn, Un),

where Uj = k if Uj is obtained using instrument k. The choice between the two instru-

ments is decided by a flip of an unbiased coin so that P(Uj = 1) = P(Uj = 0) = 1
2
.

Clearly Uj’s are ancillary.

The log-likelihood function in this case is given by

logL(θ) = l(θ) = constant −
n
∑

j=1

log σUj
− 1

2

n
∑

j=1

(Xj − θ)2

σ2
Uj

, (4)

Then the MLE of θ is θ̂ =
∑n

j=1Xjσ
−2
Uj
/
∑n

j=1 σ
−2
Uj

. Also, the (expected) Fisher informa-

tion is given by

E
[

− ∂2l

∂θ2

]

=
n
∑

j=1

E(σ−2
Uj

) =
n

2
(σ−2

0 + σ−2
1 ), (5)

while the observed Fisher information

j(θ̂) = − ∂2l

∂θ2

∣

∣

∣

θ=θ̂
=

n
∑

j=1

σ−2
Uj

= (n− U)σ−2
0 + Uσ−2

1 (6)
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where U =
∑n

j=1 Uj, the number of times instrument 1 was used.

Note also in this case

V (θ̂|U1, · · · , Un) = [Uσ−2
1 + (n− U)σ−2

0 ]−1 = j−1(θ̂) (7)

which equals the reciprocal of the observed Fisher information given in (6), but is different

from the reciprocal of the expected Fisher information given in (5).

In this example it seems clear that V (θ̂ | U1, . . . , Un) is the correct variance estimate,

since it is known which instrument was used. In general we do not have

V (θ̂ | U) = j−1(θ̂),

but Efron and Hinkley (1978) show that in i.i.d. sampling from a suitably regular one-

parameter model this holds approximately, in the sense that

V (θ̂ | U) = j−1(θ̂){1 +Op(n
−1)},

and further that the discrepancy between j(θ̂) and I(θ) can be expressed in terms of the

statistical curvature of the model:

√
n

(

j(θ̂)

I(θ̂)
− 1

)

∼ N(0, γ2
θ ), (8)

where the curvature γθ = (ν20ν02 − ν11)
3

2/(ν20)
3

2 , and

νjk = νjk(θ) = E
[(∂ log f

∂θ

)j{∂2 log f

∂θ2
+ E

(∂ log f

∂θ

)2}]k

,

and f is the given density of the observations.

Result (8) also suggests that an approximately ancillary statistic is given by

Q =
1 − j(θ̂)/I(θ̂)

γθ̂
, (9)

in the sense that
√
nQ has a limiting standard normal distribution, and (9) has come to be

known as the Efron-Hinkley ancillary statistic. It is first-order ancillary; i.e. the normal

approximation to the distribution of Q has relative error O(n−1/2). Skovgaard (1985)

showed that the relative error is actually O(n−1), in a moderate deviation neighborhood
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of an arbitrary fixed point θ0 in the interior of the parameter space; this is called second

order local ancillarity. Local ancillarity was introduced in Cox (1980).

Approximate ancillary statistics are closely tied to higher order approximations, but

are not usually of particular interest in themselves. Fraser and Reid (1993, 1995, 2001)

use the theory of higher order approximations to avoid the explicit calculation of a second

order ancillary statistic, but instead find a direct expression for an approximation for the

conditional distribution given a second order ancillary. This construction is described as

well in Reid (2003) and Severini (2000, Ch. 7.5.3).

Example 4 (revisited). Cox and Hinkley (1974, p.34) suggest U ′ = U1 +U2 = Σ(X2
i +Y 2

i )

as an approximate ancillary statistic for this example, as it has mean 2n and variance

4n(1 + ρ2), so its first moment is free of ρ and its second moment approximately so, at

least for small ρ. Wang (1993) suggested a standardized version (U ′−2n)/2
√{W 2 +n2},

which has both mean and variance independent of ρ. Defining ancillary statistics through

constancy of moments is not the same as local or approximate ancillarity, although to

first order it is the same for asymptotically normally distributed statistics.

The Efron-Hinkley ancillary statistic for this example can be calculated from (9), but

the explicit expression is not very informative. Since its claim to ancillarity is that it

has mean 0 and variance 1, and is asymptotically normally distributed, it is likely to

be equivalent to Wang’s modification of U ′. We can also embed the model in a two-

parameter exponential family and compute the directed likelihood ancillary. Either of

these ancillary statistics can be used for higher order appoximations to the distribution

of the maximum likelihood estimator, although the detailed calculations are somewhat

cumbersome. Reid (2003) illustrates the construction of Fraser and Reid (1993, 1995) on

this example and derives higher order appoximations to the distribution of the maximum

likelihood estimator. The detailed calculations, however, are also cumbersome.

6 ASYMPTOTICS AND ANCILLARITY

Barndorff Nielson’s famous p∗-formula is an approximation to the density of the MLE

given an approximate ancillary. This result has been the cornerstone of much subsequent

research including the derivation of generalized likelihood ratio tests, p-values and even

various new likelihoods. To use it for numerical integration to get p-values, however,

requires information on the ancillary, at least locally. It turns out that when the MLE

is itself a sufficient statistic, this approximation is for the unconditional density of the

13



MLE. On the other hand, if the MLE is not sufficient, but together with an ancillary

statistic constitutes the minimal sufficient statistic, then this approximation holds for

the density of the MLE conditional on its ancillary complement.

We will illustrate Barndorff-Nielsen’s general result with examples. First, we begin

with the regular exponential family of densities where the MLE is minimal sufficient. For

simplicity of exposition, we consider only the one-parameter exponential family, although

similar results are available for the multiparameter exponential family of densities as well.

The following example is discussed in detail in Ghosh (1994, pp 75-76) and Severini (2000,

pp 184-185).

Example 10: Let X1, . . . , Xn be iid with the common pdf (with respect to some σ-finite

measure µ)

fθ(X) = exp[θX − ψ(θ) + c(X)]

Then the cumulant generating function is Kθ(t) = ψ(t+ θ) − ψ(θ).

The saddlepoint approximation to the pdf of X̄ (see for example Daniels, 1954; Reid,

1988)

fθ(X̄)
.
=

√
nexp[n{Kθ(λ̂) − λ̂X̄}]

[2πK
′′

θ (λ̂)]1/2
,

where K
′

θ(λ̂) = X̄. Since K
′

θ(t) = ψ
′

(t+θ), K
′′

θ (t) = ψ
′′

(t+θ), X̄ = ψ
′

(λ̂+θ), i.e. λ̂+θ =

(ψ
′

)−1(X̄) = θ̂, where θ̂ is the MLE of θ. Then Kθ(λ̂) = ψ(λ̂+ θ) − ψ(θ) = ψ(θ̂) − ψ(θ),

and K
′′

θ (λ̂) = ψ
′′

(λ̂+ θ) = ψ
′′

(θ̂). Hence, the saddlepoint approximation to the pdf of X̄

is

fθ(X̄) =

√
nexp[n{ψ(θ̂) − ψ(θ)} − n(θ̂ − θ)X̄]

[2πψ′′(θ̂)]1/2

=

√
nexp[n{θX̄ − ψ(θ)} − n{θ̂X̄ − ψ(θ̂)}]

[2πψ′′(θ̂)]1/2

= n
L(θ)/L(θ̂)√
2π(−lθθ)1/2

,

where L(θ) = exp[n{θX̄−ψ(θ)} is the likelihood function, and lθθ = d2

dθ2
l(θ), where l(θ) =

logL(θ). In this example lθθ = −nψ′′

(θ). Since ψ
′

(θ̂) = X̄, dX̄/dθ̂ = ψ
′′

(θ̂) = n−1j(θ̂),

where j(θ̂) is the observed Fisher information, namely, −lθθ evaluated at θ = θ̂. Hence,

the pdf pθ(θ̂) of the MLE θ̂ of θ is approximated by
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fθ(θ̂)
.
=

1√
2π

L(θ)

L(θ̂)
j(θ̂)1/2.

The error of approximation is O(n−1). It turns out that the renormalized density p∗θ(θ̂) =

cL(θ)/L(θ̂)j(θ̂)1/2 reduces the error of approximation to O(n−3/2). The multiparameter

generalization of this result is given by

fθ(θ̂) = c|j(θ̂)|1/2L(θ)/L(θ̂),

where |A| denotes the determinant of the matrix A.

We now revisit the location-scale family of densities to understand the role of ancillary

statistics in this formulation. This is considered in Reid (1988).

Example 8(continued). The likelihood L(θ, σ) is given by L(θ, σ) = σ−n
∏n

1 f((Xi−θ)/σ).

We now make the transformation Ui = (Xi − θ̂)/σ̂, where (θ̂, σ̂) is the MLE of (θ, σ). In

this example,

L(θ, σ)

L(θ̂, σ̂)
=

σ−n
∏n

1 f((Xi − θ)/σ)

σ̂−n
∏n

1 f((Xi − θ̂)/σ̂)

= (σ̂/σ)n
n
∏

1

f

(

σ̂Ui + θ̂ − θ

σ

)

/

n
∏

1

f(Ui)

Note that f(θ̂, σ̂, U1, . . . , Un|θ) = σ−n
∏n

1 f
(

θ̂+σ̂Ui−θ
σ

)

σ̂n. This leads to

f(θ̂, σ̂|U1, . . . , Un, θ, σ) = c(U1, · · · , Un)σ−nσ̂n−2

n
∏

1

f

(

θ̂ + σ̂Ui − θ

σ

)

= c(U1, . . . , Un)|j(θ̂)|1/2
L(θ, σ)

L(θ̂, σ̂)
.

Barndorff-Nielsen (1983) and later Skovgaard (1990) gave a somewhat heuristic proof

that the above provides an expression for the conditional density of the MLE in a more

general framework. In particular, suppose that the minimal sufficient statistic is one-

to-one with (θ̂, U), where θ̂ is the MLE of the parameter of interest, and U is ancillary.

Then Barndorff-Nielsen’s approximation to the conditional density of θ̂ given U is given

by

p∗θ(θ̂|U, θ) = c(U, θ)
L(θ; θ̂, U)

L(θ̂; θ̂, U)
|j(θ̂)|1/2. (10)
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Davison (1988) gave an interpretation of the right hand side of (10) as the Laplace

approximation of the normalized likelihood L(θ)/
∫

L(θ)dθ. Begin with the approxima-

tion L(θ) = exp[l(θ)]
.
= exp[n{l(θ̂) + (θ − θ̂)T lθ(θ̂) + 1

2
(θ − θ̂)T j(θ̂)(θ − θ̂)], where lθ(θ̂)

denotes the gradient vector of l(θ). Since lθ(θ̂) = 0, we get

L(θ)
.
= exp[l(θ̂)]exp[−1

2
(θ − θ̂)T j(θ̂)(θ − θ̂)]

= L(θ̂)exp[−1

2
(θ − θ̂)T j(θ̂)1/2(θ − θ̂)].

Hence,
∫∞

−∞
L(θ)dθ = L(θ̂)(2π)p/2|j(θ̂)|−1/2. Thus,

L(θ)
∫∞

−∞
L(θ)dθ

.
=

L(θ)

L(θ̂)(2π)p/2
|j(θ̂)|1/2.

We can view the role of the ancillary U as providing a complementing statistic to θ̂, in

order that the p∗ approximation given in equation (10) is defined on a sample space that

is of the same dimension as the parameter space. This approximation, however, will only

be valid for inference about θ if U is either exactly ancillary or approximately ancillary.

If U is second order ancillary, then the renormalized p∗ approximation will have relative

error O(n−3/2), while if U is just first order ancillary, it will have relative error O(n−1).

When θ is a scalar parameter, the p∗ approximation given in (10) can be re-expressed

in terms of the density of the signed likelihood root

r(θ) = sign(θ̂ − θ)[2{l(θ̂) − l(θ)}]1/2,

assuming the transformation from θ̂ to r is one-to-one, although the dependence of r

on θ̂ is suppressed in the notation. Inference about θ is then readily obtained from

the distribution function F (r | U ; θ), for example the p-value for testing that θ = θ0 is

F (r0(θ0) | U ; θ0). This distribution function can be approximated to O(n−3/2), using a

technique due to Lugannani and Rice (1980) and Barndorff-Nielsen (1986). The resulting

approximation is

F (r | U ; θ) = Φ(r∗){1 +O(n−3/2)} (11)

where r∗ = r + r−1 log(q/r), q = {l;θ̂(θ̂) − l;θ̂(θ)}j−1/2(θ̂), and l;θ̂ = ∂`(θ; θ̂, U)/∂θ̂ is a

sample space derivative with the ancillary statistic U held fixed. A statistic Q that does

not require the determination of an explicit expression for U is developed in Fraser and
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Reid (1993, 1995, 2001).

7 ELIMINATION OF NUISANCE PARAMETERS

7.1 EXTENDED DEFINITIONS OF ANCILLARITY

We begin with a model parameterized by θ = (ψ, λ), where ψ is the parameter of the

interest, and λ is the nuisance parameter. The simplest way to eliminate the nuisance

parameter λ is to substitute λ̂ψ, the constrained maximum likelihood estimate of λ for

fixed ψ. While the resulting profile likelihood Lp(ψ) = L(ψ, λ̂ψ) has many of the first

order asymptotic properties of a likelihood (see especially Barndorff-Nielsen and Cox,

1994, Ch. 3.4), this solution is unsatisfactory more generally as it does not allow for

errors of estimation of λ. An alternative, relatively simple, solution is Bayesian: assign

a prior to (ψ, λ), find the posterior density and hence the posterior marginal density for

ψ by integration. However, this requires a choice of priors, which may be difficult for

high-dimensional nuisance parameters.

Other methods do exist. For example, if (T, U) is minimal sufficient and the marginal

distribution of T involves ψ only, and does not involve the nuisance parameter λ, then

inference about ψ can be based on the marginal distribution of T . The following example

illustrates this.

Example 11. This is the famous Neyman-Scott (1948) situation. Let (Xi1, Xi2)
T be

independently distributed N2

[(

µi

µi

)

, σ2I2

]

, i = 1, . . . , n, where µ1, . . . , µn, σ
2 are all

unknown. Here ψ = σ2 and λ = (µ1, · · · , µn). If inference is based on the marginal

likelihood of σ2 based on the paired differences Xi1 −Xi2, then σ̂2
MMLE = 1

2n

∑n
1 (Xi1 −

Xi2)
2, the marginal MLE of σ2, converges in probability to σ2 as n → ∞. In contrast,

the MLE σ̂2
MLE = 1

4n

∑n
1 (Xi1 −Xi2)

2 of σ2 converges in probability to 1
2
σ2 and not σ2 as

n→ ∞. However, in general, it may not be possible to find a statistic T whose marginal

distribution does not depend on the nuisance parameters.

An alternative method is the so called conditional likelihood approach. Suppose the

joint density of the minimal sufficient statistic (T, U) is given by

f(T, U ;ψ, λ) = f(T |U ;ψ)f(U ;ψ, λ) (12)

Then the inference can be based on the conditional density f(T |U ;ψ) which does not
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involve λ. In the Neyman-Scott example, noting that (Xi1, Xi2) is one-to-one with (Xi1 +

Xi2, Xi1−Xi2), by the independence ofXi1+Xi2 withXi1−Xi2, it follows that conditional

on the Xi1 +Xi2’s (i = 1, . . . , n), the conditional MLE of σ2 based on the distributions

of the Xi1 −Xi2’s is the same as its marginal MLE, and is consistent.

One possible drawback of a conditional likelihood approach is that the conditioning

variable U may contain information about ψ which is lost when it is held fixed. Hence, it

may be appropriate to require that the distribution of U , the conditioning statistic does

not contain any information about ψ in the presence of λ. In such cases, U is said to be

ancillary for ψ in the presence of λ.

If for example, the distribution of U depends only on λ, then U does not contain any

information about ψ. This is a very stringent requirement, and does not hold in general.

In the Neyman-Scott problem, the Xi1 +Xi2 are independent N(2µi, 2ψ).

Example 12. Let Y1, Y2, · · · , Yn be iid with common pdf

p(Y |ψ, λ) =
Γ(ψ + Y )

Γ(Y + 1)Γ(ψ)
λY (1 − λ)ψ,

where ψ > 0 and 0 < λ < 1. For fixed ψ, U =
∑n

j=1 Yj is sufficient for λ so that the

conditional distribution of Y1, · · · , Yn given U depends only on ψ. However, U has pdf

p(U |ψ, λ) =
Γ(nψ + U)

Γ(U + 1)Γ(nψ)
λU(1 − λ)nψ,

which is not ancillary for ψ in the usual sense. Indeed, the Fisher information contained

in the distribution of U depends on both ψ and λ.

The fact that U is not ancillary in the usual sense, has led to the notion of S-ancillarity

(Barndorff-Nielsen, 1973, 1976). A statistic U is said to be S-ancillary for ψ in the

presence of λ if the family of pdf’s {f(U ;ψ, λ);λ ∈ Λ} remains the same for each ψ.

More specifically, if U is S-ancillary, then for every ψ0, ψ1 and λ0, there exists λ1 =

h(ψ0, ψ1, λ0) ∈ Λ such that f(U ;ψ0, λ0) = f(U ;ψ1, λ1).

We consider a simple example.

Example 13 (Severini, 2000, p 282). Xi
ind∼ Poisson(exp(λ + ψZi)), i = 1, . . . , n. Then

writing φ =
∑n

i=1 exp(λ+ψZi), U =
∑n

1 Xi is S-ancillary. Also, then the joint conditional

distribution of the Xi given U is multinomial (U ; exp(ψZ1)
Pn

1
exp(ψZi)

, . . . , exp(ψZn)
Pn

1
exp(ψZi)

).

Another approach to defining ancillarity in the presence of a nuisance parameter

is based on the notion of partial information for ψ. This led to the development of
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partial ancillary (P-ancillary) statistics (Bhapkar, 1989;1991). Denoting the information

matrix for the minimal sufficient statistic (T, U) as IT,U (ψ, λ), one partitions the same

as

(

IT,Uψψ IT,Uψλ

IT,Uλψ IT,Uλλ

)

, where IT,Uψψ = E[−∂2f(T,U ;ψ,λ)
∂ψ2 ], and the other elements of IT,U (ψ, λ) are

similarly defined. The information matrix IU((ψ, λ) for U is similarly partitioned. Then

the partial information for ψ based on (T, U) is

IT,Uψψ.λ = IT,Uψψ − IT,Uψλ (IT,Uλλ )−1IT,Uλψ , (13)

while the partial information for ψ based on U alone is

IUψψ.λ = IUψψ − IUψλ(I
U
λλ)

−1IUλψ. (14)

Once again we begin with the assumption that the joint density of the minimal suf-

ficient statistic (T, U) can be factorized as in (12). This leads to the identities

IT,Uψψ = E[−∂
2f(T |U, ψ)

∂ψ2
|U ] + IUψψ; (15)

IT,Uψλ = IUψλ; I
T,U
λλ = IUλλ. (16)

It follows from (13)-(16) that

IT,Uψψ.λ = E[−∂
2f(T |U, ψ)

∂ψ2
|U ] + IUψψ.λ. (17)

We say that U is partial ancillary (P-ancillary) for ψ if the partial information for ψ based

on the joint distribution of T and U is the same as that in the conditional distribution

of T given U , or equivalently IUψψ.λ = 0.

Example 13 (Continued). In this example U =
∑n

j=1Xj ∼ Poisson(
∑n

j=1 exp(λ+ψZj)).

Hence,

IU(ψ, λ) =

(

{
P

Zjexp(λ+ψZj)}
2

P

exp(λ+ψZj)

∑

Zjexp(λ+ ψZj)
∑

Zjexp(λ+ ψZj)
∑

exp(λ+ ψZj)

)

This leads immediately to IUψψ.λ = 0, i.e. the S-ancillary U is also P-ancillary.

The following example shows that P-ancillarity does not necessarily imply S-ancillarity.

Example 14 (Severini, 2000, p 284). Let Xi
ind∼ N(λ + ψZi, 1), i = 1, . . . , n, where
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λ > 0. Then the minimal sufficient statistic (
∑n

i=1 ZiXi,
∑n

i=1Xi) is one-to-one with

(
∑n

i=1 Zi(Xi − X̄), X̄), and the conditional distribution of
∑n

i=1 Zi(Xi − X̄) given X̄,

which is the same as its marginal distribution due to independence, does not involve λ.

Since X̄ ∼ N(λ+ ψZ̄, n−1), IX̄(ψ, λ) = n

(

Z̄2 Z̄

Z̄ 1

)

so that IX̄ψψ.λ = 0.

Hence, X̄ is P-ancillary. However, X̄ is not S-ancillary. To see this, we may note that

if ψ = −1, X̄ ∼ N(λ − Z̄, 1/n) so that the mean of X̄ is any number greater than −Z̄
which may be negative. Thus X̄ cannot be S-ancillary.

The next example shows that even though (12) holds, U may not be either P- or

S-ancillary. This example is a simplified version of one given in Severini (2000, p 280).

Example 15. Let X1, . . . , Xn be iid with common gamma pdf

f(X : ψ, λ) = exp(−λX)Xψ−1λψ/Γ(ψ),

where X > 0, ψ > 0, and λ > 0. Then the minimal sufficient statistic for (ψ, λ)

is (T =
∏n

i=1Xi, U =
∑n

i=1Xi). Also, for fixed ψ, U is sufficient for λ. Hence, the

conditional distribution of T given U does not depend on λ. However, U is not either P -

or S-ancillary.

To see this, first note that U has pdf f(U ;ψ, λ) = exp(−λU)U nψ−1λnψ/Γ(nψ). Hence,

the information matrix based on U is given by IU(ψ, λ) =

(

d2logΓ(nψ)

dψ2 −n/λ
−n/λ nψ/λ2

)

. Clearly,

IUψψ.λ 6= 0 so that U is not P -ancillary.

In order to show that U is not S-ancillary, one may note that if for some (ψ0, ψ1( 6=
ψ0), λ0), there exists λ1 such that the pdf of U under (ψ0, λ0) is the same as that under

(ψ1, λ1), then

nψ0/λ0 = Eψ0,λ0
(U) = Eψ1,λ1

(U) = nψ1/λ1;

nψ0/λ
2
0 = Vψ0,λ0

(U) = Vψ1,λ1
(U) = nψ1/λ

2
1.

The above imply that ψ0 = ψ1 which is a contradiction. Hence, U is not S-ancillary.

7.2 APPROXIMATE ANCILLARITY

The definition of ordinary ancillarity in the presence of nuisance parameters is not at

all straightforward, as we have seen in the previous subsection. It is equally difficult

to formalize the notion of approximate ancillarity in the nuisance parameter setting.
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However, it is possible to extend the asymptotic approximations outlined in Section 6 to

the nuisance parameter setting, using an approximate version of (11).

Barndorff-Nielsen (1986) showed that starting from the p∗ approximation (10) for the

maximum likelihood estimate of the full parameter θ, we can write, to O(n−3/2)

p(θ̂ | U ; θ) = p(r∗ψ | U)p(λ̂ψ | r∗ψ, U ;λ)

where r∗ψ is a modification of the likelihood root rψ = sign(ψ̂ − ψ)[2{lp(ψ̂) − lp(ψ)}]1/2,
based on the profile log likelihood. This leads directly to approximate inference for ψ

based on Φ(r∗ψ), which can be shown to be standard normal with relative error O(n−3/2).

The construction of r∗ψ is difficult, as it requires various sample space derivatives for

fixed U : Fraser and Reid (1995) provide an alternative version that does not use explicit

expressions for the approximate ancillary statistic; see also Severini (2000, Ch. 7.5.3).

Approximate ancillary statistics can also be constructed using covariances, as sug-

gested in Skovgaard (1996) and Severini (1999); see Severini (2000, Ch. 7.5.4,5).

8 BAYESIAN ANCILLARITY

As noted in the previous section, neither S-ancillarity nor P-ancillarity of a statistic

U implies that the distribution of U does not depend on ψ, and depends only on λ.

Also, in Example 15, U is neither S-ancillary nor P -ancillary. Indeed, it is not even

appropriate to say that U does not contain any information about ψ in the presence

of λ without specifically defining what “information” really means. To overcome this

problem, Severini (1995) brought in the notion of Bayesian ancillarity. We shall observe

that as a consequence of his definition, by introducing a suitable prior, the marginal

distribution of U will indeed not depend on ψ. The details are described below.

Severini defines a statistic U to be Bayes ancillary if with respect to some prior

distribution, the posterior distribution of ψ based on the conditional distribution T given

U is the same as the posterior distribution of ψ based on the joint distribution of (T, U).

We first consider the case when there is no nuisance parameter λ. Using p(·|·) as a generic

symbol for a conditional pdf, and p(·) as a generic symbol for a marginal pdf, U is Bayes

ancillary if and only if

p(T, U |ψ)p(ψ)
∫

p(T, U |ψ)p(ψ)dψ
=

p(T |U, ψ)p(ψ)
∫

p(T |U, ψ)p(ψ)dψ
.
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Writing p(T, U |ψ) = p(T |U, ψ)p(U |ψ), the above simplifies to

p(U |ψ) =

∫

p(T, U |ψ)p(ψ)dψ
∫

p(T |U, ψ)p(ψ)dψ
= p(U),

that is the marginal of U does not depend on ψ. An alternative way of saying this is

that here U does not contain any information about ψ.

In the presence of a nuisance parameter λ, we begin with the minimal sufficient

(T, U) for (ψ, λ), and assume as before that p(T, U |ψ, λ) = p(T |U, ψ)p(U |ψ, λ). Once

again, invoking the definition of Bayesian ancillarity, U is Bayesian ancillary if and only

if
∫

p(T, U |ψ, λ)p(λ|ψ)p(ψ)dλ
∫ ∫

p(T, U |ψ, λ)p(λ|ψ)p(ψ)dλdψ
=

p(T |U, ψ)p(ψ)
∫

p(T |U, ψ)p(ψ)dψ
.

Since p(T, U |ψ, λ) = p(T |U, ψ)p(U |ψ, λ), the above simplifies to

∫

p(U |ψ, λ)p(λ|ψ)dλ =

∫ ∫

p(T |U, ψ)p(U |ψ, λ)p(λ|ψ)p(ψ)dλdψ
∫

p(T |U, ψ)p(ψ)dψ
,

i.e. p(U |ψ) =
∫

p(T |U, ψ)p(U |ψ)p(ψ)dψ/
∫

p(T |U, ψ)p(ψ)dψ. Once again, the marginal

pdf of U does not involve ψ, and U is ancillary in the usual sense.

It may be noted in Example 12 that with the prior p(λ|ψ) = λ−1(1 − λ)−1 which is

improper and does not depend on ψ, it follows that p(U |ψ) = Γ(U)/Γ(U + 1) = U−1

which does not depend on ψ.

9 FURTHER REMARKS

9.1 Ancillarity and Optimal Estimating Equations

Godambe (1976, 1980) also considered the concepts of sufficiency and ancillarity in the

presence of nuisance parameters, and tied these ideas to the theory of optimal estimating

functions.

Godambe’s formulation is as follows: Let X1, · · · , Xn be independent observations

with densities f(Xi|ψ, λ), where once again ψ is the parameter of interest, and λ is

the nuisance parameter. Let g(Xi, ψ), a function of Xi and the parameter of interest

satisfy E[g(Xi, ψ)|ψ, λ] = 0. Then g(Xi, ψ) is called an unbiased estimating function.

Let g(X, ψ) =
∑n

i=1 g(Xi, ψ), where X = (X1, · · · , Xn)
T .
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Godambe (1960) defined the optimal unbiased estimating function as the minimizer

of E [g2(X, ψ)/{E(∂g(X, ψ)/∂ψ)}2]. He showed that without any nuisance parameter,

the usual score function is the optimal unbiased estimating function. In the presence

of a nuisance parameter, Godambe (1976) showed that if the joint density f(X|ψ, λ)

factorizes as

f(X|ψ, λ) = f(X|U, ψ)f(U |ψ, λ),

where U is complete sufficient for the nuisance parameter λ for fixed ψ, then the condi-

tional score function ∂logf(X|U, ψ)/∂ψ is the optimal unbiased estimating function. He

also showed that the information about ψ contained in the conditional distribution of X

given U is the same as that contained in its unconditional distribution.

The following two examples illustrate this.

Example 16. Let X1, . . . , Xn be iid gamma with common pdf

f(X|ψ, λ) =
[

λψΓ(ψ)
]−n

n
∏

i=1

{Xψ−1
i exp(−Xi/λ)}

Let U =
∑n

1 Xi. Note that the conditional pdf of X1, . . . , Xn−1 given U is

f(X1, . . . , Xn−1|U, ψ) =
Γ(nψ)

Γn(ψ)

(
∏n

1 Xi)
ψ−1

Unψ−1

which does not depend on λ. Also marginally U has the pdf

f(U |ψ, λ) = exp(−U/λ)
Unψ−1

λnψΓ(nψ)

so that for fixed ψ, the family of distributions of U is complete.

Example 17. Let X1, . . . , Xn be iid negative binomial with common pf

f(X|ψ, λ) =

(

ψ +X − 1

X

)

λX(1 − λ)ψ
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Again take U =
∑n

1 Xi. Then the conditional pdf of X1, . . . , Xn given U is

f(X1, . . . , Xn−1|U, ψ) =

∏n
1

(

ψ +Xi − 1

Xi

)

(

nψ + U − 1

T

)

which does not depend on λ. Further, the marginal pf of U is

f(U |ψ, λ) =

(

nψ + U − 1

T

)

λU0 (1 − λ0)
nψ

So, for fixed ψ, the family of distributions of U is complete.

One of the limitations of Godambe’s (1976) result is that he had to assume the

existence of a complete sufficient statistic for λ which did not depend on ψ. While this

is available for the regular exponential family of distributions, this need not be true in

general. Lindsay (1982) showed that if U = U(ψ), then the conditional score function

for ψ depends on λ as well, and hence, is only locally optimal at the true λ.

9.2 Brown’s Ancillarity Paradox

Brown (1990) introduced an ancillarity paradox (essentially an admissibility paradox) in

the context of multiple linear regression. His main theme was to show via (in)admissibility

results that procedures which are admissible conditional on some ancillarity statistics may

unconditionally fail to be so.

We begin with the following simple example of Brown.

Example 18. Let X ∼ N(µ,Σ), Σ known positive definite. Let U ∈ Rp with ||U || > 0.

Let θ = UTµ. The usual estimator of θ is U TX. Under squared error loss, Cohen (1966)

has shown that UTX is an admissible estimator of U Tµ for fixed U . However, if U is

random. writing Ω = E(UU T ), and assuming it to be positive definite, Brown showed

that UTX is dominated by UTδ(X), under squared error loss, where

δ(X) = X − ρ

XTΣ−1Ω−1Σ−1X
Ω−1Σ−1X

0 < ρ < 2(p− 2), p ≥ 3.

Brown established a similar phenomenon in a multiple regression problem.
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Example 19. Let X ∼ Np(α1p + Zβ, σ2Ip), where Z (p × p) is the design matrix and

β (k × 1) regression vector, 1p is the p-component vector of 1’s, and Ip is the identity

matrix of order p. We assume that p > k+ 1, and Z is a full rank matrix. The objective

is to estimate α under the squared error loss.

Let X̄ = p−11TpX, Z̄ = p−11TpZ and S = (Z − 1pZ̄
T
)T (Z − 1pZ̄

T
). Here X̄ is a

scalar, Z̄
T

is a row vector of dimension k and S is a k × k matrix, positive definite with

probability 1. The usual estimator α̂ = X̄− Z̄
T
β̂, where β̂ is the least squares estimator

β is admissible under squared error loss. However, if it is assumed that k-dimensional

components of Z are iid N(0, σ2Ik), then α̂ ceases to be an admissible estimator of α

under squared error loss.

What Brown’s examples demonstrate is that conditional inference could potentially

be in conflict with unconditional inference. However, it appears that there are no funda-

mental or conceptual difficulties associated with this conclusion. This was brought out

by several discussants of his paper; see also the optimality discussion preceding Example

3 in Section 2. Another interesting example of ancillarity paradox in the context of finite

population sampling appears in Godambe (1982).

10 SUMMARY AND CONCLUSION

Ancillary statistics is a fascinating vast topic. Over several decades, this area has wit-

nessed phenomenal amount of research, both exact and asymptotic. It is impossible to

cover each and every facet of the subject in a single review. Fraser (2004), in his re-

cent article, has discussed many aspects of conditioning and ancillarity, and has argued

strongly in favor of conditional inference. We share this view. But, in this article, we

have tried to bring out both the uses and difficulties of ancillary statistics, taking more or

less a neutral standpoint. Also, as the title says, this is only a selective review, and we are

aware that many important contributions are omitted. We offer my sincerest apologies

to these authors. Finally, we strongly feel that research on ancillary statistics has not

reached a saturation level, and anticipate new and surprising results in this general area.
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