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Abstract

The linear and nonlinear seemingly unrelated regression problem with general error

distribution is analyzed using recent likelihood theory that arguably provides the definitive

distribution for assessing a scalar parameter; this involves implicit but well defined

conditioning and marginalization for determining intrinsic measures of departure. Highly

accurate p-values are obtained for the key difference between two regression coefficients of

central interest. The p-value gives the statistical position of the data with respect to the key

parameter. The theory and the results indicate that this methodology provides substantial

improvement on first-order likelihood procedures, both in distributional accuracy, and in

precise measurement of the key parameter.
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1. Introduction

In many areas of economics, relationships arise naturally that can be modeled in
terms of several seemingly unrelated regression (SUR) equations. The foundational
analysis of the SUR model was initiated by Zellner (1962, 1963) with an innovative
use of generalized least squares, followed later by likelihood and Bayesian analyses.
More recently, various other inference approaches have become available and
accessible, such as the Bartlett corrected likelihood, the bootstrap, the Bayesian
method of moments, and now the likelihood distributional analysis. The focus of this
paper is on the likelihood distributional approach.
A prominent way of evaluating the various approaches is to examine the order of

convergence of a candidate distribution to an objective. Traditional likelihood ratio
analysis is typically Oðn�1=2Þ meaning that a candidate probability differs from a
target by an error of the order n�1=2; where n is the sample size or a related measure
of the amount of relevant data. Also, for small and medium sized samples the
likelihood ratio approach in particular is well known to have the potential for
substantial inaccuracy. Bartlett adjustments have been developed and can provide a
substantial increase in distributional accuracy; a Bartlett corrected likelihood
interval can achieve distributional accuracy of order Oðn�2Þ; but for directed or one-
sided intervals, the order of accuracy drops to Oðn�1=2Þ: For a discussion and
application of Bartlett adjustments see, for example: Bartlett (1937), Barndorff-
Nielsen and Cox (1994), Attfield (1995, 1998), and Rocke (1989). The bootstrap is
initially Oðn�1=2Þ; but by repetition can be raised to Oðn�1Þ or Oðn�3=2Þ: Bootstrap
methods have been applied and discussed in Rilstone and Veall (1996) and Rocke
(1989). The Bayesian approach can attain arbitrary accuracy given a prior and with
asymptotics can attain order Oðn�3=2Þ: See Zellner (1971), Berry et al. (1996), and
Mittelhammer et al. (2000) for a discussion of the Bayesian approach. Zellner (1997)
proposed a Bayesian method of moments approach which does not require the use of
a likelihood function to obtain point estimates and interval estimates; van der Merwe
and Vilijoen (1988) applied this method to the SUR model.
The question of when these convergence rates manifest themselves, or more

specifically how accurate the approximations are for very low values of n is an
important one. Also of importance is the nature of the objective that is being
approximated in each approach. With the Bartlett approach, departures on either
side of a parameter value are treated in a compromised manner that trades off
direction of departure against coverage; and if the direction of the parameter relative
to the data point is of interest, as would typically be the case, then the Oðn�2Þ

accuracy drops to just Oðn�1=2Þ: For the bootstrap approach, the immediately
targeted probabilities are those of a discrete distribution constructed from observed
residuals. With the likelihood distributional approach, the full statistical model is
examined in accord with local conditioning at the data point, and the corresponding
p-value is arguably the appropriate probability assessment of the departure of data
from the parameter (Fraser, 2004).
In this paper we use recent likelihood theory to derive p-values that more

accurately assess scalar interest parameters for the linear and nonlinear SUR context
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with normal or general error distribution. For this we apply the conditional
likelihood-based method developed in Fraser and Reid (1995), which has Oðn�3=2Þ

distributional accuracy and uses conditional techniques to accurately assess the
departure of data from a hypothesized parameter value.
Within this intrinsic conditional framework the likelihood methods invoke

distributional techniques closely related to the saddlepoint approach. As such they
have been found to give exceptionally high accuracy even in the case of minimal
sample size. A set of numerical examples and two simulations are used to illustrate
that this new likelihood analysis provides substantial improvements on the usual
likelihood ratio method and is superior in terms of central coverage even for very small
sample sizes. This is important in the SUR context as economic data of this type may
be quite limited. We also discuss briefly how this recent likelihood theory provides the
definitive distribution for assessing a scalar parameter. This provides a benchmark for
comparison when examining other inference procedures that might be applied.
In the present context we focus on the estimation, testing, and confidence

evaluation for the case of a scalar interest parameter component of the full multi-
dimensional model; the more general case with a vector parameter is accessible by
sequencing through scalar parameter components.
The paper is organized as follows. Section 2 provides some background likelihood

results including a description of the general theory from Fraser and Reid (1995).
The applications and simulation results are given in Section 3. Conclusions are
provided in Section 4.
2. Background asymptotics

2.1. First-order results

Let y ¼ ðy1; . . . ; ynÞ be an array of independent variables and yi have density
f iðyi; yÞ; where the full parameter in the model y ¼ ðc; l0Þ0 has dimension p, the
parameter of interest c has dimension 1 and the nuisance parameter l has dimension
p � 1:
The log likelihood function is

lðy; yÞ ¼
Xn

i¼1

li
ðy; yiÞ ¼

Xn

i¼1

log f iðyi; yÞ ð1Þ

and with observed data yo we obtain the observed likelihood function lðyÞ ¼Pn
i¼1 li

ðyÞ; where li
ðyÞ ¼ li

ðy; yoi Þ: Likelihood analyses will typically use the maximum
likelihood value ŷ ¼ ðĉ; l̂

0
Þ
0
¼ argmaxy lðy; yÞ and the constrained maximum like-

lihood value ŷc ¼ ðc; l̂
0

cÞ
0
¼ argmaxl lðy; yÞ for each tested c value. In cases where

there is not an explicit nuisance parameter, the constrained maximum value may
often require Lagrange multiplier methods where

ðŷc; âÞ ¼ argmax
y;a

flðy; yÞ þ a½cðyÞ � c	g
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is calculated by setting the gradient of the right-hand expression with respect to y
and a equal to zero.
When y ¼ c is a scalar parameter of interest there are two familiar first-order

departure measures, the Wald departure and the signed likelihood ratio departure:

q ¼ ðŷ� yÞj|̂yyj
1=2; ð2Þ

r ¼ sgnðŷ� yÞ½2flðŷ; yÞ � lðy; yÞg	1=2; ð3Þ

where |̂yy ¼ �q2lðy; yÞ=qyqyjŷ is the observed information. The corresponding first-
order p-values are FðqÞ and FðrÞ; where F is the standard normal distribution
function. We do not mention here the score measure of departure as it seems not to
be a contender in most contexts. With small sample sizes or very nonnormal
distributions, these quantities themselves can be very misleading as the following
example illustrates.

Example 1. Consider a single observation from the exponential distribution

f ðy; yÞ ¼ ye�yy y40:

For the data value, say y ¼ 1; consider the assessment of the parameter value y ¼ 8:
We have q ¼ �7 and r ¼ �3:137055 leading to the approximate p-values FðqÞ ¼
1:27981� 10�12 and FðrÞ ¼ 0:000853: The exact p-value for ŷ is easily calculated and
given by PðyX1; y ¼ 8Þ ¼ 0:000335; the approximations can be highly inaccurate.

When y ¼ ðc; l0Þ0 with c a scalar interest parameter and l a vector of nuisance
parameters, there are simple analogs of the q and r above:

q ¼ ðĉ� cÞ
j|̂yy0 j

1=2

j~|ll0 j
1=2

; ð4Þ

r ¼ sgnðĉ� cÞ½2flðŷ; yÞ � lðŷc; yÞg	1=2; ð5Þ

where ~|ll0 ¼ �q2lðy; yÞ=qlql0jŷc is the observed nuisance information. Approximate
p-values based on first-order likelihood theory are given by FðqÞ and FðrÞ: These
values can likewise be misleading.

2.2. Recent higher-order results

For p-values that more accurately measure departure and more reliably have a null
distribution that is uniform (0,1), some model-data information beyond the observed
likelihood is essential. For this, recent likelihood theory focuses on the use of a
nominal canonical reparameterization

j0ðyÞ¼
q
qV

lðy; yÞ

����
yo
¼

q
qy0

lðy; yÞ

����
yo

V ; ð6Þ

where qlðy; yÞ=qV denotes directional derivatives with respect to V ¼ ðv1; . . . ; vpÞ:
The vectors in V indicate how y responds to a change in the parameter y and can be
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obtained by using a full n dimensional pivotal quantity k ¼ kðy; yÞ ¼ ðk1; . . . ; knÞ
0

and calculating the gradient of y with respect to y at the data for fixed pivotal:

V ¼
qy

qy0

����
ðyo ;ŷÞ

¼
qkðy; yÞ
qy0

� ��1 qkðy; yÞ
qy0

� �����
ðyo ;ŷÞ

: ð7Þ

This reparameterization is used for a Wald-type departure measure Q:

Q ¼ sgnðĉ� cÞjwðŷÞ � wðŷcÞj
j|̂jj0 ðŷÞj

j|̂ðll0ÞðŷcÞj

( )1=2

; ð8Þ

where |̂jj0 and |̂ðll0Þ are the observed information matrix and observed nuisance
information matrix, respectively, calculated in the nominal parameterization scale.
More specifically, they can be obtained as follows:

j|̂jj0 ðŷÞj ¼ j|̂yy0 ðŷÞjjjy0 ðŷÞj
�2; ð9Þ

j|̂ðll0ÞðŷcÞj ¼ j|̂ll0 ðŷcÞjjj
0
lðŷcÞjl0 ðŷcÞj

�1: ð10Þ

And also, wðyÞ acts as a scalar canonical parameter for a one parameter marginal
model for testing the interest parameter c

wðyÞ ¼
cj0 ðŷcÞ

jcj0 ðŷcÞj
jðyÞ; ð11Þ

where cj0 ðyÞ ¼ qcðyÞ=qj0 ¼ ðqcðyÞ=qy0ÞðqjðyÞ=qy0Þ�1: In the case with no explicit
nuisance parameterization, the Lagrange method mentioned above is needed and a
more general formula replacing (8) is recorded in Fraser et al. (1999a, b).
If the model is exponential then jðyÞ can be taken to be any version of the

canonical parameter. More generally, jðyÞ is a gradient of the log likelihood taken in
directions that conform to an approximate ancillary that describes the model
structure locally. For most third-order likelihood analyses it suffices to view the
initial full model as being exponential with log likelihood lðyÞ and canonical
parameter jðyÞ:

f 
ðs; yÞ ¼ expflðyÞ þ ½fjðyÞ � jðŷÞ0gs	gj|̂jj0 j

�1=2;

where s is the score variable with observed value s ¼ 0:
The highly accurate likelihood-based p-value pðcÞ assessing a scalar cðyÞ ¼ c can

then be obtained by combining the r from (3) with the Q from (8) and using either of
the asymptotically equivalent expressions:

FðrÞ þ fðrÞ
1

r
�

1

Q

� �
ð12Þ

and

F r � r�1 log
r

Q

� 	
¼ FðrÞ; ð13Þ
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due respectively to Lugannani and Rice (1980) and Barndorff-Nielsen (1991). These
p-values have a distribution that is uniform (0,1) to third order; f is the standard
normal density function.

Example 1 revisited. For the simple exponential life model with y ¼ 1 and y ¼ 8; we
obtained FðrÞ ¼ 0:000853 with exact value 0.000335. Since the parameter y is a
canonical parameter as it stands, we have jðyÞ ¼ y: The corresponding j from (6) in
this scalar canonical parameter case is just the q from (4) recorded earlier as q ¼ �7:
The resulting p-values from (12) and (13) are 0.000341 and 0.000346. These values
offer a significant improvement from the likelihood value toward the exact.

Example 2. Consider a sample ðy1; . . . ; ynÞ from the two-parameter gamma
distribution with density

f ðyi; yÞ ¼ G�1ðcÞl�c expfc log y � y=lg=y y;c; l40:

This model is exponential with canonical parameter jðyÞ ¼ ðc; l�1Þ and has a
minimal sufficient statistic ðx1;x2Þ ¼ ð

P
yi;
P

log yiÞ: Consider a small sample size
n=2 and data say ð1; 4Þ: If we are interested in obtaining the p-value for c ¼ 1; from
(5) we obtain FðrÞ ¼ 0:7965 and from (12) and (13) we obtain 0.4321 and 0.4812.
These latter third-order values compare very well for this small sample size with the
exact value of 0.4000 obtained by numerical integration. The first-order likelihood
ratio value is off by a factor of 2, the third-order value by 15–20%; but then this is
the smallest possible sample size here and does involve the elimination of a nuisance
parameter. In this extreme context the method is clearly not breaking down and we
can attribute this to the intrinsic use of likelihood.
3. Seemingly unrelated regressions

3.1. Linear equations

Consider the following M equation model:

ym ¼ X mbm þ �m; m ¼ 1; . . . ;M; ð14Þ

where ym is a N � 1 dependent variable, X m is a N � km full column rank matrix of
nonstochastic independent variables, bm is the km � 1 vector of regression
coefficients, and �m is the N � 1 stochastic error vector independent of X m: The
usual error structure for the classical linear regression formulation for m ¼ 1; . . . ;M
is

E½�m	 ¼ 0; E½�m�
0
m	 ¼ s2mIN :

The above set of equations can be stacked and represented as the system

y ¼ Xbþ �; ð15Þ
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where y is NM � 1; X is NM � K ; b is K � 1; � is NM � 1; K ¼
PM

m¼1 km; and
E½�	 ¼ 0: If the errors across equations are contemporaneously correlated then we
have

E½��0	 ¼

s21IN s12IN . . . s1MIN

s21IN s22IN . . . s2MIN

..

. ..
. ..

.

sM1IN sM2IN . . . s2MIN

2
6666664

3
7777775
¼ S� IN : ð16Þ

If S is known, parameter estimates can be obtained by using the generalized least
squares (GLS) estimator bGLS ¼ ½X 0ðS�1 � INÞX 	�1X 0ðS�1 � INÞy: In practice
however, S is rarely known and for this case feasible generalized least squares
(FGLS) estimators have been proposed. The equation-by-equation ordinary least
squares residuals can be used to consistently estimate S: Both these estimators are
due to Zellner (1962, 1963). Iterating on this FGLS procedure produces maximum
likelihood estimates with equivalence conditions given in Oberhofer and Kmenta
(1974).
For illustration and without any loss of generality,1 let us focus on the two

equations regression system. The methodology can be applied to several sets of
seemingly unrelated regression equations. Consider:

y1i ¼ a0 þ a1w1i þ a2z1i þ �1i; i ¼ 1; . . . ;N; ð17Þ

y2i ¼ g0 þ g1w2i þ g2z2i þ �2i; i ¼ 1; . . . ;N: ð18Þ

Alternatively, using matrix notation, we have

y ¼ Xbþ � 3
y1

y2

" #
¼

X 1 0

0 X 2

" #
b1

b2

" #
þ

�1

�2

" #
;

where y1 and y2 are N � 1; X 1 and X 2 are N � 3; b1 and b2 are 3� 1; and �1 and �2
are N � 1; with

� � N
0

0

" #
;

s21IN rs1s2IN

rs1s2IN s22IN

" #
¼ S� IN

 !
; ð19Þ

where r ¼ s12=s1s2 is the correlation coefficient. We emphasize that as long as we
know the distributional form of the random error, the methodology is applicable. If
the random error is not normally distributed, the likelihood function will change,
and the r and Q will then be defined accordingly based on this function. The
imposition here of normality is for ease of illustration; see Fraser et al. (1999a, b) for
details when errors are not normally distributed.
1The third-order likelihood method can be applied in the context of any number of regression equations

provided interest is on a scalar component parameter of the full model.
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The log likelihood function is obtained as

L ¼ �N logð2pÞ �
N

2
logðjSjÞ �

1

2
ðy � XbÞ0ðS�1 � IN Þðy � XbÞ: ð20Þ

Maximization of the log likelihood function over the parameter space produces the
maximum likelihood estimator b̂ of b and Ŝ of S: These quantities are then used to
construct the signed square root of the log likelihood ratio r given in (5). For the
calculation of Q, we need the conditioning vectors V in (7) obtained from an
appropriate pivotal quantity.2 For this, consider the model expressed in the form

y1

y2

" #
¼

X 1 0

0 X 2

" #
b1

b2

" #
þ ðC � INÞ

~�1

~�2

" #
;

where ð~�1; ~�2Þ are standard normal, and C is the lower triangular matrix defined by
the decomposition S ¼ CC0; namely

C ¼
s1 0

rs2 s2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

p
" #

;

see Anderson (1984). Note that the order of triangular factorization may have a
minor effect on the assessment of r; we examine this elsewhere. We thus obtain the
pivotal quantity (k1i; k2i) for an observation (y1i; y2i):

k1i ¼ ðy1i � a0 � a1w1i � a2z1iÞ=s1; ð21Þ

k2i ¼
ðy2i � g0 � g1w2i � g2z2iÞ=s2 � rðy1i � a0 � w1ia1 � z1ia2Þ=s1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p : ð22Þ

Here, k1i represents the first variable, y1i; after location scale standardization, while
k2i represents y2i after location (including regression on y1i) and scale standardiza-
tion. The third-order methods in Section 2.2 then give inference for the scalar
parameter of interest. That is, V, jðyÞ; wðyÞ and Q are calculated directly from (6) to
(11) and tail probabilities can be obtained by either the Lugannani and Rice formula
or the Barndorff-Nielsen formula.
In what follows we record the results of two simulations to assess the performance

of the third-order method and then apply the method to several examples.

Example 3. A simulation study is performed to assess the performance of the first-
and third-order methods.3 We consider the two commodity demand model:

log q1 ¼ a0 þ ðg� ð1=2ÞdÞ log p1 þ �1;

log q2 ¼ b0 þ ðgþ ð1=2ÞdÞ log p2 þ �2;
2As sufficiency does not reduce the dimension of the variable y to that of the parameter y; we need to im-
plicitly construct a pseudo full rank exponential model through conditioning on an approximate ancillary.

3Computations were done using Splus Version 2.1, Maple 5 Release 4, and a program written by

Jianrong Wu (available at http://fisher.utstat.toronto.edu/dfraser). Source code for any of the third-order

calculations used in the paper is available upon request.

http://fisher.utstat.toronto.edu/dfraser
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Table 1

Central coverage and noncoverage percentages

Method Central coverage (%) % Outside lower limit % Outside upper limit

Nominal 90 5 5

lr 85.22 6.78 8.00

Bootstrap 84.97 8.13 6.90

Percentile-t 87.88 5.33 6.79

Bartlett 88.69 4.76 6.55

LR 90.06 4.52 5.42

BN 90.04 4.54 5.42

Nominal 95 2.5 2.5

lr 91.60 4.02 4.38

Bootstrap 92.04 3.78 4.18

Percentile-t 93.57 3.16 3.27

Bartlett 93.91 2.72 3.37

LR 95.32 2.26 2.42

BN 95.26 2.28 2.46

Nominal 99 0.5 0.5

lr 97.72 1.20 1.08

Bootstrap 97.48 1.37 1.15

Percentile-t 98.26 0.82 0.92

Bartlett 99.15 0.45 0.40

LR 99.00 0.56 0.44

BN 98.98 0.56 0.46

D.A.S. Fraser et al. / Journal of Econometrics 127 (2005) 17–33 25
where q1; q2 and p1; p2 represent the quantities and prices of the two goods,
respectively. �1 and �2 represent the stochastic error terms and are assumed to be
normally distributed. Our interest is in testing the equality of the price elasticities.
Five thousand simulated samples each of size 15 were randomly generated from the
above equations with the following true values: a0 ¼ 3:5509; b0 ¼ 3:1797; g ¼
�0:6469; d ¼ 0; s21 ¼ 0:3458; s22 ¼ 0:3127; and r ¼ 0:4430: The values for log p1 are
(2.3761, 2.5675, 2.2240, 1.5271, 2.5684, 2.0420, 2.0022, 2.0117, 2.1707, 2.6035,
1.5980, 2.1235, 1.7441, 1.9775, 1.8896), and the values for log p2 are (1.4983, 2.3829,
1.7675, 2.6398, 2.4351, 2.1696, 1.9902, 1.8500, 1.4322, 0.6911, 1.9835, 1.7646, 1.6409,
2.2132, 1.6162).4

Table 1 below provides coverage and noncoverage percentages for nominal 90%,
95%, and 99% confidence intervals for covering the true d value of 0. The labels
‘‘lr’’, ‘‘LR’’, and ‘‘BN’’ represent the likelihood ratio method, the Lugannani and
Rice formula, and the Barndorff-Nielsen formula, respectively.
For comparison purposes, bootstrapped confidence intervals were computed using

the classical nonparametric bootstrap and the percentile-t method. A Bartlett
adjustment was also computed using the bootstrap as proposed in Rocke (1989).
These intervals are reported in Table 1 under the headings ‘‘bootstrap’’, ‘‘percentile-
t’’, and ‘‘Bartlett’’, respectively. For each of the 5000 replications, bootstrap samples
4Data values for p1 and p2 are the first 15 observations in Table 11.3 from Judge et al. (1988, p. 460).
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of size 200 were used. The percentile-t method of bootstrapping was chosen in
addition to the standard bootstrap since it was found to be consistently more
accurate than the various other bootstrapping methods considered in the simulation
experiments conducted in Rilstone and Veall (1996). As can been seen from Table 1,
the results obtained from the classical bootstrap are not significantly better than
those obtained from the first-order likelihood ratio method. However, the percentile-
t bootstrapped confidence intervals do provide an improvement on those obtained
from the likelihood ratio method, though they are still substantially less accurate
than those obtained from the third-order likelihood methods. These results for the
bootstrap are consistent with those reported in Rilstone and Veall (1996). Moderate
gains to the percentile-t method can be obtained from using the Bartlett adjustment
procedure. Notice that the third-order methods give more symmetric intervals on the
percentage scale than the other methods.
The standard errors for the nominal 90%, 95%, and 99% central coverages based

on 5000 simulated samples can be obtained by using the standard Binomial formula
and they are 0.42%, 0.31%, and 0.14%, respectively. Similarly, the standard errors
for the nominal 5%, 2.5%, and 0.5% tail coverages based on 5000 simulated samples
can again be obtained by using the Binomial type formula and are 0.31%, 0.22%,
and 0.10%, respectively.
All our third-order results in Table 1 lie within two standard errors of their

nominal levels. The values resulting from the likelihood ratio method, the classical
bootstrap, and the percentile-t bootstrap are all greater than two standard errors
from their nominal levels. A similar statement can be made for the results based on
the Bartlett adjustment with the exception of the results produced for the case of
99% coverage.

Example 4. A second simulation is performed using a system of three equations.
Consider the three commodity demand model given in Judge et al. (1988, p. 460):

log q1 ¼ a0 þ a1 log p1 þ a2 log y þ �1;

log q2 ¼ g0 þ g1 log p2 þ g2 log y þ �2;

log q3 ¼ z0 þ z1 log p3 þ z2 log y þ �3;

where q1; q2; q3 and p1; p2; p3 represent the quantities and prices of the three goods,
respectively, income is represented by y. �1; �2; and �3 represent the stochastic error
terms and are assumed to be normally distributed. Using the price and income data
given in Judge et al. (1988, p. 460), 5000 simulated samples of size 30 were randomly
generated from the above equations. The following true values were set: a0 ¼ �4;
a1 ¼ �1; a2 ¼ 1:5; g0 ¼ �3; g1 ¼ �1; g2 ¼ 1; z0 ¼ 0:5; z1 ¼ �1; z2 ¼ 1; s21 ¼ 0:17;
s22 ¼ 0:21; s23 ¼ 0:03; r12 ¼ �0:07; r13 ¼ �0:74; and r23 ¼ �0:52: Our interest is in
testing a1 ¼ �1:

Table 2 below reports the simulation results with labels as given in Example 3.
Again, for the bootstrap results, samples of size 200 were used for each replication.
In terms of central coverage, the third-order methods (LR and BN) outperform all
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Table 2

Central coverage and noncoverage percentages

Method Central coverage (%) % Outside lower limit % Outside upper limit

Nominal 90 5 5

lr 86.17 7.00 6.83

Bootstrap 86.72 6.81 6.47

Percentile-t 87.02 6.35 6.63

Bartlett 88.43 5.89 5.68

LR 90.08 4.63 5.29

BN 90.05 4.68 5.27

Nominal 95 2.5 2.5

lr 91.59 3.85 4.56

Bootstrap 91.68 3.71 4.61

Percentile-t 92.62 2.98 4.40

Bartlett 93.68 2.82 3.50

LR 95.23 2.28 2.49

BN 95.22 2.30 2.48

Nominal 99 0.5 0.5

lr 97.67 1.29 1.04

Bootstrap 97.74 1.17 1.09

Percentile-t 98.27 0.85 0.88

Bartlett 98.63 0.65 0.72

LR 98.94 0.52 0.54

BN 98.98 0.54 0.48

D.A.S. Fraser et al. / Journal of Econometrics 127 (2005) 17–33 27
the other methods considered. The computation time involved for these third-order
methods was, however, significant for this simulation. The relative performance of
the other methods is comparable to their performance in Example 3. The Bartlett
adjustment procedure performs relatively well, producing better coverage than the
likelihood ratio and the classical and percentile-t bootstraps. From the simulations
examined, the superior coverage of the third-order method is clear.
As in the previous simulation experiment, all our third-order results in Table 2 lie

within two standard errors of their nominal levels. The results produced using the
likelihood ratio method, the classical bootstrap, and the percentile-t bootstrap are all
at least two standard errors away from their nominal levels. The results based on the
Bartlett adjustment lie in their respective intervals for the case of 99% coverage.
If interest lies in testing the equality of parameters across equations (e.g.

a1 ¼ g1 ¼ z1) or on any multi-dimensional hypothesis, sequencing through scalar
component parameters is necessary. The third-order methodology currently handles
the testing of scalar component interest parameters.
Example 5. We consider the investment model and data discussed in Zellner (1962)
and earlier in Boot and de Witt (1960). A firm’s gross investment in period i, yi; is
modeled as a linear function of the firm’s stock market value at the beginning of the
period, wi; and the firm’s capital stock at the beginning of the period, zi: Two US
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firms are considered, General Electric and Westinghouse for a 20 year period. The
investment equations for the two firms are given by (17) and (18), respectively.

Suppose we are interested in testing a common scalar component of the coefficient
vectors. For example, suppose we are interested in one or other of the two
hypotheses: g1 � a1 ¼ d and g2 � a2 ¼ ~d: Given the way in which we have expressed
the statistical model no explicit nuisance parameterization is obviously available for
use to assess either of the above hypotheses. We therefore choose to reparameterize
the model so as to provide an explicit nuisance parameterization. If for instance, we
are interested in the parameter difference g1 � a1 ¼ d; then we may reparameterize
the model as follows:

y1i ¼ a0 þ ð~gþ ð1=2ÞdÞw1i þ a2z1i þ �1i; i ¼ 1; . . . ;N;

y2i ¼ g0 þ ð~g� ð1=2ÞdÞw2i þ g2z2i þ �2i; i ¼ 1; . . . ;N

and assess the parameter d: The parameter separation used is:

y0 ¼ ðd; ða0; ~g; a2; g0; g2;s
2
1;s

2
2;rÞÞ ¼ ðc; lÞ0:

Tables 3 and 4 provide 90%, 95%, and 99% confidence intervals for d and ~d;
respectively. We note that at the 90% acceptance level the likelihood ratio rejects the
equality of the market value coefficients, whereas the opposite conclusion is reached
using either of the third-order confidence intervals. This finding is consistent with the
literature that finds that the standard first-order methods tend to over-reject tests.

Example 6. To illustrate the results for a system with greater than two equations, we
consider Example 5 with the addition of a third firm, IBM. We also use Stata to
produce conventional p-values for this example. Data for this firm is provided in
Boot and de Witt (1960). The investment equations for General Electric, Westing-
house, and IBM are given below:

y1i ¼ a0 þ a1w1i þ a2z1i þ �1i; i ¼ 1; . . . ;N;

y2i ¼ g0 þ g1w2i þ g2z2i þ �2i; i ¼ 1; . . . ;N;

y3i ¼ z0 þ z1w3i þ z2z3i þ �3i; i ¼ 1; . . . ;N:
Table 3

Confidence intervals for d

Method 90% CI 95% CI 99% CI

Lower Upper Lower Upper Lower Upper

lr 0.00151 0.03660 �0.00205 0.04038 �0.00953 0.04835

LR �0.00030 0.03889 �0.00432 0.04323 �0.01278 0.05255

BN �0.00029 0.03888 �0.00430 0.04320 �0.01275 0.05249
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Table 4

Confidence intervals for ~d

Method 90% CI 95% CI 99% CI

Lower Upper Lower Upper Lower Upper

lr �0.15308 �0.00844 �0.16813 0.00614 �0.19919 0.03623

LR �0.15517 0.00451 �0.17204 0.02114 �0.20724 0.05594

BN �0.15517 0.00436 �0.17203 0.02089 �0.20721 0.05550

Table 5

p-values for testing either a1 or g2

Method H0 : a1 ¼ 0 vs. H1 : a1a0 H0 : g2 ¼ 0 vs. H1 : g2a0

mle 0.0108 0.0567

Bootstrap 0.0325 0.1204

lr 0.0159 0.0835

LR 0.0147 0.0741

BN 0.0147 0.0741
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Suppose we are interested in testing a scalar component parameter of the model,
say a1 ¼ 0 or g2 ¼ 0 against a two-sided alternative. Table 5 provides first- and third-
order p-values in addition to standard bootstrap results for testing either of these two
hypotheses. For the bootstrap results, 10,000 samples were used. The label ‘‘mle’’
refers to the p-value associated with the maximum likelihood Wald departure. The p-
values for the ‘‘mle’’ and ‘‘bootstrap’’ cases are reported directly from Stata.
As evidenced from Table 5, these two standard quantities produce very discordant

results. In fact, they can lead to different conclusions with respect to hypothesis
testing. The p-values produced from the third-order likelihood methods are closer to
the p-values obtained from the likelihood ratio method.

3.2. Nonlinear equations

Consider the following M equation model:

ym ¼ f mðxm;bmÞ þ �m; m ¼ 1; . . . ;M;

where ym is the N � 1 response vector, xm is the km set of N � 1 design vectors in
equation m, bm is the km � 1 vector of unknown parameters, and the �m’s are the
N � 1 stochastic error components each identically and independently distributed
with mean zero and covariance matrix S: The above M equations can be written as

y ¼ f ðbÞ þ �;

where y ¼ ðy0
1; . . . ; y

0
MÞ

0 is NM � 1; f ðbÞ ¼ ðf 0
1ðx1;b1Þ; . . . ; f

0
MðxM ; bMÞÞ

0 is NM � 1;
and � ¼ ð�01; . . . ; �

0
M Þ

0 is NM � 1:
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With unknown S matrix one can proceed with FGLS, iterated FGLS provides
maximum likelihood estimates. The equation-by-equation nonlinear least squares
residuals can be used to consistently estimate S: To obtain the Q derived from higher
order likelihood, the third-order method of Section 2.2 is applied directly.

Example 7. Consider the familiar Cobb–Douglas production function

Y ¼ f ðL;KÞ ¼ ALaKb a;bX0;

where Y is output, L is labor, and K is capital. We consider two firms and for
estimation purposes we assume additive contemporaneously correlated errors. We
further assume that each firm’s production technology is governed by the same
production function. We estimate this model with 10 observations per firm.
Assuming the random error has a normal distribution, Table 6 provides the 90%,
95%, and 99% confidence intervals for testing the parameter a: Table 7 provides the
90%, 95%, and 99% confidence intervals for testing the parameter g; where g is
equal to aþ b:

The results consistently show that the likelihood ratio method produces shorter

confidence intervals, viewed here as inappropriate. The present third-order
likelihood approach is applicable to a wide spectrum of nonlinear problems in
production theory.

Example 8. We now turn to a nonlinear problem with more nuisance parameters
and more data. We consider the linear expenditure system discussed in Stone (1954).
The specific model we consider is from Judge et al. (1988). Suppose a consumer with
Table 6

Confidence intervals for a

Method 90% CI 95% CI 99% CI

Lower Upper Lower Upper Lower Upper

lr �0.00728 0.33127 �0.04641 0.36508 �0.13327 0.43731

LR �0.02810 0.35970 �0.07470 0.40127 �0.18500 0.49641

BN �0.02820 0.35937 �0.07449 0.40063 �0.18414 0.49460

Table 7

Confidence intervals for g

Method 90% CI 95% CI 99% CI

Lower Upper Lower Upper Lower Upper

lr 0.71890 0.83852 0.70114 0.84857 0.65761 0.86923

LR 0.70515 0.84514 0.68215 0.85681 0.62229 0.88141

BN 0.70531 0.84509 0.68242 0.85673 0.61820 0.88120
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Table 8

Confidence intervals for b1

Method 90% CI 95% CI 99% CI

Lower Upper Lower Upper Lower Upper

lr 0.14117 0.26245 0.12897 0.27456 0.10459 0.29934

LR 0.13731 0.26741 0.12378 0.28018 0.09692 0.30670

BN 0.13731 0.26739 0.12379 0.28016 0.09697 0.30666
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utility function

Uðq1; q2; q3Þ ¼ b1 logðq1 � g1Þ þ b2 logðq2 � g2Þ þ b3 logðq3 � g3Þ

spends her income y on three goods q1; q2; and q3 with respective prices p1; p2; and
p3: The individual’s demand system is then characterized by the first-order conditions
of the utility maximization problem

max
fq1;q2;q3g

Uðq1; q2; q3Þ ¼ b1 logðq1 � g1Þ þ b2 logðq2 � g2Þ þ b3 logðq3 � g3Þ

subject to the budget constraint y ¼ p1q1 þ p2q2 þ p3q3: The resulting demand
functions (with b1 þ b2 þ b3 ¼ 1Þ are:

p1q1 ¼ p1g1 þ b1ðy � p1g1 � p2g2 � p3g3Þ;

p2q2 ¼ p2g2 þ b2ðy � p1g1 � p2g2 � p3g3Þ;

p3q3 ¼ p3g3 þ b3ðy � p1g1 � p2g2 � p3g3Þ:

For estimation purposes we assume additive errors for each of the above demand
functions and further assume that these errors are contemporaneously correlated.
We do not impose the usual constraints: q14g1; q24g2; q34g3; 0ob1o1; 0ob2o1;
0ob3o1; we could however assess the validity of these constraints from our
estimates. As one of the equations must be dropped for estimation purposes, we
estimate the first two equations. We use the data given in Judge et al. (1988, p. 460).
Table 8 records the 90%, 95%, and 99% confidence intervals for testing the
parameter b1:
Again, the tendency of the likelihood ratio method to over reject is evidenced by

the narrower confidence intervals produced.
4. Conclusion

Third-order likelihood theory was applied to obtain highly accurate p-values for
testing scalar interest components of a multi-dimensional parameter in the seemingly
unrelated regression equations context. The results indicate that improved inferences
can be made using the third-order likelihood method and that this method
outperforms the likelihood ratio method, the classical bootstrap, the percentile-t
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bootstrap, and the Bartlett bootstrap in terms of central coverage. The performance
of this method with small sample sizes and the ease of computational implementa-
tion makes it a highly attractive and tractable alternative. As further exploration, we
intend to examine SUR models for stochastically dependent errors, such as those
that arise with time series data.
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