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Ancillaries and Conditional Inference
D. A. S. Fraser

Abstract. Sufficiency has long been regarded as the primary reduction pro-
cedure to simplify a statistical model, and the assessment of the procedure
involves an implicit global repeated sampling principle. By contrast, condi-
tional procedures are almost as old and yet appear only occasionally in the
central statistical literature. Recent likelihood theory examines the form of
a general large sample statistical model and finds that certain natural condi-
tional procedures provide, in wide generality, the definitive reduction from
the initial variable to a variable of the same dimension as the parameter,
a variable that can be viewed as directly measuring the parameter. We begin
with a discussion of two intriguing examples from the literature that compare
conditional and global inference methods, and come quite extraordinarily
to opposite assessments concerning the appropriateness and validity of the
two approaches. We then take two simple normal examples, with and with-
out known scaling, and progressively replace the restrictive normal location
assumption by more general distributional assumptions. We find that suffi-
ciency typically becomes inapplicable and that conditional procedures from
large sample likelihood theory produce the definitive reduction for the analy-
sis. We then examine the vector parameter case and find that the elimination
of nuisance parameters requires a marginalization step, not the commonly
proffered conditional calculation that is based on exponential model struc-
ture. Some general conditioning and modelling criteria are then introduced.
This is followed by a survey of common ancillary examples, which are then
assessed for conformity to the criteria. In turn, this leads to a discussion of
the place for the global repeated sampling principle in statistical inference.
It is argued that the principle in conjunction with various optimality criteria
has been a primary factor in the long-standing attachment to the sufficiency
approach and in the related neglect of the conditioning procedures based di-
rectly on available evidence.

Key words and phrases: Ancillaries, conditional inference, inference direc-
tions, likelihood, sensitivity directions, pivotal.

1. INTRODUCTION

Sufficiency has a long and firmly established pres-
ence in statistical inference; it provides a major sim-
plification for many familiar statistical models and
often gives a variable with a simple relationship to the
parameter. The assessment of this reduction of the sta-
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tistical problem is done implicitly in terms of repeated
performances of the full investigation under study; call
this the global repeated sampling principle.

Certain conditional methods have almost as long a
history in statistical theory, but rather strangely are dis-
cussed and used extremely rarely. In Section 2 we ex-
amine two important early papers (Welch, 1939; Cox,
1958) that discuss conditional inference and quite ex-
traordinarily come to opposite views on the merits of
conditioning. Note, however, that the two papers dif-
fer in their orientation toward statistics, the first be-
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ing decision theoretic and the second being inferential.
The conditional approach examined in the second pa-
per does violate, however, the global repeated sampling
principle, because the model used for statistical infer-
ence refers just to repeated performances of the mea-
surement instrument that actually gave the observed
data.

In Sections 3 and 4 we examine two simple nor-
mal measurement contexts and find of course that
sufficiency produces the essential variables for form-
ing tests and confidence procedures. In each of these
sections we then progressively replace the normality
and location relationship by alternative conditions con-
cerning the distribution form and the continuity in
the parameter–variable relationship. We find that suf-
ficiency is no longer available and that definitive con-
ditioning procedures from likelihood asymptotics give
the appropriate variable with a simple relationship to
the parameter. We also find that if these procedures are
applied to the initial location normal cases, they dupli-
cate the results from sufficiency. We are thus led to the
view that sufficiency and the global repeated sampling
principle together have been a major delaying factor
to recognition of the conditional approach. These two
sections also include an overview of the methods pro-
vided by recent likelihood theory; these methods in
wide generality produce highly accuratep values and
highly accurate likelihoods for component parameters
of interest. The methods are assessed in terms of just
the measurement processes that gave the actual data;
accordingly the methods do not conform to the global
repeated sampling principle.

In Section 5 we examine criteria for the use of condi-
tioning and for the construction of statistical models for
purposes of statistical inference. In Section 6 we survey
some traditional ancillary examples and how these re-
late to the criteria in Section 5. Then in Section 7 we
consider the role of global repeated sampling assess-
ments and how these assessments interact with familiar
optimization criteria.

2. TWO MEASUREMENT INSTRUMENTS

As part of a general discussion of statistical infer-
ence, Cox (1958) considered two measurement instru-
ments, both unbiased and normal, but with different
variances; the context includes an equally likely ran-
dom choice of which instrument to use to make a sin-
gle measurement on a parameterθ . The example was
also discussed by Cox and Hinkley (1974, page 96) and

Casella and Berger (2002), but despite its importance
seems not to appear in most texts on statistics. A some-
what related example was considered earlier by Welch
(1939).

Cox initially considered the appropriate sample
space for statistical inference, but then developed it in
terms of conditioning on an ancillary statistic (Fisher,
1925, 1934, 1935). A statistic isancillary if it has a
fixed distribution, that is, if its distribution is free of the
parameter in the problem. A related notion ofreference
set was introduced by Fisher (1961).

Cox noted that the indicator variable, saya, for the
choice of measurement instrument has a fixed distrib-
ution with probability 1/2 at a = 1 or 2 according as
the first or second instrument is used;a is thus ancil-
lary. The Fisher conditionality approach is to condition
on the observed value of the ancillarya and thus to use
the normal model that corresponds to the instrument
that actually made the measurement. From a practical
perspective this seems very natural, and some related
theory is developed in Section 5.

Cox (1958) and Cox and Hinkley (1974) considered
the two measurement instruments example numerically
in terms of the testing of a point null hypothesis. We
recast this in terms of confidence intervals.

EXAMPLE 2.1. For the two measurement instru-
ments we assume that the standard deviations are
100σ0 andσ0, respectively. A 95% confidence interval
based on the measurement instrument actually used has
the form

(y ± 196σ0) if a = 1,

(y ± 1.96σ0) if a = 2.
(2.1)

Suppose now that we consider the problem in terms
of ordinary confidence methods and then invoke some
optimality criterion such as minimizing the average
length of the confidence interval. We might then prefer
the 95% confidence interval

(y ± 164σ0) if a = 1,

(y ± 5σ0) if a = 2.
(2.2)

We can see that this has 90% conditional confidence
if a = 1 and has almost certain conditional confidence
if a = 2; and we then see that this averages and does
give the desired 95% overall confidence. The first in-
terval (2.1) has average length 197.96σ0 and the sec-
ond interval (2.2) has a substantially shorter average
length 169σ0. The second interval (2.2) acquires this
shorter average length within the overall 95% confi-
dence by presenting a slightly longer interval in the



ANCILLARIES AND CONDITIONAL INFERENCE 335

precise measurement casea = 2 and a very much
shorter interval in the imprecise measurement case
a = 1. A similar argument in the hypothesis testing
context shows that the overall power of a sizeα test
analogous to (2.1) can be increased by allowing a slight
decrease in power in the precise measurement case
with a large increase in power in the imprecise case.
The raw message for applications from this optimal-
ity approach is, “Get your minimum length or maxi-
mum power where it is cheap in terms of contribution
to confidence level or test size.” Here, we are view-
ing this in terms of a random choice of measurement
instrument, but we could also view it in a larger con-
text, say that of a major consultant who advertised that
his or her 95% intervals are shorter on average. His or
her policy might be to give the clients with more ac-
curate measuring instruments longer intervals and give
the clients with less precise instruments shorter inter-
vals. He or she thus maintains the overall confidence
level at 95%, but is able to provide shorter confidence
intervals on average than some other confidence in-
terval provider who might feel constrained to restrict
the coverage probability at 95% for each instrument
used. This would perhaps not be done overtly, but is
presented here because of its patent violation of good
sense and because the phenomenon as just described is
intrinsically embedded in almost all applications when
an optimality approach is used. The next example will
clearly display this strange trade-off.

Let us consider the two measurement instruments
example in Welch (1939). For this we have two
measurementsy1 andy2 of θ with independent errors
that are uniform(−1/2,1/2); there is nothing special
in the choice of a uniform distribution other than
simplicity and its clear departure from normality in the
form of having very short tails.

EXAMPLE 2.2. The variable(y1, y2) has a uni-
form density equal to 1 on the unit square(θ −1/2, θ +
1/2) × (θ − 1/2, θ + 1/2). If we take z1 = y and
z2 = (y2 − y1)/2 we see easily thatz2 has the trian-
gular density

p(z2) = 2(1− 2|z2|)
on the interval(−1/2,+1/2) and thatz1|z2 has the
uniform density

p(z1|z2) = (1− R)−1

on the interval{θ ± (1−R)/2}, whereR = 2|z2| is the
sample range for(y1, y2). Obviously z2 is ancillary,
and clearly, it is describing the physical nature of

FIG. 1. Acceptance region in (θ ± 1/2)′ × (θ ± 1/2): (a) condi-
tional; (b) max power; (c) min length.

the sample, the within-sample characteristics typically
presented by residuals. Its analog in more general
contexts is called aconfiguration statistic. A β-level
confidence interval conditional on the ancillaryR is
then given as

{y ± β(1− R)/2};(2.3)

the β = 75% acceptance region for testing a valueθ

corresponding to (2.3) is recorded in Figure 1(a).
A likelihood ratio argument can be used to obtain

the most powerful (often called, rather inappropriately,
most accurate) unbiased or symmetricβ-level interval:

{
y ± 1− R

2

}
if R >

(
1− β

2

)1/2

,

(2.4) [
y ±

{
1+ R

2
−

(
1− β

2

)1/2}]

if R ≤
(

1− β

2

)1/2

.

This interval gives the full range of possibleθ values
for large R. The β = 75% acceptance region for
testing a valueθ that corresponds to (2.4) is recorded
in Figure 1(b). Similarly a length-to-density ratio
argument can be used to obtain the shortest on average
symmetricβ = 75% confidence interval, which has the
form (

y ± 1− R

2

)
if R >

(
1− √

β
)
,

∅ if R ≤ (
1− √

β
)
.

(2.5)

This confidence interval is either the full range of
possibleθ values or the empty set; the acceptance
region that corresponds to this confidence interval (2.5)
is recorded in Figure 1(c). Again we see that we can
reduce average length or gain power by removing the
requirement that the confidence level be controlled
conditionally. Also we note that the two optimality
criteria lead to quite different confidence intervals, both
with rather extreme properties. In particular, the most



336 D. A. S. FRASER

powerful 75% interval is the full range of possible
values some of the time (and then always coversθ );
the minimum average length 75% interval is the empty
set 25% of the time (and then never coversθ ). These
are certainly extraordinary and unpleasant properties
that hopefully would not easily be explained away to
a client.

Cox (1958) offered general support for the condi-
tionality approach from Fisher (1961). Welch (1939)
invoked optimality conditions and argued against con-
ditionality using a similar example. Similar opposite
viewpoints can be found in Fraser and McDunnough
(1980) and Brown (1990). The viewpoint from Fisher
and Cox and supported here is that anomalies such as
these argue in fact against the appropriateness of the
optimality approach applied on a global or repeated
sampling basis. Indeed optimality criteria and global
probability assessments lead generally to analyses that
do not acknowledge clear and evident characteristics in
particular circumstances.

3. SCALAR PARAMETER
MEASUREMENT EXAMPLES

3.1 Measurement with Known Normal Error

Consider a very simple example with known normal
measurement error: Lety be normal (θ, σ 2

0 ) with
observed datay0. The observed likelihood function is
available immediately,

L0(θ) = c exp
{
− 1

2σ 2
0

(y0 − θ)2
}

(3.1)

= cφ

(
y0 − θ

σ0

)
,

whereφ is the standard normal density. It has maxi-
mum value aty0, has normal shape and is scaled byσ0,
and it displays how much probability sits at the data
point under various possibleθ values. The observed
p-value function is

p0(θ) = �

(
y0 − θ

σ0

)
,(3.2)

where� is the standard normal cumulative distribution
function. This records the left tail probability at the
data pointy0 when the parameter has the valueθ ; it can
be viewed as presenting the percentile position of the
datay0 relative to the distribution fory that is indexed
by θ . In more general contexts we can typically

interpret “left” in the sense of smaller maximum
likelihood value.

An end user might be interested in a right tail or a
two-tailedp value, but we take the leftp value as in
(3.2) as the elemental or primitive inference summary
from which the others can be derived; this is in accord
with the conventional definition for a distribution
function. Thep value records the percentile position of
the data point relative to the distribution indexed byθ .

Suppose now that we are in the sampling context
with data(y0

1, . . . , y0
n). The familiar sufficiency argu-

ment gives a reduction to the sample averagey. The
observed likelihood and observedp value p0(θ) are
then available asL0(θ) in (3.1) andp0(θ) in (3.2), but
with y0 replaced byy 0 andσ0 replaced byσ0/

√
n. The

likelihood function and thep-value function give two
complementing assessments of the unknownθ .

3.2 Measurement with Known Nonnormal Error

Suppose now that we know the shape and scaling
of the error distribution, say the logistic or even
the Student distribution with 7 degrees of freedom
often cited as having an appropriate thickness in the
tails. Let f (e) be the error density and suppose for
convenience thatf (e) has been centered ate = 0. For
an asymmetric distribution there would be arbitrariness
in the centering choice, but this has no effect of
substance on the considerations here. We thus consider
the measurementy with modelf (y − θ) together with
observed data valuey0.

For some of the discussion we can be still more
general and considery with model f (y; θ) together
with observed datay0. Then, as in Section 3.1, we have
that the observed likelihood function is

L0(θ) = cf (y0, θ)(3.3)

and the observedp-value function is

p0(θ) = F(y0; θ),(3.4)

whereF is the cumulative distribution function that
corresponds tof . Confidence intervals are available
immediately by the standard inversion of (3.4); for
example, the central 95% interval(θ̂L, θ̂U ) is obtained
by solving

p0(θ̂L) = 0.975, p0(θ̂U ) = 0.025,

where we assume for convenience that the distribution
shifts to the right with increasingθ . For the moment
we are examining just the case with a single measure-
menty.
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A primary theme in this paper is that observed like-
lihood and observedp-value functions are primary
inference elements, and are available in wide gener-
ality and with little computational difficulty. Toward
this, a natural next step is to consider a sampling situ-
ation or, more generally, a multiple response situation.
With nonnormalf (y; θ), or with varyingfi(yi, θ), the
simple reduction by sufficiency is almost never avail-
able. We will see, however, that definitive conditioning
is readily available, and for this we first examine the
case with direct location modeling.

3.3 Multiple Measurements with
Location Parameter

Consider a sample(y1, . . . , yn) from a distribution
f (y − θ). The residual vectora(y) = (y1 − y, . . . ,

yn − y)′ describes the pattern within the sample
and is easily seen to have a fixed parameter-free
distribution. To make this transparent we writeyi =
θ + ei , where (e1, . . . , en) is a sample from the
error distribution f (e). Then a(y) = (y1 − y, . . . ,

yn − y)′ = (e1 − e, . . . , en − e)′ = a(e); this clearly
shows that the distribution fora(y) depends only on
the error sample(e1, . . . , en) and is thus free of the
parameterθ . The residual vector is sometimes called
aconfiguration statistic: It is ancillary and, in addition,
directly presents key observable characteristics of the
underlying or latent errors; recall the discussion in
Example 2.2.

Now consider observed data(y0
1, . . . , y0

n). From this
we know that the ancillarya(y) has observed value
a0 = a(y0) and then, in accord with the condition-
ality approach, we work with the conditional model
given the observed configurationa(y0) = a0. This con-
ditional model can be derived in various ways and can
be expressed as a density for, say,y givena0; that is,

g(y|a0; θ) = kf (y + a0
1 − θ) · · ·f (y + a0

n − θ),

wherek is the norming constant and in most applica-
tions would be obtained by numerical integration at the
same time as a probability of interest was calculated by
the appropriate numerical integration.

The usual derivation of a conditional model requires
the calculation of a Jacobian to the new variables, here
y and a(y). This can be presented quite simply here
by noting that the new variables are both linear and in
fact are orthogonal:y records position in the direction
of the one-vector, anda(y) records position in the
directions of the orthogonal complementL⊥(1) of the
one-vector. In effect we are finding the distribution
of one coordinate given the remaining coordinates,

all after an orthogonal transformation. The Jacobian
is thus constant and the conditional density up to a
norming constant is available as just the full density
reexpressed in terms of the new variables.

For an alternative expression for the conditional
distribution we note that the observed likelihood is

L0(θ) = cf (y0
1 − θ) · · ·f (y0

n − θ)(3.5)

and we can thus write

g(y|a0; θ) = L0(θ − y + y 0),(3.6)

where the proportionality constantc in (3.5) is taken to
be the appropriate norming constantk just described.

The observedp value is then obtained as the appro-
priate integral of the conditional model:

p0(θ) =
∫ y 0

−∞
g(y|a0; θ) dy

=
∫ y 0

−∞
L0(θ − y + y 0) dy(3.7)

=
∫ ∞
θ

L0(θ) dθ.

Note that this has been expressed as an integral of
observed likelihood and in fact happens to be the
Bayesian survival probability derived from the flat
or uniform prior π(θ) = k. Also note that for the
special case with normal error density we have that
(3.5) and (3.7) duplicate the results (3.1) and (3.2) for
the normal case. We thus see that sufficiency works
essentially just for the simple normal model, but that
conditioning works in the general case and in doing
so reproduces the special earlier result for the normal
case.

When we examine a still more general case in the
next section, we will see that for implementation we do
not need to know the full ancillary or full configuration
statistic. It suffices to know just the nature of the
conditioning at the observed data point. In fact we will
see that highly accuratep values are available quite
generally using just the observed likelihoodL0(θ) and
the gradient of the log-likelihoodl(θ;y) calculated at
the data point in what we call asensitivity direction,
a direction, sayv, in which the ancillary is constant in
value. At this stage, it is easy and of interest to see what
such a vector would be like. Ifa(y) = a0, then a pointy
has projection(y1 − y, . . . , yn − y) = (a0

1, . . . , a0
n) on

the orthogonal complementL⊥(1) of the one-vector.
The points with such fixed projection lie on the line
a0 + L(1) and a tangent to the line is of course in
the direction of the one-vector; thusv = 1 or some
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multiple of it. This vector tells us what the ancillary
looks like near the observed data point; it just happens
here in this location model case that the tangent vector
is the same vector at all the possible data points. More
generally, for accurate inference we do not need the
appropriate ancillary explicitly; it suffices to have just
its tangent vector at the data point, and we will see that
this is easily obtained.

3.4 Multiple Measurements with Scalar Parameter

With a location modelf (y −θ) we see that a change
in the parameterθ causes a shift of the distribution by a
corresponding amount. We can refer to this asy change
caused byθ change, and writedy/dθ , which, for this
simple location model, has the value 1; for this we
should understand clearly that the derivative is taken
for a fixed value of the error quantityc = y − θ . For a
more general case with distribution functionF(y; θ),
we note that a small incrementδ to the parameter
from a valueθ causes a shift of the distribution by an
amountvδ at a pointy, where

v = −∂F (y; θ)/∂θ

∂F (y; θ)/∂y
.

For this we take the probability position of the pointy

to be given by itsp valueF(y; θ), and we hold this
mathematically fixed as we examine howθ change
causesy change, using the total differential ofF .
Correspondingly we callv = v(θ) the sensitivity ofy
relative to θ . Indeed this agrees with the sensitivity
mentioned for the location case in the preceding
section.

When we speak of the probability position or the
p value of a pointy we are presenting the same
information as the traffic monitor when he or she
asserts that you are driving at the 99.5 percentile;
the statistical position relative to other cars would be
clearly understood.

Now consider independent measurementsy1, . . . , yn,
whereyi has modelfi(yi; θ) with distribution function
Fi(yi; θ). A changeδ in θ causes in the manner just
described a changeviδ in the coordinateyi ; this gives
the sensitivity

vi(θ) = − ∂Fi(yi; θ)/∂θ

∂Fi(yi; θ)/∂yi

(3.8)

for the ith coordinate. With a data point(y0
1, . . . , y0

n)

we could then reasonably be interested in the sensitiv-

ity vector

v = {v1(θ̂
0), . . . , vn(θ̂

0)}′(3.9)

at the observed datay0 which describes change cor-
responding to change inθ at the maximum likelihood
valueθ = θ̂0.

As a simple example consider the regression model
with independent coordinates andyi = βxi +ei , where
the errors have a known distribution and the covariate
valuesxi are known. The effect of change inβ on the
response vector is then given asv = x, which is the
very simple design matrix. A second example is given
at the end of this subsection.

In any case, likelihood theory establishesv as the
tangent vector to an approximate ancillary suitable
for highly accurate likelihood inference. Whether the
physical suggestion of sensitivity under parameter
change has persuasive value, it does provide the basis
for the arguments that lead to the ancillary property
(Fraser and Reid, 1995, 2001).

Recent likelihood inference theory focuses on the
likelihood function and in wide generality produces
results that have high accuracy as opposed to the first-
order accuracy when standard normality is ascribed to
the score or maximum likelihood departure measures.
By high accuracy we mean that the approximation
errors are of orderO(n−3/2), wheren is the sample
size or some equivalent indicator of data dimension,
and being based on likelihood, the approximations
can have extraordinary accuracy even with very small
samples.

For these recent likelihood approximations we need
two special first-order departure measures. LetL(θ) be
the observed likelihood and let
(θ) be the observed
log-likelihood. If we then write

L(θ)

L(θ̂)
= exp{
(θ) − 
(θ̂)} = exp

(−r2

2

)
(3.10)

and solve forr with an appropriate sign we obtain

r = sgn(θ̂ − θ)[2{
(θ̂) − 
(θ)}]1/2,(3.11)

which is called the signed likelihood root. The second
departure measure is a standardized maximum likeli-
hood departure

q = sgn(θ̂ − θ)|ϕ(θ̂) − ϕ(θ)|ĵ1/2
ϕϕ ,(3.12)

where ĵϕϕ = −(∂2/∂ϕ2)
(θ;y0)|
θ=θ̂0 is the corre-

sponding observed information. This has certain rather
special features that turn out to be very important: The
standardization is with respect to observed and not the
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usual expected information, and the departure is calcu-
lated in terms of a special reparameterizationϕ(θ). The
use of the special parameterizationϕ(θ) is essential; it
needs to be obtained as the gradient

ϕ(θ) = d

dv

(θ;y)

∣∣∣∣
y=y0

(3.13)

of likelihood at the data point and calculated in the
sensitivity directionv discussed above. For (3.13) a
directional derivatived/dv is defined by

d

dv
h(y) = d

dx
h(y + xv)

∣∣∣∣
x=0

.

Certainly we would expect likelihood at and near a data
point to be important, and the use of the sensitivity
direction as being a plausible way to examine likeli-
hood near the data point, but for some background mo-
tivation and details, see Fraser and Reid (1993, 1995,
2001). We do note thatϕ(θ) can be replaced by any in-
creasing affine equivalentaϕ(θ)+b without alteringq,
but any further modification of the reparameterization
can destroy the high accuracy. The special reparameter-
ization will be called the exponential reparameteriza-
tion, because it takes the role of a canonical parameter
of a closely approximating exponential model (Fraser
and Reid, 1993).

The observedp value p0(θ) for testing θ with
observed datay0 is then given by

p0(θ) = �(r0) +
(

1

r0
− 1

q0

)
ϕ(r0)(3.14)

or

p0(θ) = �

{
r0 −

(
1

r0

)
log

(
r0

q0

)}
,(3.15)

wherer0 andq0 refer to the observed values obtained
from (3.11) and (3.12). These formulas (3.14) and
(3.15) for combining the likelihood ratio and maximum
likelihood departure measures are from Lugannani
and Rice (1980) and Barndorff-Nielsen (1986) as
derived in particular contexts; thep value has third-
order accuracy and conforms to appropriate ancillary
conditioning (Fraser and Reid, 2001).

In the special normal case described in Section 3.1,
the quantitiesr and q are both equal to(y − θ)/

(σ0/
√

n). Both formulas (3.14) and (3.15) have nu-
merical difficulties nearθ = θ̂0, where bothr andq are
equal to zero. Of course, we are usually not interested
in p values near the maximum likelihood value, but
simple bridging formulas are available (Fraser, Reid,
Li and Wong, 2003).

In the location model context in Section 3.2, the
reparameterizationϕ(θ) becomes the familiar score
parameter

ϕ(θ) = − ∂

∂θ

(θ;y0) = −
θ (θ;y0),

where the subscriptθ denotes differentiation with
respect toθ . Formulas (3.14) and (3.15) then give third-
order approximations to (3.7).

Now to illustrate the accuracy of the approximations
(3.14) and (3.15), consider a sample from the density
functionθ exp{−θy} on the positive axis. For a coordi-
nateyi we obtain the log-likelihood
i(θ) = logθ −θyi

and the log-likelihood gradient isϕi(θ) = −θ . From
this we obtain the overall log-likelihood


(θ) = n logθ − θ
∑

yi.

A natural pivotal for theith coordinate iszi = θyi . This
has a fixed distribution, of course, with distribution
functionF(zi) = 1−exp(−zi). For the vector case this
gives then-dimensional pivotal(y1θ, . . . , ynθ). From
this we obtain the sensitivity vector

v(y, θ) =
(
−y1

θ
, . . . ,−yn

θ

)′
.

If we examine this at(y0, θ̂0) we obtain the related
sensitivity vector

v(y) = v(y; θ̂0) =
(
−y0

1

θ̂0
, . . . ,−y0

n

θ̂0

)′

and the related reparameterization

ϕ(θ) =
n∑
1

(
−y0

i

θ̂0

)
(−θ) = cθ.

Because the model is exponential, thisϕ(θ) is, of
course, just the exponential parameter of the initial
model, and the sensitivity vector in this case, where a
full sufficiency reduction is available, has no effect on
the calculation as all the possible directions yield the
same reparameterization. For a numerical illustration,
consider the extreme case of a sample ofn = 1 from
this very nonnormal distribution and examine the data
pointy = 1 relative to the parameter valueθ = 10. The
familiar signed likelihood ratior has value−3.6599.
With the common normal approximation, this gives
the p value 0.000126. Alternatively the maximum
likelihood departureq, which has value−9, with
a normal approximation clearly gives an unrealistic
approximation. If, however, we user andq in (3.14)
we obtain thep value 0.000046 which agrees very
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closely with the exactp value 0.000045. As the
model here is a location model in mild disguise, the
calculations also provide an approximation to (3.7).
The present type of calculation using (3.14) or (3.15)
can be surprisingly accurate even for extremely small
samples and extremely nonnormal distributions; for a
range of numerical examples, see Fraser, Wong and Wu
(1999).

3.5 Condition to Separate Main Effects

Our examples in this section were concerned with
a scalar parameterθ , and we began with the case
of normal error with known scaling. Sufficiency pro-
vided the reduction to the sample average and we
obtained likelihood andp values directly. We then
considered nonnormal location models, followed by
general models that describe independent coordinates
of a vector response. We found that conditional meth-
ods produced the accuratep values, while sufficiency
methods typically are not available. We also saw that
when sufficiency was available the conditional meth-
ods reproduced the same result as sufficiency. In Ap-
pendix A we show this holds more generally: That is,
if sufficiency is available to simplify a problem, then in
wide generality conditioning produces the same result.
Thus we hardly need sufficiency; it can be replaced
by conditioning. Indeed historically the extreme focus
on sufficiency has distracted appropriate attention from
serious consideration of conditional methods.

4. VECTOR PARAMETER
MEASUREMENT EXAMPLES

4.1 Measurements with Normal Error

Consider the case of a sample(y1, . . . , yn) from the
normal(µ,σ 2) distribution and let(y0

1, . . . , y0
n) be the

observed data. The observed likelihood function is

L0(µ,σ )

(4.1)
= cσ−n exp

{
−(s0)2

2σ 2 − n(y 0 − µ)2

2σ 2

}
,

where s2 = ∑
(yi − y)2. We could be interested in

various parameter components, but we choose just
the simple location parameterµ. From a general
viewpoint we might want a likelihood forµ; there are
recent developments for this (e.g., Fraser, 2003), but to
address them here would take us from the main theme
of this paper. Ap value, however, is directly available

and widely accepted; that is,

p0(µ) = H

(
y 0 − µ

s0/(n2 − n)1/2

)
,(4.2)

where H is the Student(n − 1) distribution func-
tion. This can be argued in various ways. The statistic
(y, s) is minimal sufficient and is the sole data ingredi-
ent needed for the likelihoodL(µ,σ ;y1, . . . , yn); for
fixedµ, t = n1/2(y − µ)/sy has uniqueness properties
as a continuous function of(y, s) with distribution free
of the nuisance parameterσ . Whatever the basis, we
here take thet quantity as the appropriate input for the
p value.

4.2 Measurements with Known Error Shape

Considery1, . . . , yn, whereyi = µ + σei and the
ei form a sample from some known error distribu-
tion f (e). To have a sensible definition ofµ andσ we
require thatf (e) be appropriately centered and scaled.

The standardized residualsdi = (yi − y)/s describe
simple characteristics of a sample(y1, . . . , yn), free
of location and scale. It is straightforward to see
that d = (d1, . . . , dn)

′ has a fixed distribution, free of
µ andσ . Accordingly it is ancillary in the conventional
sense. We can also note thatd(y0) = d(e0), where
e0 records the realized underlying errors; thus the
underlying standardized errors are directly observable.
Accordingly d(y) can be viewed as the appropriate
configuration statistic.

The observed likelihood function is

L0(µ,σ ) = cσ−n
n∏

i=1

f {σ−1(y0
i − µ)}.(4.3)

The conditional distribution of the response vector
given the standardized residuals is obtained by change
of variable; it has probability element

cσ−n
n∏

i=1

f {σ−1(y + sd0
i − µ)}sn dy ds

s2 ,

which can be rewritten as

L0
(
y 0 + s0µ − y

s
,
s0σ

s

)
dy ds

s2
,(4.4)

where the constant in the likelihoodL0 is taken to be
the appropriate norming constant. We thus see that any
probability for(y, s) can be presented as an appropriate
integral of observed likelihood.

Also in the particular case thatf (e) is the standard
normal φ(e) as in Section 4.1, we have that (4.4)
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reproduces the normal distribution fory and the scaled
chi square distribution fors2.

For testing a value ofµ free of the nuisance
parameterσ , the statistic t = n1/2(y − µ)/sy has
uniqueness properties as a continuous function with
distribution free of the nuisance parameterσ . The
correspondingp value is

p0(µ) =
∫
t≤t0

L0
{
y 0 + s0µ − y

s
,
s0σ

s

}
dy ds

s2
,(4.5)

which is readily evaluated by numerical integration.
We also see that (4.5) can be rewritten as

p0(µ) =
∫ ∞
µ̃=µ

∫ ∞
σ=0

L0(µ̃, σ )
dµ̃ dσ

σ
,(4.6)

which gives a simple expression for thep value as
a direct integral of likelihood, indeed in the form of
a survival posterior probability using the priorσ−1.
Highly accurate approximations for (4.5) or (4.6) are
also easily available; see Section 4.4.

4.3 Exponential Model and Canonical Parameters

Consider an exponential model with natural or
canonical parameters(ψ,λ):

f (s1, s2;ψ,λ)

(4.7)
= exp{ψs1 + λs2 − κ(ψ,λ)}h(s1, s2).

This type of model is frequently mentioned when in-
ference for a parameterψ in the presence of a nuisance
parameterλ is under discussion. If sampling is part of
the background, then the coefficients ofψ andλ in the
exponent of (4.7) form the minimal sufficient statistic
or likelihood statistic. We anticipated this in (4.7) by
writing (s1, s2) to suggest the sufficient statistic under
sampling. In this sampling case, however, the support
densityh(s1, s2) typically is available only by integra-
tion from some original composite density for the sam-
ple; by contrast, the likelihood ingredientκ(ψ,λ) is
quite typically available explicitly.

For testing a valueψ free of the nuisance parame-
ter λ, the conditional distribution ofs1 given the nui-
sance scores2 is often advocated. It is of course free
of λ, but its density for direct calculation needs the
typically unavailable density factorh(s1, s2). However,
for discussion here letf (s1|s2;ψ) designate this con-

ditional density. Thep value forψ is then given as

p0(ψ) =
∫ s0

1
f (s1|s0

2;ψ)ds1,(4.8)

where the lower limit is the lower end of the range
of the variable. Some details for such calculations for
the gamma mean problem can be found in Fraser,
Reid and Wong (1997). Thep value in (4.8) is
presented as a conditionalp value, conditional on
the nuisance parameter score. It is also, however,
a marginalp value, just a matter of whether it is being
considered from the conditional or the overall marginal
viewpoint: If it has a uniform distribution given any
value for the condition, then it has that same uniform
distribution marginally.

In wide generality, as will be seen in the next section,
p values free of nuisance parameters are not available
by such conditional calculations, but are obtained
free of the nuisance parameter by a marginalization
that eliminates the effect of the nuisance parameter.
They are available by the conditional argument as
just indicated only for very special model types such
as the exponential described here; in such cases,
the conditionalp value is also a marginalp value,
so there is no conflict with the marginal approach
now being recommended. Conditioning above is then
an alternative route to the same end by a different
argument, but suitable just for certain special cases.

4.4 Location Model and Canonical Parameters

Consider a location model on the plane and let
(y1, y2) be the variable with location(ψ,λ) and error
densityf (e1, e2). We could examine the rather special
case with independent normal errors, but for interest
assume something more general, where sayf (e1, e2) is
rotationally symmetic as for example with the Student
densityπ−1(1+ e2

1 + e2
2)

−2. A still more general case
would proceed in the same manner. Also suppose that
we are interested in the component parameterψ . For a
general context, see Fraser (2003).

For a sample ofn we can reasonably consider the
residual vectors for each coordinate,d1 = (y11 − y1,

. . . , y1n − y1)
′ and d2 = (y21 − y2, . . . , y2n − y2)

′,
as providing the data pattern free of location char-
acteristics. It follows thatd1(y1, y2) = d1(e1, e2) and
d2(y1, y2) = d2(e1, e2), thus showing that the distribu-
tion for (d1, d2) is free of(ψ,λ), and also showing that
the residual characteristics of the underlying errors are
directly calculable from the observed data vectors.
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In the presence of observed data{(y0
1i, y

0
2i)} we have

that the conditional distribution of(y1, y2) given the
observed residuals is available by change of variable:

f (y1, y2|d0
1, d0

2;ψ,λ)

= k

n∏
i=1

f (y1 + d0
1i − ψ,y2 + d0

2i − λ).

As the observed likelihood is

L0(ψ,λ) = c

n∏
i=1

f (y0
1i − θ, y0

2i − θ),(4.9)

we find that we can then rewrite the conditional
distribution as

f (y1, y2|d0
1, d0

2,ψ,λ)
(4.10)

= L0(ψ − y1 + y 0
1 , λ − y2 + y 0

2 ).

Again the arbitrary constant in the likelihood would
be taken equal to the norming constant. This reduced
model is a two-dimensional location model with para-
meter(ψ,λ).

Under a requirement of moderate continuity for the
variables under study it is straightforward to see that
y1 is the essentially unique variable free ofλ. The
corresponding marginal distribution is

f (y1 − ψ|d0
1, d0

2) =
∫ ∞
−∞

L0(ψ − y1 + y 0
1 , t) dt

and the essentially uniquep value for assessingψ is

p0(ψ) =
∫ ∞
ψ

∫ ∞
−∞

L0(ψ̃, λ) dψ̃ dλ,(4.11)

which, in this pure location case, is equal to the
Bayesian survival probability based on the flat prior in
the location parameterization. Thep values for various
ψ values can then be obtained by numerical integration
of likelihood. Highly accurate approximations to (4.11)
are available and discussed in the next section.

For a more general approach to location parameteri-
zation, see Fraser and Yi (2002), and for the interplay
of frequentist and Bayesian methods, see Fraser and
Reid (2003).

4.5 Multiple Measurements: Interest and
Nuisance Parameters

With the location model in the preceding section
we see that a change in the parameter(ψ,λ) causes a

corresponding translation of the distributionf (y1−ψ,

y2 − λ) on the plane. For a sample ofn, the effect is
particularly simple: A change inψ causes a shift in the
first coordinaten-vector by the corresponding multiple
of the one-vector for that coordinate. A change inλ

similarly causes a shift in the second coordinate vector
by the corresponding multiple of the one-vector for that
second coordinate. This sensitivity connection between
the parameter and the distribution for the response
seems obvious and natural here in the location context,
but for its more general version some discussion is
needed.

Suppose thatψ andλ are scalars, and that indepen-
dentyi have a common distribution with distribution
function F(y;ψ,λ) and density functionf (y;ψ,λ).
Then, as in Section 3.4, we examine how a change
in (ψ,λ) shifts the distribution. We do this by examin-
ing thep valueF(yi;ψ,λ) for the ith coordinate and
seeing how, for fixed value of this pivotal, the distrib-
ution shifts at a pointyi . From the total differential of
thep value we obtain

(vi1, vi2) = ∂yi

∂(ψ,λ)

=
(
−∂F (yi; θ)/∂ψ

∂F (yi; θ)/∂yi

,− ∂F (yi; θ)/∂λ

∂F (yi; θ)/∂yi

)
.

If we then consider alln coordinates, we obtain an
array of two sensitivity vectors

V =



v11 v12
...

...

vn1 vn2


 = (v1, v2),(4.12)

which describes how(ψ,λ) affects the distribution.
Quite reasonably we are concerned with this effect
for an observed data pointy0 at the corresponding
maximum likelihood parameter valuêθ0. Let V in
(4.12) be evaluated for(y, θ) = (y0, θ̂0). As a simple
example considery = Xβ + σe, where the error is
a sample from a known distribution and the design
matrix X is given. The sensitivity vector arrayV
then has a vector for each parameter coordinate and
simple calculation givesV = (X, ê0), whereê0 is the
fitted standardized error vector. This leads to accurate
inference even with nonnormal error and extends easily
to nonlinear regression; for examples, see Fraser, Wong
and Wu (1999).

For the two parameter case as indicated by (4.12),
general theory (Fraser and Reid, 2001) then shows that
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there is an approximate ancillarya(y) of dimension
n − 2 for which the tangent vectorsV at the data
point y0 are given by (4.12). This then leads to highly
accurate third-orderp values for scalar components of
the parameterθ . The calculations for thep values for
assessing sayψ need just the observed log-likelihood

0(ψ,λ) and the observed log-likelihood gradient

ϕ′(θ) = {ϕ1(θ), ϕ2(θ)} = d

dV

(θ;y)

∣∣∣∣
y=y0

(4.13)

=
{

d

dv1

(θ;y)

∣∣∣∣y0,
d

dv2

(θ;y)

}∣∣∣∣
y=y0

,

using directional derivatives as defined after (3.13).
We refer to this as the exponential parameterization,
being the canonical parameter of some best fitting
exponential model near the data point. For inference
concerningψ we can then calculate a first departure
measure given by the signed likelihood ratio

r0(ψ) = sgn(ψ̂0−ψ){2[
0(θ̂)−
0(θ̂ψ )]}1/2,(4.14)

whereθ̂ψ is the maximum likelihood value under the
constraintψ(θ) = ψ , and we can calculate a second
departure measure given as a special standardized
maximum likelihood departure

q0(ψ) = sgn(ψ̂0 − ψ)

· |χ(θ̂) − χ(θ̂ψ)|
{ |ĵϕϕ |

j(λλ)(θ̂ψ )

}1/2

.(4.15)

In this χ(θ) is a rotated coordinate ofϕ(θ) that agrees
with ψ(θ) at θ̂ψ and acts as a surrogate forψ(θ) at θ̂ψ ,
and the full and nuisance informations are recalibrated
in the ϕ parameterization, as indicated by the use of
parentheses aroundλλ. Further details are recorded
in Appendix C; also see the regression examples in
Fraser, Wong and Wu (1999) and Fraser, Monette, Ng
and Wong (1994). Thep valuep0(ψ) is then given by
(3.15) in Section 3.4.

The p value just discussed corresponds to the use
of the special conditional model given the approxi-
mate ancillary with tangent vectorsV , followed by
a marginalization to eliminate the nuisance parame-
ter. This two-step simplification corresponds closely to
that found for the location model in Section 4.4, and
the presentp value provides an approximation to that
given by (4.11). The presentp value also can provide
an approximation to the Studentp value at (4.2), or to
the location scalep value at (4.5) or to the exponen-
tial modelp value at (4.8). We can thus note that the
present approach using sensitivity vectorsV covers the

simple cases where sufficiency can be used and covers
the general cases as developed in Sections 4.3 and 4.4,
where sufficiency is not available.

5. SOME CONDITIONING AND
MODELING CRITERIA

5.1 The Two Measurement Instruments Example

In Section 2 we discussed two examples that in-
volved measurement instruments, as presented by Cox
(1958) and, earlier, by Welch (1939). Our theme, in
contrast with that in Welch, was that conditioning is
appropriate and proper for both examples.

For the earlier example (Welch, 1939), the two in-
struments were identical and both were used in a sin-
gle investigation. The conditioning under discussion
used Fisher’s configuration statistic and provided the
background for the succession of examples in Sections
3 and 4. We develop further aspects of conditioning
on configuration statistics in the next section. For the
other example (Cox, 1958), only one of the instru-
ments was actually used. This raises a serious issue.
Should the modeling include probability structure for
measurements that were never taken? Cox comes out
quite firmly in support of the use of the appropriate
conditional model, the model for the measurement that
was actually made. Surprisingly there seems to have
been little subsequent support for such an approach.
We develop some further aspects of this modeling in
Section 5.3.

5.2 Conditioning Directions V

The examples in Sections 3 and 4 all involved
a primary role for continuity: how a change in the
parameter shifts the response distribution, in particular,
how it shifts the distribution in the neighborhood of
the observed data. At the present time this theory is
now available for the case of discrete distributions. The
concern with the model in the neighborhood of the data
does seem data dependent, but at the observed data is
where the model form is of particular importance. In
substance this is not dissimilar to standardization of a
maximum likelihood departurêθ − θ by an observed
information, information at the data point of interest
rather than expected information, thus givingq = (θ̂ −
θ)ĵ1/2. Theoretically this type of standardization has
strong support.
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The examples in Sections 3 and 4 all consider how
a change in the parameter shifts the response distribu-
tion. In the context of independent scalar coordinates,
the coordinatep valuesFi(yi; θ) provide the direct
continuity link that describes how a parameter change
affects a coordinateyi ; see (3.8) and (4.12) for details.

Now, more generally, suppose that the coordinates
are vector-valued with dimension say equal to the di-
mensionp of the parameter. A change in the parameter
will lead to an altered distribution, but this in itself does
not prescribe a point-by-point movement of the distrib-
ution; something more is needed. For theith coordinate
let zi(yi; θ) be some appropriate pivotal quantity. With
p > 1 there may not be an obvious unique choice for
this pivotal; we would then seek one that best describes
how theith variable measures or relates to the parame-
ter being measured. A basis for this choice is discussed
elsewhere. Here we assume that it is given or has been
chosen on a natural or what-if basis.

The pivotal allows us to examine how aθ change
affects or moves the data pointy. For this we let
y be thenp-dimensional vector obtained by stacking
theyi and similarly letz be thenp-dimensional vector
obtained by stacking thezi . Then taking the total
differential of the pivotal we obtain

V = −z−1
y (y0; θ̂0)z;θ (y0; θ̂0),(5.1)

where the Jacobian matrices are, respectively,np × np

and np × p, and are evaluated at the data pointy0

and the corresponding maximum likelihood valueθ̂0;
the subscripts indicate differentiation with repect to the
argument before or after the semicolon.

For conditional inference with an approximate an-
cillary, the measurement vectorsV represent the direc-
tions of change along which the appropriate conditional
model is defined. They give tangent vectors to an
approximate second-order ancillary (Fraser and Reid,
2001). General theory (Fraser and Reid, 1993, 1995)
shows that a second-order ancillary suffices for third-
order likelihood inference.

The directional vectorsV lead to an exponential-
type recalibration of the parameter. The exponential-
type parameterization for theith coordinate model is
available as the gradient of log-likelihood

ϕ′
i (θ) = ∂

∂y′
i


(θ;y0
i ),(5.2)

which is recorded here as ap-dimensional row vector.
For the full model the appropriate reparameterization

is obtained by combining these components using the
sensitivity vectorsV in (5.1),

ϕ′(θ) =
n∑

i=1

ϕ′
i (θ)Vi = 
;V (θ;y0),(5.3)

whereVi is thep × p block of the matrixV that cor-
responds to theith observationyi and the right-hand
term of (5.3) is an array ofp directional derivatives.

For inference concerning a scalar parameterψ(θ),
it then suffices for third-order inference to act as if
the model is exponential with observed likelihood

(θ;y0) = 
0(θ) and with canonical parameterϕ(θ)

from (5.3). In particular, the observedp-value function
p0(ψ) is given by (3.14) or (3.15) usingr(ψ) andq(ψ)

given by (4.14) and (4.15). For a variety of examples in
a regression context, see Fraser, Wong and Wu (1999)
and Fraser, Monette, Ng and Wong (1994).

5.3 Modeling the Actual Data Production

As mentioned in Section 5.1, the Cox (1958) ex-
ample recommended that only the measurements that
were actually made should be modelled or, put another
way, that the full model should not be describing mea-
surements that were not made. We now develop this in
more detail.

Consider a succession of measurements on a para-
meterθ and suppose that for each there is a direct mea-
surement relationship to the parameter, as discussed in
Sections 3, 4 and 5.2. For illustrative purposes a suc-
cession of three models, sayM1, M2 andM3, will suf-
fice. Lety1, y2 andy3 be the corresponding data. Many
issues can be involved in the modeling of such a con-
text. Here we focus on the goal of statistical inference
for the parameter in question and propose three model-
ing criteria:

I. Provide a model for each measurement that has
been made.

II. Do not provide a model for measurements that
were not made.

III. Do not provide a model otherwise for the process
or procedure that led to the choice of a particular
measurement process.

These seem reasonably natural and persuasive, but
have some rather striking implications.

EXAMPLE 5.1. Consider Example 2.1 concerning
the two measurement instruments and suppose we have
datay = y0 anda = a0 = 2 (the second instrument is
chosen). By criterion III, we do not model the coin
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toss used to choose the instrument. By criterion II,
we do not model the measurement process for the
first instrument. By criterion I, we do model the
measurement process for the second instrument. We
then have datay0 and a normal model with meanθ
and standard deviationσ0. A 95% confidence interval
is given as(y0 ± 1.96σ0).

EXAMPLE 5.2 (Meta-analysis). Consider the
meta-analysis of three investigations concerning a pa-
rameterθ . In practice the precise definition ofθ may
vary from investigation to investigation, and various
factors such as reliability of measurements may arise.
For our illustration here we assume that these are
not at issue. By criterion III, we do not model the
process by which the particular investigations were se-
lected. For example, the data with investigationM1

may have suggested some interesting range of values
for θ , but were inconclusive for this, thus leading to the
choice of a more comprehensive or demanding investi-
gationM2. Or, the data withM1 might have been very
strongly conclusive for the interesting range, leading
to no further investigation. AlsoM3 might only have
been performed in the case of conflicting results from
M1 andM2. By criteria I and II, we model exclusively
the investigations that have actually been made and in
doing so make reference to repeated sampling just for
the corresponding measurement models. Accordingly,
our composite model is the product formed from the
individual models. In particular, this would say that the
randomness in modelM2 is not influenced by the re-
sults from the investigationM1. That is,M1 andM2 are
taken as statistically independent. We note of course
that if M1 had produced a different outcome, we might
have had a different investigation in place ofM2 or in-
deed have had no second or subsequent investigations.
This is in accord with criterion I: We are concerned
with the randomness in the measurement processes that
have been performed, and not with randomness in other
possible investigations that in fact did not take place.
The repeated sampling reference is for measurements
that have been made and does not embrace repeated
sampling in a global sense that might embrace many
possible other models, none of which has correspond-
ing data values.

In conclusion, we note that the use of the product
model for the analysis ofM1, M2 and M3 as just
described is the common procedure for meta-analysis.
We return to this consideration of meta-analysis in
Section 7.

6. SOME FAMILIAR ANCILLARY EXAMPLES

We are concerned with conditional inference theory
and how it relates to the ancillarity principle that speci-
fies the use of the conditional model given the observed
value of an appropriate ancillary statistic. In Sections
3 and 4 we noted that conditional methods could be
used quite generally to replace sufficiency and, in ad-
dition, to provide definitive inference methodology
in a much broader context. As part of this we used
continuity and a notion of a measurement sensitivity
to motivate the related results from recent likelihood
asymptotics. In Section 2 we examined the Cox two
measuring instruments example and noted that there
was something stronger than ancillarity involved, that
only measurements that were actual made should be
modelled. This led in Section 5 to criteria for models
for inference, in particular criteria for isolating certain
components, that is, the components that correspond
to measurements that were actually made. This went
significantly beyond just conditioning on an observed
ancillary.

In this section we examine some of the commonly
cited ancillary examples. A survey of such ancillary
examples can be found in Fraser (1979, pages 54–68
and 76–86) and in Buehler (1982); see also Reid (1995)
for a general discussion of conditional inference. Here
we examine these examples from the viewpoint of
what the proper model for inference should be in the
presence of data and for this we use the criteria from
Section 5. We also compare these models for inference
with the result of invoking ancillarity within models
that are global (encompassing all possible data that
might have been observed) and thus violate criteria
II and III.

EXAMPLE 6.1 (Random choice of sample size).
Consider the repeated measurement unit assessment of
a parameterθ and suppose that the number of repe-
titions n is random with known densityp(n). In ac-
cord with criteria I and II, we would model the specific
measurement units that were performed, and in accord
with criterion III, we would not model the process that
leads to the sample sizen. This gives the inference
model

∏n
1 f (yi; θ) plus the corresponding data. From

the global repeated sampling viewpoint, however, we
would examine the composite modelp(n)

∏n
1 f (yi; θ)

with data(n;y0
1, . . . , y0

n). For this full model,n is an
ancillary statistic and the corresponding ancillary re-
duction gives the just described inference model. The
two viewpoints lead to the same reduced model. More
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generally we can consider a distributionp(n;λ) for
n with dependence on a parameterλ free of θ . The
criteria again give the model

∏n
1 f (yi; θ) with data

(y0
1, . . . , y0

n).

EXAMPLE 6.2 (Sampling from a mixed popula-
tion). Consider two populationsA1 and A2 of rel-
ative sizesq1 and q2 that are intermixed and the
elements of which are not easily distinguishable. A pa-
rameterθ may have the same value in each popula-
tion and yet distributionally express itself differently:
f1(y; θ) andf2(y; θ) in A1 andA2, respectively. We
consider a random sample ofn from the mixed popula-
tion, yielding observed numbersn1 and n2 from the
populationsA1 and A2. The inference model would
describe the data(y1

1, . . . , y1
n1

) and(y2
1, . . . , y2

n2
) from

the random sampling ofn1 elements fromA1 andn2
elements fromA2 (with n1 andn2 fixed at their ob-
served values). By criterion III we would omit the
hypergeometric model that yields(n1, n2). However,
if we consider the full global model, we can note
that the allocation(n1, n2) has a fixed distribution and
is ancillary. The corresponding conditional model is
that just described:n1 observations randomly sam-
pled fromA1 andn2 observations randomly sampled
from A2. Accordingly the reduced model conditional
on the ancillary coincides with the inference model.
Note that in the full global model the indicator vari-
ables that describe whichn1 elements ofA1 are cho-
sen, and whichn2 elements ofA2 are chosen, with
givenn1, n2, have a fixed distribution with probabili-
ties 1/(Nq1)

(n1)(Nq2)
(n2) and are thus also ancillary.

Conditioning on this ancillary just gives the assess-
ment of specified units in each population and thus can
be viewed as 100% sampling of particular subsets of
A1 andA2. Thus, this use of ancillarity seems to go too
far and eliminates the inference assessment available
from finite population sampling (Fraser, 1979). Some
consideration of this issue in terms of labels for sample
elements was given by Godambe (1982, 1985).

EXAMPLE 6.3 (Random regression input). Con-
sider a regression modely = Xβ + σe, where the
rows Xi of the n × r design matrix have been gen-
erated randomly from some distributiong(x1, . . . , xr)

for input variables. The inference model again would
be for fixedX even in the context whereg depends on
a parameterλ with range free ofθ . More specifically,
the inference model concerningθ would be the model
for the actual measurements made. From the ancillarity
viewpoint we note that for the first case the variableX

has a fixed distribution and is thus ancillary. The corre-
sponding conditional model then agrees with the infer-
ence model just described.

EXAMPLE 6.4 (A 2×2 table; Fisher, 1956, page 47).
The offspring in a breeding experiment can be classi-
fied by phenotype based on two genetic characteristics
(A, a) and (B, b) that show complete dominance. The
relative proportions for AB, Ab, aB and ab are 9, 3,
3 and 1 if there is no linkage and are 2+ θ , 1 − θ ,
1 − θ andθ in the presence of a linkage parameterθ ,
whereθ = 1/4 corresponds to the no linkage case. The
proportions for A : a or for B : b are the standard 3 : 1
of dominant to recessive phenotypes. Letn11, n12, n21
andn22 be the data forn offspring in a particular mat-
ing with say(n1·, n2·) = (n11 + n12, n21 + n22) des-
ignating row totals and(n·1, n·2) designating column
totals.

If the data are assembled in terms of the A pheno-
type, we then have thatn11 is binomial{n1·, (2+ θ)/3}
andn21 is binomial{n2·, (1 − θ)}. Alternatively, if the
data are assembled in terms of the B phenotype, we
then have thatn11 is binomial {n·1, (2 + θ)/3} and
n12 is binomial{n·2, (1− θ)}. We thus obtain two dif-
ferent inference modelings based on two different clas-
sifications of the data, by A phenotype or by B phe-
notype, each classification corresponding to a partic-
ular viewpoint concerning the context in which the
parameterθ is being investigated.

From the ancillary viewpoint we can note that the
row totals n1·, n2· have a binomial allocation with
probabilities in the ratio 3 : 1, and thus are ancillary;
this gives a reduced model that coincides with the
inference model based on assembly by A phenotype.
Also we can note that the column totalsn·1, n·2 have
a 3 : 1 binomial allocation and are thus ancillary;
the corresponding reduced model coincides with the
inference model based on assembly by B phenotype.
We do note, however, that the combination of the row
totals and the column totals is not ancillary. Thus the
ancillarity approach gives two different modelings and
provides no preference for one over the other.

EXAMPLE 6.5 (Bivariate correlation). A continu-
ous example closely analogous to the preceding ex-
ample is provided by data from a bivariate normal
distribution for (x, y) with means 0, variances 1 and
correlationρ. If we examine the data labelled by the
x values, we have that they values are normal with
meanρx and variance 1− ρ2. Alternatively, if we ex-
amine the data labelled by they values, we have that
the x values are normal with meanρy and variance
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1− ρ2. Accordingly, we obtain two different inference
modelings that correspond to two different assemblies
or classifications of the data, byx or by y. By con-
trast we can note that from the full model ancillary
viewpoint we have that thex1, . . . , xn are ancillary,
and the corresponding conditional model examinesy ’s
for fixed x ’s and agrees with the first inference model
above. In a parallel way we note that they1, . . . , yn

are ancillary in the full model with a conditional model
that agrees with the second inference model above.
Again we have conflicting ancillaries and ancillarity
alone does not provide a resolution. Indeed ancillar-
ity itself creates the conflict between the two condi-
tional resolutions. We could also rotate our coordinates
through an angle ofπ/2 and in effect usewi = xi + yi ,
zi = xi − yi ; the independent coordinateswi and zi

could then be examined more transparently using the
approximate ancillary approach in Section 3.4.

For the first three examples, our model for the in-
ference approach and the ancillarity approach are in
agreement. For the final two examples, the model for
the inference approach required a particular assembly
of the data, by choice of phenotype or by choice of in-
put variable. Without this choice of how to assemble
the data, the ancillarity approach produces conflicting
recommendations. It thus seems that invoking ancillar-
ity also requires some specification of how the data are
to be assembled for analysis.

We do note that the two approaches lead to the
same observed likelihood function, even in the con-
text of conflicting ancillaries. If, however, we wish to
go beyond just observed likelihood, we find that dif-
ferent ancillaries can produce different distributions
for possible likelihood functions and can produce dif-
ferent confidence assessments and differentp values.
Accordingly, some additional specification is needed
and indeed should not have been omitted at the initial
modeling stage. This leads to the use of measurement
directions as introduced in Sections 3.4 and 4.5, which
use continuity and express how parameter change can
produce an effect at a data point.

7. ARE GLOBAL REPEATED SAMPLING
PROPERTIES WANTED?

We have been considering ancillary statistics and
how they lead naturally to conditional inference given
an observed value of the ancillary. However, our initial
examples from Cox (1958) and Welch (1939) included
some discussion of overall or global sampling proper-
ties, where repetitions of some complete process were

being considered. Cox argued that the conditional ap-
proach should take precedence over global properties,
and Welch argued that the global properties invalidated
the conditional approach. This leads to the focal issue:
What probabilities are the appropriate probabilities for
presenting inference conclusions from context and data
information?

With the modeling criteria in Section 5.3, we viewed
the individual measurement probabilities as the pri-
mary ingredients, with frequency interpretations based
on repetitions of the individual measurement processes.
This supports the Cox viewpoint for the two measure-
ment instrument example. Our earlier discussion in
Section 2 viewed the global probabilities as artificial
in that they used probabilities for measurement units
that might have been used, but in fact were not.

At the heart of the global approach is the calculation
of probabilities for repetitions of the full process
under a fixed value for the parameter. This allows the
calculation of global operating characteristics for the
full investigation under consideration. On the surface
this seems hard to argue against or, at least to argue
against it is counter to present culture. Of course it is
telling a story, but perhaps not the relevant story for the
purposes of statistical inference.

From the global viewpoint there seems little alterna-
tive to that of repetitions under a fixed parameter value,
without say putting weights on the possible parameter
values and using a Bayesian-type argument. Of course
this Bayesian approach has given a wealth of possi-
ble answers to wide ranging problems, in contrast to
the range of answers from the traditional optimality
approach, but this same wealth is of course available
more directly, and without pretense, by weighted like-
lihood and integration. For some recent discussion, see
Fraser (1972), Fraser and Reid (2003) and Fraser and
Yi (2002).

Here we examine some aspects of global and con-
ditional probabilities without resort to probabilities or
weights on the various values for the parameter.

EXAMPLE 7.1 (Meta-analysis). As part of the
discussion of inference modeling in Section 5.3 we
considered conditional inference and metanalysis for
three investigations of a scalar parameterθ . For some
comparisons with global probabilities we now examine
an even simpler case that involves two measurements
of the parameterθ : a first measurementy1 is unbiased
and normal with standard deviationσ0 say equal to 1;
a second measurement is unbiased and normal with
standard deviationσ0/100= 0.01. We also suppose
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that some threshold valueθ = θ0 is of interest and for
simplicity and convenience take this value here to be
zero.

If there had just been the first measurement, say
y1 = y0

1, the p value or significance function forθ
would be

p1(θ) = �(y0
1 − θ)(7.1)

and thep value for the threshold would bep1 = �(y0
1).

However, with the two measurements the weighted
averagey = (y1 + 10000y2)/10001 would be the
appropriate combined estimate and thep value or
significance function forθ would be

p2(θ) = �{100(y0
2 − θ)},(7.2)

where, as a reasonable approximation and simplifica-
tion, we ignorey1 because of the very large weight
on y2 in the weighted averagey; the p value for
the threshold would bep2 = �(100y0

2). In summary,
with just the first measurement the significance func-
tion is a reverse standard normal distribution func-
tion centered on the datay0

1, while with two measure-
ments it is a reverse normal distribution function cen-
tered at the valuey0

2 but scaled much more tightly
around that value, indeed by a factor of 100 to 1.
Also thep value for the thresholdθ = 0 changes from
�(y0

1) to �(100y0
2) in going from the one- to the two-

measurement situation.
Now consider an experimental context for these two

investigations. The investigator is particularly inter-
ested in the threshold valueθ = 0. He or she makes
a first measurement ofθ and obtains a valuey0

1 = 1.1,
suggesting in a very informal way that perhaps the true
value forθ is above the threshold. As a result he or she
decides to take a second high precision measurement
and obtainsy0

2 = −0.1; this new significance function
is very tight and substantially left of the origin. We
suggest that both the preliminary and the subsequent
p values represent appropriate expressions of the infor-
mation at the respective times. We also note that these
seem in agreement with the meta-analysis approach.

Now suppose that if the first measurement had been
negative with ap value less than 1/2 then no follow-
up measurement would have been deemed appropriate.
Consider the global probability assessment of this for
the null situationθ = 0. With the first measurement the
initial p values are uniform(0,1); with probability 1/2
the pivotalp value is greater than 1/2 leading to the
follow-up combinedp value, which is approximately
uniform (0,1). The global probability distribution for

the reportedp value is then piecewise uniform with
density 3/2 on(0,1/2) and density 1/2 on(1/2,1).

We believe that the individualp values�(y0
1) and

�(100y0
2) provide the appropriate inference presenta-

tion for the particular cases as they arose in time, and
that the nonuniform globalp value is a consequence of
the seemingly inappropriate use of an overall marginal
assessment of thep values for this two measurement
situation. Also recall the earlier Example 2.1.

From a raw global approach we thus note that it
is possible to obtainp values biased to the left by
deliberately taking follow-up measurements when an
initial p value is high. The inappropriateness of the use
of global probabilities is again to be emphasized.

EXAMPLE 7.2 (AR1 models). The typical autore-
gressive model is used for data that arrives sequentially
in time and as such seems appropriate for considera-
tion here from our present conditional viewpoint. For
this we examine now a very simple case with just two
measurements that illustrates some of the key issues.
Consider normal(0, σ 2

0 ) errors with an autoregressive
parameterθ and two observations. Thusy1 = e1 and
y2 = θy1 +e2, wheree1 ande2 are normal(0, σ 2

0 ). The
log-likelihood function is


(θ) = − 1

2σ 2
0

(y2 − θy1)
2.(7.3)

This has the maximum likelihood valuêθ = y2/y1,
which has a standard Cauchy distribution centered at
the pointθ .

Now consider the inference modeling viewpoint
from Section 5. The firsty1 does not measureθ , but it
does determine the precision for the second measure-
menty2. By criterion III, we do not modely1. Then
by criterion I, we do modely2 and by criterion II, we
modely2 only for its particular measurement situation.
This gives the modely2 is normal(θy1;σ 2

0 ), and this
produces the same likelihood function (7.3) as does
the global model, and the maximum likelihood value is
just the samêθ = y2/y1. We observe, however, that the
maximum likelihood value is now normal(θ;σ 2

0/y2
1),

where they1 value is taken at its observed value. The
issue we have mentioned before becomes more trans-
parent here. Do we use the actual measurement process
model with its normal distribution or do we use some
average of possible measurement situations that typ-
ically did not occur, leading to the Cauchy analysis?
We know that the normal distribution describes the ac-
tual measurement that was made and leads to a nor-
mal analysis. But the persuasive global approach would
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want to include modelings for other measurements that
were never made and thus argue for the Cauchy analy-
sis.

From the present viewpoint we prefer the measure-
ment model approach, conditioning on preceding mea-
surements. Of course there may be cases where the
global probabilities are wanted, but for direct statis-
tical inference with observed data the conditional ap-
proach seems appropriate. Also it avoids the usual and
well-known singularities that arise with the marginal
approach in the neighborhood ofθ = 1. It now seems
clear that these singularities arise precisely from the
inclusion of a wealth of possible models that apply to
measurements that were in fact never made.

The preceding is arguing in support of conditioning
in the time series context; this is of course not a
common recommendation, but has been suggested on
several occasions by Professor Jim Durbin. Perhaps
the only way to argue against it is to make some
preliminary assumption that only the global repeated
sampling principle will be entertained.

Now consider briefly the global repeated sampling
approach and how it interacts with various common
optimality criteria. The examples in Section 2 show
how a search for optimality leads to a trade-off between
different measurement situations. In particular we saw
how a precise measurement instance could be given a
longer confidence interval so that a much shorter in-
terval could be given in a less precise instance. Opti-
mality in the global framework can lead to results in
particular instances that are contrary to the available
evidence. Alternatively, by overstating and by under-
stating in particular instances it is possible to increment
toward some optimality goal on the global scale. This
clearly argues against the appropriateness of the opti-
mality applied on the global scale; this has been as-
serted very gently by Cox (1958).

APPENDIX A: CONDITIONING REPLACES
SUFFICIENCY TO SEPARATE MAIN EFFECTS

Consider the case of continuous variables and sup-
pose there is a sufficient statistics(y) that has the
same dimensionp as the parameter. Also suppose for
ease of argument that the conditioned variable, say
t (y) given s(y), has constant dimension which would
then ben − p. It follows from sufficiency that the
distribution of t (y) given s(y) is parameter-free: Let
u(y) be a coordinate-by-coordinate sequential proba-
bility integral transformation oft (y) as obtained from
the conditional distribution givens(y); for example,

the probability integral transformation for the first co-
ordinate, the probability integral transformation of the
second coordinate conditional on the first and so on. Of
course there are many such transformations obtained
even by varying the order of the coordinates. It follows
that the conditional distribution ofu(y) given s(y)

is uniform on a unit cube and thus does not depend
on s(y). It follows that u and s are independent and
thus thatf (s; θ) = f (s|u; θ), showing that a condi-
tional model equivalent to the given model is avail-
able. This result does not depend on the choice of
the probability integral transformation. This says that
an analysis using sufficiency can be duplicated by a
conditional analysis. For a simple example consider
(y1, y2) from the normal(θ, σ 2

0 ). The model fory is
normal(θ, σ 2

0/2); the conditional model fory given
the configurationy2 − y1 is also normal(θ, σ 2

0/2). If,
however, we are without normality, then sufficiency is
typically not available, but the conditional analysis re-
mains available and is routine. Accordingly we support
the conditional approach and suggest that there is little
need for sufficiency methods for inference in the con-
tinuous case. Of course they can be convenient in spe-
cial cases, but they do not provide the methodological
sanction needed for general contexts; they should be
viewed as an expediency for the special cases. For the
typical discrete case, sufficiency can be convenient, but
some simple invariance notions typically suffice.

APPENDIX B: MARGINALIZATION TO
ELIMINATE PARAMETERS

Conditioning is often suggested as a means to elimi-
nate nuisance parameters, but in general contexts mar-
ginalization is the effective method and conditioning
can be viewed as an expediency when special model
structure is available. Consider two examples. For a
continuous exponential model,

exp{y1ψ + y2λ − c(ψ,λ)}h(y1, y2),(B.1)

the conditional distribution ofy1|y2 depends onψ only
and is thus free ofλ. For a continuous location model,

f (y1 − ψ,y2 − λ),(B.2)

the marginal distribution ofy1 depends onψ only and
is thus free ofλ. In each case we have a special model
type with specialized variables and parameters, and
these are often referred to as canonical variables and
parameters.
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Now consider the first example, where conditioning
provides freedom from the nuisance parameter, and
suppose we are testingψ . Letu(y1, y2) be a probability
integral transformation ofy1|y2 obtained from the
λ-free conditional distribution for testingψ . Then for
the testedψ , the distribution ofu|y2 is free ofy2; thus
u is independent ofy2. It follows that the marginal
distribution ofu is λ-free and givesp values that agree
with those from the initial conditional variable.

Recent likelihood asymptotics (e.g., Fraser and Reid,
1993; Fraser, Reid and Wu, 1999) shows that for a
general asymptotic model with continuous variables,
the testing of a parameter valueψ(θ) = ψ is available
from a marginal distribution obtained by integrating
over a nuisance parameter based conditional distribu-
tion as in the second example, which follows the pat-
tern for the location model as discussed in Section 4.4.

APPENDIX C: THE PARAMETER REEXPRESSION

The third-orderp values obtained from (3.14) or
(3.15) using the signed likelihood ratior(ψ) in (4.14)
and the maximum likelihood departureq(ψ) in (4.15)
are based on an exponential type reparameterization
ϕ(θ) in (3.13), (4.13) or (5.3). The full information
determinant calculated in the new parameterization is
available as

|(θθ)| = |θθ (θ̂ )||ϕθ (θ̂)|−2,

using the Jacobianϕθ (θ) = ∂ϕ(θ)/∂θ ′. The nuisance
information determinant somewhat similarly takes the
form

|(λλ)(θ̂ψ)| = |jλλ(θ̂ψ )||ϕλ′(θ̂ψ)|−2 = |jλλ(θ̂ψ )||X|−2,

where the right-hand determinant usesX = ϕλ′(θ̂ψ)

with |X| = |X′X|−1/2, which in the regression context
records the volume on the regression surface as a
proportion of the corresponding volume for regression
coefficients; in the preceding formula this changes the
scaling for the nuisance parameter to that derived from
theϕ parameterization. The expressions above are for
the case whereθ ′ is given as (ψ,λ′) with an explicit
nuisance parameterization; the more general version is
recorded in Fraser, Reid and Wu (1999). The rotated
coordinateχ(θ) in theϕ parameterization is obtained
from the gradient vector ofψ(θ) at θ̂ψ and has the form

χ(θ) = ψϕ′(θ̂ψ )

|ψϕ′(θ̂ψ )|ϕ(θ),

where the row vector multiplyingϕ(θ) is the unit
vector obtained from the gradientψ ′

ϕ(θ̂ψ ) and is
obtained from

ψϕ′(θ) = ∂ψ(θ)

∂ϕ′

= ∂ψ(θ)

∂θ ′
(

∂ϕ(θ)

∂θ ′
)−1

= ψθ ′(θ)ϕ−1
θ ′ (θ);

in this we takeψϕ′ to be the Jacobian of the column
vector ψ with respect to the row vectorϕ′ and, for
example, would have(ψϕ′)′ = ψ ′

ϕ for the transpose of
the first Jacobian.
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Comment
Ronald W. Butler

1. INTRODUCTION

Can we now put to rest the unthinking and unquali-
fied use of “global repeated sampling properties” as a
means for probability computation and inference? Pro-
fessor Fraser has forcefully and eloquently stated the
case against the use of this principle when the model
structure would suggest otherwise. In Section 7 para-
graph 3 he concedes that “On the surface this (princi-
ple) seems hard to argue against. . . .” However, after
a careful reading of this paper, one must conclude
from the multitude of examples and discussion that
the unconditional and blanket use of this principle is
seriously flawed. There are many modeling situations
which would qualify for its use, particularly nonpara-
metric modeling settings; however, the models pre-
sented here clearly do not.

My comments are divided into two parts. First some
consideration of what these ideas about ancillarity and

Ronald W. Butler is Professor, Department of Statistics,
Colorado State University, Fort Collins, Colorado
80523-1877, USA (e-mail: butler@stat.colostate.edu).

conditional inference might mean for predictive infer-
ence. This is followed by the bulk of the discussion,
which presents a numerical example for a curved ex-
ponential family. No exact ancillaries are known for
this example, but it will be shown that (i) the likeli-
hood ancillary is particularly appropriate, (ii) the ap-
proximate p value suggested in (3.14) agrees with
that in Barndorff-Nielsen (1990), expression (1.2), and
(iii) the “sensitive direction” points tangent to the man-
ifold created by holding the likelihood ancillary fixed
at the data. The findings of the example pose further
questions.

2. PREDICTIVE INFERENCE

The dual problem to parametric inference is predic-
tive inference for unobservedz. Criterion II in Sec-
tion 5 needs slight modification ifz is to be inferred
from observedy0 using a parametric model. Crite-
rion III seems particularly relevant to this setting: ig-
nore the reason whyz has not been observed, whether
it be in the future or the past, or perhaps because it is
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a random effect in a model and therefore can never be
observed.

The problem is dual because, rather than condition-
ing on ancillary statistics to make the inference more
relevant to the model and data at hand, the reference
set might now be a fixed value for the sufficient statis-
tic. In the simplest setting considered in Butler (1986),
suppose there is a sufficient statistics(y) of fixed di-
mension that agrees with that of the model parameterθ.

If a generic valuez is adjoined withy in (y, z) space,
then the evidence for thisz value should be with re-
spect to the reference sets(y0, z). In entertaining the
value ofz as the unobserved value, thens(y0, z) con-
veys all relevant information aboutθ and hence about
the state of the model used to make the predictive in-
ference. In the same way that conditioning on ancillary
a is used to convey “key observable characteristics of
the underlying error” for a location model, condition-
ing on s(y0, z) provides complete information about
the current state of understanding forθ within the para-
metric model setting. Fixing this understanding allows
the model structure to make the prediction and also
have it relevant to the current level of understanding
about the model. Professor Fraser’s arguments in Ap-
pendix A were also particularly interesting and rele-
vant because they relate to determining the ancillary
values in(y, z) space for prediction. The approach in
Butler (1986) worked instead with orthonormal coor-
dinates that are locally orthogonal tos(y0, z).

Barnard (1986) also suggested a pivotal approach
to prediction, which is the dual procedure to the
parametric inference in Section 4.2. Working with
the location–scale model, his approach also used the
marginalization step to remove dependence on all para-
meters to determine the marginal distribution of an an-
cillary a(y, z). This ancillary is now transformed into
predictive pivotp(y, z) and predictive ancillaryq(y),

with the latter quantity offering evidence for model
criticism derived from datay. The conditional distribu-
tion of p(y, z) givenq(y) evaluated at the datay = y0

now provides the predictive extrapolation.
Based on the discussion above, it seems likely that

the inferential structure proposed by Professor Fraser
can neatly accommodate the dual problem of predic-
tion. Other predictive approaches that attempted to
extend higher-order asymptotic methods beyond the
restriction of sufficiency include Butler (1989), Vidoni
(1995) and Barndorff-Nielsen and Cox (1996). The
first paper suggested that conditioning on the proper
reference set [e.g., the maximum likelihood estimator
(MLE) θ̂ (y0, z)] provides a more generally applicable

principle than the restriction due to predictive suffi-
ciency. For an overview of this issue and others, see
Bjørnstad (1996).

3. GAMMA EXPONENTIAL EXAMPLE

An example is given that is similar to that considered
by Pedersen (1981). The example is used to consider
(and partially answer) the following questions and
speculations:

1. What sort of ancillary, affine or likelihood, should
be used for inference aboutθ and in what format?

2. Which ancillary is “more ancillary”?
3. What are the relationships between these ancillaries

and the “sensitive” or ancillary directions suggested
in the paper? Are there any deeper connections
between the results of this paper and the suggestions
of Barndorff-Nielsen (1990)?

3.1 Model and Ancillaries

A (2,1) curved exponential family may be defined
by supposing thaty1 ∼ Exponential(θ) independently
of y2 ∼ Exponential(eθ ). To keep numerical computa-
tion simple, suppose the data arey0

1 = 1 andy0
2 = 2.

The MLE is

θ̂0 = LambertW(1/2) � 0.3517

and solves an equation which, when rearranged, allows
y2 to be expressed in terms ofθ̂ andy1 as

y2 = e−θ̂ (1/θ̂ + 1− y1).(1)

Two ancillaries are considered. The first is an affine
ancillary a as discussed in Efron and Hinkley (1978)
and Barndorff-Nielsen (1990), and sometimes named
after the former authors. If vectory = (y1, y2)

′ has
meanµθ and covariance�θ , then the affine ancillary
is computed as the MLE of the Studentized vector or

a2 = (y − µ
θ̂
)′�−1

θ̂
(y − µ

θ̂
)

(2)
= (θ̂y1 − 1)2 + (eθ̂y2 − 1)2

anda0 � 1.954. To compute thep∗ density for condi-
tionality resolutionθ̂ |a, the transformation(y1, y2) →
(θ̂ , a) needs to be inverted from (2), which leads to

y1 = 1/θ̂ − |a|/
√

1+ θ̂2(3)

with y2 given in (1).
The second ancillary is a likelihood ancillary. It is

defined through the process of completing the(2,1)

curved exponential family so it is(2,2) with the
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addition of another parameterχ > 0. This is most
simply done by assuming thaty2 ∼ Exponential(χeθ)

with the valueχ = 1 creating the curved exponential
family. The likelihood ancillary is now based on the
likelihood ratio test thatχ = 1. If la(θ,χ) denotes the
log-likelihood under the alternative, then the ancillary
aχ assumes the value

1
2a2

χ = la(θ̃ , χ̃ ) − la(θ̂ ,1)

= − ln θ̂ + 1/θ̂ − 1− (1− θ̂ )y1(4)

− lny1 − ln(1/θ̂ + 1− y1),

where(θ̃ , χ̃ ) denotes the MLE under the alternative.
In (4), any dependence ony2 has already been replaced
with y1 using (1). Let the sign ofa0

χ be sgn(χ̃ − 1) =
sgn(0.3517− 1) = −1 so thata0

χ � −1.546.

3.2 Which Ancillary and in What Format?

The format to be used for inference is thep∗ density.
It uses the likelihood shape to approximate the condi-
tional density ofθ̂ |a; θ as the normalized(dθ̂) version
of

p†(θ̂ |a; θ) =
√

j
θ̂
/(2π)exp{l(θ; θ̂ , a) − l(θ̂; θ̂ , a)}.

In the case of the conditioning on the observed affine
ancillarya0, plots ofp∗ (dashed), p† (dotted) and the
true densityf (θ̂ |a0; θ) (solid) are shown in Figure 1
and are obtained through the inverse transformation
θ̂ |a0 → (y1, y2) given in (3). Asθ moves fromθ = 4
(top left),2,1, to 1/2 (bottom right), the accuracy of
p∗ andp† diminish markedly.

Compare this with the use ofp∗ andp† when condi-
tioning instead on the observed likelihood ancillarya0

χ .

Figure 2 shows the same quantities as its counterparts
in Figure 1 as concerns the assessment of accuracy of
p∗ andp† for their respective true densities. However,
the true conditional densities are different in the two
sets of plots since Figure 1 fixesa = a0, while Figure 2
fixesaχ = a0

χ . Fixing a0
χ rather than affinea is a con-

siderably more difficult computation since the inverse
transformationθ̂ |a0

χ → (y1, y2) requires selecting the
correcty1 roots in (4) over a fine grid of̂θ values. The
true joint density of(θ̂ , aχ) has also been computed
the same way but with the additional complication of
a Jacobian determination based on implicit differentia-
tion.

3.3 Which Ancillary Is “More Ancillary”?

The normalization constants(dθ̂) of the joint den-
sities f (θ̂, a0

χ ; θ) and f (θ̂, a0; θ) provide the mar-
ginal densitiesf (aχ ; θ) andf (a; θ), which should not

FIG. 1. Densities for θ̂ in the gamma exponential example when
conditioning on the affine ancillary a0 = 1.954. The plots show a
range of accuracy from good to poor and depict the exact density
f (θ̂ |a0; θ) (solid ), p†(θ̂ |a; θ) (dotted ) and p∗(θ̂ |a; θ) (dashed )
for θ = 4,2,1 and 1/2, respectively.

FIG. 2. Densities for θ̂ when conditioning on the likelihood ancil-
lary a0

χ = −1.546. In each plot, f (θ̂ |a0
χ ; θ) (solid ), p†(θ̂ |a0

χ ; θ)

(dotted ) and p∗(θ̂ |a0
χ ; θ) (dashed ) are shown.



354 D. A. S. FRASER

FIG. 3. Marginal likelihood plots for f (a0
χ ; θ) (solid ) and

f (a; θ) (dashed ) versus θ , where a0
χ and a are the likelihood and

affine ancillaries, respectively.

show extraordinary dependence onθ if a andaχ are
“good ancillaries.” Figure 3 plotsf (a0

χ ; θ) (solid) and
f (a0; θ) (dashed) versusθ. These plots show the mar-
ginal evidence aboutθ contained in each of the ob-
served ancillaries. The observed likelihood ancillary
is clearly more ancillary as revealed by the compari-
son in the right plot. All numerical computations for
the likelihood ancillary here and in the previous sub-
section used the grid̂θ ∈ {0.02(0.04)9.98,10 1

16(
1
16)12,

121
8(1

8)16}. The superior performance of the likelihood
ancillary was previously suggested in the asymptotics
of Barndorff-Nielsen and Wood (1996). This superior
performance can now be confirmed using a sample size
of n = 1 for this dataset and model.

3.4 “Sensitive” Directions, p Value Computations
and r ∗ Connections

For this example, the ancillary direction is computed
as

v′ = −(y1/θ̂, y2),

which leads to the data dependent parameterization

ϕ(θ) = θy1/θ̂ + eθy2.

Computation of the standardized maximum likelihood
departure value leads to

q(θ) = sgn(θ̂ − θ)|y1(1− θ/θ̂) + y2(e
θ̂ − eθ )|

(5)
· √j

θ̂
|y1/θ̂ + eθ̂y2|−1,

where

j
θ̂

= 1/θ̂2 + 1/θ̂ + 1− y1.

At this junction, quite remarkably, it can be shown for
any data(y0

1, y0
2), that q(θ) is analytically the same

as the value for the standardized maximum likelihood

TABLE 1
p values p0(θ) for the various methods listed in the rows

θ

Methoda 1/2 3/4 1 3/2 2

Exact (trapezoidal) 0.189 0.0689 0.0194 0.03489 0.05120
(3.14) withq 0.238 0.0864 0.0239 0.03583 0.05140
Skovgaard 0.259 0.0990 0.0289 0.03796 0.05219
Normal 0.325 0.130 0.0392 0.02112 0.05315

a“Exact” refers to trapezoidal summation for Pr(θ̂ < θ̂0|a0
χ ; θ),

(3.14) accounts for the sensitive direction as well as Barndorff-
Nielsen’s (1990) value ofu, Skovgaard (1996) computesu using
the author’s approximate sample space derivatives and Normal uses
the normal approximation tor in (3.11).

departureu suggested in Barndorff-Nielsen (1990)
as (1.4) and computed as in (5.5). We return to the
implications of this equivalence below, but first pause
to tabulate somep values in Table 1.

Even for thisn = 1 setting, the sensitive direction
approach and that using Skovgaard’s (1996) approx-
imate sample space derivatives show remarkable ac-
curacy, particularly for largeθ. Taking the inference
for θ further, the exact confidence interval by inverting
Pr(θ̂ < θ̂0|a0

χ ; θ) gives (0.0276,0.664) while (3.14)
gives (0.0446,0.717) and Skovgaard’s method gives
(0.0478,0.748).

The analytical equivalence of Fraser’sq(θ) with u

from Barndorff-Nielsen’s (1990) approach, which ex-
plicitly conditions ona0

χ, suggests that the sensitive
direction in which the directional derivative is taken
in (3.13) to defineϕ(θ) is tangent to the manifold
{(y1, y2) :aχ(y1, y2) = a0

χ }. This is indeed the case.
Implicit differentiation of (1) to determine∂y2/∂y1,

holdinga0
χ fixed, requires the determination of∂θ̂/∂y1

through (4). After long computations,

∂y2/∂y1 = θ̂y2/y1 = v2/v1,(6)

the direction ofv. At the data this slope is 0.7035.
Is this example merely a coincidence or are there any

greater generalities to these agreements? To be tangent
to the likelihood ancillary curve, the curve must be
a solution to the differential equation in (6), which
is complicated by the dependence ofθ̂ on (y1, y2).
General differential equation theory (see Ross, 1974,
Theorem 1.1) only guarantees a local solution to (6)
at the data, but this is all that is required for a local
ancillary. This seems to say that the sensitive direction
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approach has greater mathematical generality when a
likelihood ancillary does not exist. If it does exist,
when is the sensitive direction equal to or “close”
to the direction of the likelihood ancillary curve? To

what extent can the equivalence between Fraser’sq(θ)

and Barndorff-Nielsen’su be asserted with or without
nuisance parameters in curved exponential families or
in other classes of models?

Comment
Ib M. Skovgaard

INTRODUCTION

Fraser is to be thanked for his persistence in empha-
sizing the importance of conditional inference and an-
cillarity. A quick glance at the reference list reveals
not only his immense stamina, but also the moderate
amount of support from others. A few have taken the
theory further, first of all Barndorff-Nielsen, but mainly
in terms of asymptotic solutions while still leaving the
question whether conditional inference given ancillary
statistics has any logical justification. Despite scattered
attempts to resolve this problem of frequentist infer-
ence, it seems that the majority of the statistical com-
munity has given up on the idea after some severe
knock-outs around 1960. I am referring first to Basu
(1959), who pointed out the lack of unique maximal
ancillaries, thus raising not only the question which
one to condition on, but more importantly why the ar-
gument for conditioning on one does not apply equally
well to the other. Second I refer to Birnbaum (1962),
who showed that conditioning on ancillaries as a prin-
ciple together with basing inference on sufficient statis-
tics implies the likelihood principle, which essentially
is only met by orthodox Bayesian inference.

Despite these difficulties and the lack of general ap-
proval of any kind of ancillarity principle, condition-
ing on (some) ancillaries is used frequently in practice,
almost unconsciously. In a clinical trial running over
a certain period and allocating the incoming patients
randomly to one of two treatments, say, the sample
size is not given in advance and is an ancillary sta-
tistic. Few people would hesitate to consider sample
size fixed when analyzing the data, and indeed it does
seem very artificial to take into account that the trial
might have comprised 100 patients if only 50 partici-
pated. This problem is conceptionally almost identical

Ib M. Skovgaard is Professor, Department of Natural
Sciences, The Royal Veterinary and Agricultural Uni-
versity, DK-1871 Frederiksberg C, Denmark (e-mail:
ims@kvl.dk).

to Cox’s artificially looking measuring instrument ex-
ample. The only difference is that the distribution of
the number of patients is not known, but this is hardly
important for the argument and the distribution could
probably be modeled reasonably if it were considered
of importance.

My point is that problems of conditioning are not
artificial philosophic problems of limited practical rel-
evance, but should be considered more seriously in sta-
tistical practice. Fraser keeps reminding us of this, and
on the main issues I agree entirely. I also agree that
he has some good and very accurate asymptotic solu-
tions through the methods he describes. There are still
open problems and questions, however, conceptionally
as well as asymptotically, and I do not find his solu-
tions and arguments entirely convincing in all respects
as I will try to substantiate below.

Initially let me point out, though, that my com-
ments deal entirely with problems of frequentist infer-
ence. Bayesian inference (in its orthodox setting with a
proper prior) avoids these problems and contradictions.
In my view, Bayesian inference of this kind is obvi-
ously correct, but the problem is whether you can come
up with a prior on which you want to base your conclu-
sions. My experience is that this is rarely the case, and
it would be a pity to give up the idea that reasonable
inference can be made without a prior. The ancillarity
problem is a central theme in the pursuit of the logic of
such inference.

CONDITIONAL OR OPTIMAL INFERENCE?

If you believe that this is a relevant question, then
you are already defeated if you support conditional
inference. The point is that if you behave sensibly,
nobody should be able to convince you that it is not
optimal. In other words, if conditioning on ancillar-
ies is the proper way, then this ought to drop out as
an optimal method. Presently this is unfortunately not
so. The question arises then whether the criteria used
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for optimality are reasonable. Fraser suggests in Sec-
tion 5.3 the modeling criteria I–III to help resolve the
problem. In my taste these are too vague and impre-
cise to be of much help. To make a model for mea-
surements that were made and not for measurements
that were not made sounds reasonable, but to what ex-
tent does it restrict the modeling? Does it mean that
censoring mechanisms, sample selection and biologi-
cal variation (beside measuring errors) should not be
modeled, for example? Some of Fraser’s examples in
Section 6 illustrate the problem with the limitation of
his principles.

The best attempt I have seen so far toward a reso-
lution of the problem is a recent article by Sundberg
(2003) that quantified the intuitive feeling that, in the
measuring instrument experiment, for example, therel-
evant variance is the one attached to the instrument we
have actually used. Before reviewing this idea, let me
digress a little to some simple basic considerations that
must be kept in mind.

Several different probability distributions that de-
scribe the same events can all be correct, but some are
more useful or more informative than others. Consider,
for example, the probability that a man who belongs to
a particular age group dies of a heart attack within a
year. The frequency in the male population at that age
is one answer, and indeed, if you check the distribu-
tion, it will turn out to be correct. Another distribution
has probabilities either 1 or 0 foreach individual: 1 if
that person dies of a heart attack; 0 if not. Again this
is a correct probability distribution and it is perfectly
accurate, but it is not useful since we cannot use it for
prediction. Suppose, however, that we could measure
some variable, say cholesterol in the blood, that could
distinguish to some extent between those who die and
those who do not. Then we could ascribe probabilities
closer to 1 or 0 than the population average and in this
way bring us part of the way toward the accurate dis-
tribution. No doubt that this distribution is both more
accurate and more useful than the population average.
A quantification of the increased precision is the vari-
ance of the prediction probabilities,Pi , wherei labels
the individual. LetZi denote the indicator of death by
heart attack, letp denote the population average and
assume that E(Z|P ) = P , according to the requirement
of “correctness.” Then the squared prediction error is

SPE= E(Z − P )2 = p(1− p) − varP,

which decreases with increasing variance of the predic-
tor.

Now we can leap to the confidence intervals which
predict the event that the parameter is inside the inter-

val with a certain probability, namely the confidence
level, say 0.95. While this may be correct by a certain
method, other methods might give more useful pre-
dictors. Here is where the conditioning on ancillaries
comes in: It gives more useful prediction of the de-
gree of confidence. This is intuitively obvious in Cox’s
example with the two measuring instruments. The “op-
timal” confidence interval, by whatever current opti-
mality criterion, does not agree with the conditional
confidence interval which uses the standard deviation
of the measuring instrument actually used. Then, just
as we can point out that some person with high choles-
terol has a higher risk of heart attack, we can point
out that some of the optimal confidence intervals have
higher or lower chance of capturing the parameter.
Such improved predictions can be made uniformly in
the parameter and based on the same information that
was used to construct the confidence intervals, so it
ought to be clear that conditioning in this case is more
useful, if not more correct. Now the hope is that the
optimal method, in terms of usefulness (or relevance
in the setting of Sundberg’s paper), “automatically” is
the conditional one, so there is no need for principles
of ancillarity, only for optimizing with respect to the
appropriate criteria.

There are several beneficial side effects of optimiz-
ing rather than conditioning on ancillaries as a matter
of principle. First of all, it avoids the contradictions
pointed out by Birnbaum and Basu, as mentioned in
the Introduction. Second, a reasonable optimality cri-
terion will be continuous with respect to the model, so
that slight model changes will not alter the inference
dramatically and so that ideally approximate (asymp-
totic) ancillarity may drop out as an (nearly) optimal
result even if no exact ancillary has been found. This
might be the case even for discrete data for which the
current higher-order asymptotic approximations do not
hold.

The above scenario is my understanding of the
idea of Sundberg’s paper, which has other arguments
and a lot more detail; in particular, the superiority
of conditional variance as a predictor of the actual
squared error of the estimate. There are still open
questions such as whether mean squared error of
squared prediction error is the proper quantity to
optimize and how to optimize tests and confidence
intervals, but I think Sundberg’s paper presents a
breakthrough with regard to convincing arguments for
conditioning.
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ASYMPTOTIC SOLUTIONS

Since the paper by Barndorff-Nielsen (1986) the
main problem in deriving highly asymptotically accu-
rate p values has been to construct an (asymptotic)
ancillary statistic that, jointly with the maximum like-
lihood estimate, is sufficient and for which we can
calculate the local changes of the likelihood function
and its first derivative with an infinitesimal change of
the maximum likelihood estimate, not only at the ob-
served value, but at any (hypothetical) value of the
estimate. Quite remarkably these so-called sample–
space derivatives are all that is needed to calculate the
highly accurate approximations to the tail probabilities
that constitute thep values. Let me contrast Fraser’s
way of achieving this with my own (Skovgaard, 1996),
starting with the latter. Since we need only the local
change of the likelihood function, it suffices to know
the derivatives of a sufficient statistic. A representation
of this is the (infinite) number of derivatives of the log-
likelihood function at that point, the first one being the
score function, which vanishes at that point, of course.
The derivative of the score function with respect to
the estimate at this point is necessarily the observed
Fisher information. Now the changes of all derivatives
of higher order may be approximated by regressing
them on the score statistic. This gives all information
that is needed and provides an explicit solution. Fraser
deliberately discards the fact that local changes are re-
quired only for a sufficient statistic and describes in-
stead the local changes of the entire set of observations.
While this, at first, may seem unnecessarily compli-
cated, it does make natural constructions more readily
available, essentially by keeping the quantiles in the
estimated distribution fixed, as he shows in the present
paper and as discussed below. Furthermore, since a so-
lution is obtained this way, the construction of ancil-
lary directions on the (bigger) entire observation space
can hardly be said to be a drawback. While my sugges-
tion is fairly easy and general, Fraser’s is undoubtedly
better suited for location models and some other group
models. It should be noted, though, that for group mod-
els the local changes of the log-likelihood are also
fairly easily written down exactly given the maximal
invariant ancillary statistic, thus providing the same ex-
act sample space derivatives as obtained by Fraser.

There is little doubt that Fraser’s suggestion of
sample-space derivatives, [see, e.g., (4.12)], in combi-
nation with the Lugannani–Rice approximation (3.14)
or the Barndorff-Nielsen approximation (3.15), pro-
vides highly accuratep values for a large number of

situations. Also, I would be surprised if they turned
out to be much different in practice from alternatives
along the same direction, such as ther∗-type statis-
tics given by Jensen (1997) and Skovgaard (1996) or
the original and principal, but less operational, ver-
sion by Barndorff-Nielsen (1986). So the following
queries really concern details regarding the principal
differences between the various approaches. First a lit-
tle more background on Fraser’s method.

Fraser argues that the pivotsF(yi, θ) should be kept
constant (at least locally) along any level surface of
the conditioning statistic as a function of the maximum
likelihood estimate,θ̂ , when this is plugged into the
pivot; see the equation defining the tangent vectors
v1 and v2 just above (4.12) and recall the analogy
with the location models. This has some good sides:
This pivot is a natural choice which is close to the
measurement process in a heuristic sense and its use
to define the tangent directions is an excellent way to
make use of a pivot, after many years of less successful
attempts going back to Fisher’s arguments in favor
of fiducial inference. The method also raises some
questions, however.

The first question is a bit technical and has to do
with the existence of the ancillary statistic and whether
it agrees with the statistic(F (y1; θ̂), . . . , F (yn; θ̂ )),
considering only the case of independent replications.
This statistic formally gives the tangent directions
above (4.12) and Fraser’s subsequent reference to
Fraser and Reid (2001) suggests that the same tangent
vectors arise from their approximate ancillary. Hence
I deduce that their approximate ancillary statistic is
the vector of quantiles in the estimated distribution,
or am I wrong about that? If so, my problem is
then whether conditioning on this statistic may not
exclude certain parameter values or even, in some
cases, exclude all but one, such that the conditional
distribution is degenerate. In other words, the set of
observation vectors that gives rise to a certain value of
the maximum likelihood estimate, sayθ1, corresponds
to a certain set of quantile vectors, but this will not in
general be the same set of quantiles that correspond to
another estimateθ2, I suspect. So what is approximate
here, the ancillarity of the statistic, the tangent vectors
of the approximate ancillary statistic, or the existence
of the statistic so that it is merely a technical device for
obtaining unconditionalp values of high quality?

The second question regards Fraser’s claim that we
hardly need sufficiency (Section 3.6 and Appendix A),
because whatever we may achieve by sufficiency re-
ductions may also be achieved by conditioning. In the



358 D. A. S. FRASER

same vein one might argue that conditionalp values
are superfluous because they are also valid uncondi-
tionally and may therefore be obtained without condi-
tioning. I do not agree with either of these arguments:
sufficiencyrestricts the choice of method in a way that
conditioning does not and conditioning restricts the
permissible results compared to unconditional meth-
ods, and such restrictions may be useful because they
guide our method of inference.

This leads to the third question: Does thep value as
obtained here by Fraser depend on the data in other
ways than through the sufficient statistic? I suspect

that it may and that we do not quite agree whether
this is an advantage. I highly respect the viewpoint
that aspects other than the model should be taken into
account (e.g., robustness considerations), but whether
such aspects should enter the model-based part of the
inference directly is another matter.

Let me conclude by emphasizing that the foregoing
comments are of little concern compared with the
excellent results obtained. I congratulate Fraser for
achieving these results along the lines of conditioning
and ancillarity that he has stubbornly pursued since the
early days of his scientific career.

Comment
Rudolf Beran

The concepts of sufficiency, ancillarity and condi-
tional inference are parts of a classical statistical theory
that treats data as a random sample from a probabil-
ity model with relatively few parameters. In discussing
Don Fraser’s paper, I will consider the place of these
and related concepts in the evolution of statistics.

1. THE EVOLUTION OF STATISTICAL THEORY

Reliance on probability theory in statistical writing
spans the spectrum from none to fixed effects models to
random effects models to Bayesian reasoning. One fac-
tor is the extent to which an author regards probability
as a feature of the natural world. For a Bayesian, prob-
ability measures the strength of opinions, which are
modelled by a sigma algebra. At the other end of the
spectrum, illustrated by Tukey’s (1977)Exploratory
Data Analysis, data-analytic algorithms are basic real-
ity and probability models are hypothetical constructs.

A second factor is the technological environment
in which an author is writing. Until the late 1950s,
the tools available to a statistician consisted of mathe-
matics, logic, mechanical calculators and simple com-
puters. Because calculation was laborious, writers on
statistical theory thought in terms of virtual data gov-
erned by probability models that involved relatively
few parameters. Indeed, the great intellectual advances
made in probability theory during the twentieth century

Rudolf Beran is Professor, Department of Statistics,
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made this approach the technology of choice. Thus,
the hotly debated statistical theories formulated in
Wald’s (1950)Statistical Decision Functions, Fisher’s
(1956)Statistical Methods and Scientific Inference and
Savage’s (1954)The Foundations of Statistics shared
a common reliance on relatively simple probability
models.

After 1960, results on weak convergence of proba-
bility measures provided the technology for major de-
velopment of asymptotic theory in statistics. Notable
achievements by 1970 included (a) the clarification of
what is meant by asymptotic optimality, (b) the under-
standing, through Le Cam’s work, that risks in sim-
ple parametric models can approximate risks in certain
more general models, (c) the discovery of supereffi-
cient estimators whose asymptotic risk undercuts the
information bound on sets of Lebesgue measure zero
and (d) the remarkable discovery, through the James–
Stein estimator, that superefficient estimators for pa-
rameters of sufficiently high dimension can dominate
classical estimators globally. These findings set the
stage for the vigorous subsequent development of ro-
bustness, of nonparametrics and of biased estimators
in models with many or an infinite number of para-
meters. Theoretical study of Efron’s (1979) bootstrap
benefited from the evolution in asymptotic theory. In
turn, the bootstrap and iterated bootstrap provided in-
tuitive algorithms for realizing in statistical practice the
benefits of erudite asymptotic improvements.

Mathematical logicians investigating the notion of
proof had greatly refined the concept of algorithm by
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mid-century (cf. Berlinksi, 2000). Through the tech-
nological development of digital computers, program-
ming languages, video displays, printers and numerical
linear algebra, stable computational algorithms en-
riched the statistician’s toolbox. In consequence,
a wider range of statistical procedures, numerical and
graphical, became feasible. Case studies and experi-
ments with artificial data offered nonprobabilistic ways
to understand the performance of statistical proce-
dures. The fundamental distinctions among data, prob-
ability model, pseudorandom numbers and algorithm
returned to prominence. The extent to which determin-
istic pseudorandom sequences can imitate properties of
random variables received more attention (cf. Knuth,
1969). It became clear once again that data are not
certifiably random. Computing technology provided a
new environment in which to extend and reconsider
statistical ideas developed with probability technology.
The bootstrap is a case in point.

From our present technological standpoint, statistics
is the development, study and implementation of algo-
rithms for data analysis.

How is a data-analytic algorithm to be understood?
One answer, offered by Brillinger and Tukey (1984),
addressed the gap between statistical theory and data-
analytic techniques:

If our techniques have no hypotheses, what
then do they have? How is our understand-
ing of their behavior to be described?
As a generalization of an umbra within
a penumbra. Here there are at least three
successively larger regions, namely:

1. An inner core of proven quality (usually
quite unrealistically narrow). . . .

2. A middle-sized region of understanding,
where we have a reasonable grasp of our
technique’s performance. . . .

3. A third region, often much larger than
the other two, in which the techniques
will be used. . . .

For example, the inner core of understanding could be
an analysis under a simple probability model; the mid-
dle core could be asymptotic analyses and simulations
under substantially more general probability models
together with salient case studies; and the outer core
would contain data analyses that use the techniques. In
reality, data consist of scientific and other contexts as
much as numerical observations.

For some statistical problems, such as classification
of handwritten digits, probability models may not gen-
erate effective procedures. Breiman (2001) observed:

If our goal as a field is to use data to solve
problems, then we need to move away from
exclusive dependence on data models and
adopt a more diverse set of tools.

His paper emphasized algorithmic modeling tech-
niques that treat the data mechanism as essentially un-
known.

How are data-analytic algorithms to be implemen-
ted? One answer, offered by the Omega-hat project
(www.omegahat.org), focuses on open-source devel-
opment of the next generation of statistical comput-
ing paradigms, environments and software. The project
provides an optionally typed language that extends
both S and JAVA, and a customizable, multithreaded
interpreter; it encourages participation by those want-
ing to extend computing capabilities in one of the
existing languages for statistical computing, by those
interested in distributed or web-based statistical soft-
ware and by those interested in the design of new sta-
tistical languages.

This answer recognizes that software provides a
powerful new medium for expressing statistical ideas.
The Introduction to McLuhan’s (1964) bookUnder-
standing Media: The Extensions of Man began:

In a culture like ours, long accustomed to
splitting and dividing all things as a matter
of control, it is sometimes a bit of a shock
to be reminded, in operational and practical
fact, that the medium is the message.

In other words, the nature of a medium has at least
as much effect on human activity as does its content,
which itself is just an older medium that is being
expressed through the newer medium. In this manner,
leading edge statistical computing environments stand
to influence core ideas about statistics.

Fraser’s paper examines pros and cons of conditional
versus unconditional inference in classical probabil-
ity models for data where the parameter of interest
is one-dimensional. His examples indicate that these
approaches can yield procedures with differing prob-
abilistic properties. A diversity of answers is to be
expected once we recognize the difference between
data and probability model. In my discussion, I will
consider (a) the construction of simultaneous confi-
dence sets, a problem that intrinsically has multiple
answers with different properties, and (b) estimation
of the means in a two-way layout with one observa-
tion per combination of factor levels, a typical mul-
tiparametric problem where neither sufficiency nor
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ancillarity is of immediate help. I will argue that,
within the statistical environment created through tech-
nological advances in asymptotic theory and comput-
ing, the role of ancillarity and sufficiency is narrow.

Narrow is not the same as none. For example,
Hájek’s convolution theorem in locally asymptoti-
cally normal families has a form in which asymp-
totic sufficiency, asymptotic ancillarity and Basu’s
theorem suggest a heuristic interpretation of necessary
and sufficient conditions for consistency of paramet-
ric bootstrap distributions. The interested reader is re-
ferred to Beran (1997) and, for a tangentially related
nonparametric discussion, to van Zwet and van Zwet
(1999).

2. SIMULTANEOUS CONFIDENCE SETS

Coverage probability under aprobability model does
not, by itself, determine a confidence set. A further
design goal, whether minimum expected geometrical
size or equal conditional coverage probabilities, is
needed to construct the confidence set. Geometrical
size may be of interest if the confidence set is to
serve as a set-valued estimator of the parameter. Equal
conditional coverage probabilities may be of interest
if the conditioning variable reflects a real feature in
the data. An experienced statistician selecting a data-
analytic algorithm will consider the context, and aims
of the analysis as well as probability models.

The construction of simultaneous confidence sets
has raised issues analogous to those in Fraser’s second
section. Consider a statistical model in which a sam-
pleXn of sizen has joint probability distributionPθ,n,
whereθ ∈ � is unknown. The parameter space� is
an open subset of a metric space, whether of finite or
infinite dimension. Of interest is the parametric func-
tion τ = T (θ), whereT is a specified function on�.
Suppose thatτ hascomponents {τu = Tu(θ) :u ∈ U },
U being a metric space, which jointly determineτ . For
eachu, let Cu denote a confidence set for the com-
ponentτu. By simultaneously asserting the confidence
sets{Cu :u ∈ U }, we obtain a simultaneous confidence
setC for the components{τu}.

If the components{τu} are deemed logically similar,
the statistician may wish to construct the confidence
sets{Cu} in such a way that

Pθ,n[Cu � τu] is the same∀u ∈ U(1)

and

Pθ,n[Cu � τu, ∀u ∈ U ] = Pθ,n[C � τ ] = β.(2)

Property (1) is calledbalance. It reflects the wish that
the confidence setC treat the logically similar com-
ponentsτu in an even-handed way while controlling
the simultaneous coverage probability (2). The balance
constraint is a cousin to the equal conditional coverage
probability condition treated in Fraser’s second sec-
tion.

One general approach starts with aroot Rn,u =
Rn,u(Xn, τu) for each componentτu. The root may
or may not be an exact pivot. LetTu andT denote,
respectively, the ranges ofτu = Tu(θ) andτ = T (θ).
Every point inT can be written in the component form
t = {tu:u ∈ U }. The simultaneous confidence sets to be
considered are

C = {t ∈ T :Rn,u(Xn, tu) ≤ cu(β), ∀u ∈ U }.(3)

The technical problem is to devise critical values
{cu(β)} so that, to a satisfactory approximation,C is
balanced and has simultaneous coverage probabilityβ

for the{τu}.
Let Hn,u(·, θ) andHn(·, θ) denote the left-continu-

ous cumulative distribution functions (c.d.f.’s) ofRn,u

and of supu∈U Hn,u(Rn,u, θ), respectively. Ifθ were
known and the two c.d.f.’s just defined were continuous
in their first arguments, an oracle choice of critical
values for the component confidence sets would be
cu(β) = H−1

n,u[H−1
n (β, θ), θ]. The oracle component

confidence set

Cu = {tu ∈ Tu :Rn,u(Xn, tu) ≤ cu(β)}
(4) = {tu ∈ Tu :Hn,u(Rn,u, θ) ≤ H−1

n (β, θ)}
has coverage probabilityH−1

n (β, θ) for τu. The oracle
simultaneous confidence setC, defined through (3),
has coverage probabilityβ for τ by definition of
Hn(·, θ). In historically influential special cases, this
oracle construction can be carried out because neither
Hn,u norHn depends on the unknownθ .

EXAMPLE 1. Suppose thatXn has aN(Aγ,σ 2In)

distribution, where the vectorγ is p × 1 and the ma-
trix A has rankp. The unknown parameterθ = (γ, σ 2)

is estimated bŷθn = (γ̂n, σ̂
2
n ) from least squares theory.

Suppose that the root

Rn,u = |u′(γ̂n − γ )|/σ̂n,u,(5)

where u is a p-dimensional vector andσ̂ 2
n,u =

u′(A′A)−1uσ̂ 2
n . The roots{Rn,u} are identically distrib-

uted, each having at distribution, folded over at the
origin, with n − p degrees of freedom.

Suppose thatU is a subspace ofRp of dimensionq.
Then supu∈U Rn,u is a continuous pivot (cf. Miller,
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1966, Chapter 2, Section 2). In this instance, the
oracle balanced simultaneous confidence set defined
by (3) and (4) coincides with Scheffé’s simultaneous
confidence intervals for the linear combinations{u′γ :
u ∈ U }.

EXAMPLE 2. Specializing to a balanced one-way
layout, suppose thatU consists of all pairwise con-
trasts. The parameterγ is just the vector of means
in this case of the linear model. Then supu∈U Rn,u is
a continuous pivot (cf. Miller, 1966, Chapter 2, Sec-
tion 1). In this instance, the oracle balanced simulta-
neous confidence set defined by (3) and (4) coincides
with Tukey’s simultaneous confidence intervals for all
pairwise differences in means.

The exact pivots used by Tukey and Scheffé in con-
structing their respective balanced simultaneous confi-
dence intervals do not exist in most probability models.
However, bootstrap techniques enable more general
construction of simultaneous confidence sets that be-
have asymptotically like oracle simultaneous confi-
dence sets. Suppose thatθ̂n is a consistent estimator
of θ . Replacingθ by θ̂n in the oracle critical values
that appear in (4) yields bootstrap simultaneous confi-
dence sets for the{τu}. A Monte Carlo approximation
to the bootstrap critical values requires only one round
of bootstrap sampling. Computation of the supremum
over U may require further approximations when the
cardinality ofU is not finite. In practice, the case of a
finite number of components{τu} is both approachable
and important. Theorem 4.1 in Beran (1988) provides
sufficient conditions under which the bootstrap simul-
taneous confidence set is asymptotically balanced and
has asymptotic overall coverage probabilityβ.

The balance condition (1) on the simultaneous con-
fidence sets is a design element that can be modified
at will. Technically speaking, we could seek speci-
fied proportions among the componentwise coverage
probabilities. (I am not aware of a problem where this
would be useful.) The Tukey and Scheffé exact con-
structions and, more generally, the bootstrap construc-
tion are readily modified to handle this design goal. On
the other hand, balance has not been found compelling
in situations where the components{τu} are not logi-
cally comparable.

EXAMPLE 3. Given an independent identically
distributed sample from theN(µ,σ 2) distribution, it is
easy to construct a balanced simultaneous confidence
set of coverage probabilityβ for the pair(µ,σ 2). How-
ever, this is not a popular procedure, no doubt because
the parametersµ andσ 2 are logically dissimilar.

The discussion in this section illustrates how ad-
vances in asymptotic and computer technology have
given statisticians the ability to explore beyond the
statistical principles of earlier eras, principles whose
formulation captures, as in amber, the technological
environment of their times.

3. MULTIPARAMETRIC TWO-WAY LAYOUTS

Consider a high-dimensional two-way layout with
one observation per combination of factor levels.
Factor k has pk levels {tkj : 1 ≤ j ≤ pk}, which
may be nominal or ordinal. Such a two-way layout
is associated with experimental designs, gray-scale
images and gene chips. Subscripting is arranged so
that, for an ordinal factor, the factor levels are a strictly
increasing function of subscript. A simple probability
model asserts that

yij = mij + εij , 1≤ i ≤ p1, 1≤ j ≤ p2,(6)

where the{yij } are the observations,mij = µ(t1i , t2j )

and the errors{εij } are independent, identically distrib-
utedN(0, σ 2) random variables. The functionµ and
the varianceσ 2 are unknown. A basic problem is to
estimate the means{mij } andσ 2.

For the means in model (6), the minimum variance
unbiased (MVU) estimator and the minimum quadratic
risk location equivariant estimator both coincide with
the raw data. This estimator is unacceptable in contexts
such as image processing or estimation of response sur-
faces. Indeed, Stein (1956) showed that the MVU is
inadmissible under quadratic loss whenever the num-
ber of factor-level combinationsp = p1p2 exceeds 2.
Neither reduction by sufficiency nor by ancillarity sug-
gests a satisfactory estimator of the means in model (6).
A partial exception to this claim holds for the one-way
layout with nominal factor levels, but does not handle
ordinal factor levels (cf. Beran, 1996).

What does work is regularization, the use of a
constrained fit to the means that trades bias for variance
so as to achieve lower risk in estimating the means
of the two-way layout. Regularization is an estimation
strategy for models that have many or an infinite
number of unknown parameters—models that play a
prominent role in modern statistics. A regularized fit is
typically constructed in three stages. First, we devise
a candidate class of constrained mean estimators that
individually expresses competing prior notions about
the unknown means. Second, we estimate the risk of
each candidate estimator under a general model that
doesnot assume any of the prior notions in step one.
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Third, we define the regularized fit to be a candidate
fit that minimizes estimated risk or a related criterion.
This regularized fit may be interpreted as the trend
discernible in the noisy observations.

In the two-way layout, lety denote thep × 1 vector
obtained by ordering the observations{yij } in mirror
dictionary order: The first subscript runs faster than the
second subscript. Letm denote the similarly vectorized
means{mij }. Model (6) asserts that the distribution
of y is N(m,σ 2Ip). For k = 1,2, define thepk × 1
vectoruk and thepk × pk matricesJk,Hk by

uk = p
−1/2
k (1,1, . . . ,1)′,

Jk = uku
′
k,(7)

Hk = Ipk
− Jk.

For each k, the symmetric idempotent matrices
Jk andHk have rank (or trace) 1 andpk − 1, respec-
tively. They are thus orthogonal projections that de-
composeRpk into two mutually orthogonal subspaces
of dimensions 1 andpk −1. The identityIpk

= Jk +Hk

implies that

m = (Ip2 ⊗ Ip1)m
(8) = P0m + P1m + P2m + P12m,

whereP0 = J2 ⊗ J1, P1 = J2 ⊗ H1, P2 = H2 ⊗ J1 and
P12 = H2 ⊗H1. Equation (8) gives, in projection form,
the analysis of variance (ANOVA) decomposition of a
complete two-way layout of means into overall mean,
main effects and interactions.

Certain penalized least squares criteria generate a
class of candidate estimators by restricting, in varying
degree, the ANOVA decomposition. LetAk be any
matrix withpk columns such thatAkuk = 0. Examples
of such annihilator matrices areAk = Hk , suitable
when factork is nominal, andAk equal to thed th
difference matrix, suitable when factork is ordinal
with equally spaced factor levels{tkj }. Let Bk = A′

kAk

and defineQ1 = J2 ⊗ B1, Q2 = B2 ⊗ J1 andQ12 =
B2 ⊗ B1. Let A = {A1,A2} and letν = (ν1, ν2, ν12)

be any vector in[0,∞]3. The candidate penalized
least squares (PLS) estimator ofm is m̂PLS(ν,A) =
argminm S(m,ν,A), where

S(m,ν,A)
(9)

= |y − m|2 + m′(ν1Q1 + ν2Q2 + ν12Q12)m.

The symmetric matrixBk has spectral decomposi-
tion Uk�kU

′
k , where� = diag{λki} is diagonal with

0 = λk1 ≤ λk2 ≤ · · · ≤ λkpk
and the eigenvector ma-

trix Uk is orthonormal with first column equal touk.

Let fij (ν) = [1+ ν1λ1ie2j + ν2e1iλ2j + ν12λ1iλ2j ]−1,
whereek1 = 1 and all other{ekj } vanish. Vectorize the
{fij (ν)} in mirror dictionary order to obtain the vector
f (ν) and letz = (U2 ⊗ U1)

′y. It follows readily that
the candidate PLS estimator is the shrinkage estimator

m̂PLS(ν,A) = (U2 ⊗ U1)diag{f (ν)}z.(10)

Let ξ = (U2 ⊗ U1)
′m and let ave(h) denote the av-

erage of the components of vectorh. The normalized
quadratic risk of the (usually biased) candidate estima-
tor (10) is

p−1E|m̂PLS(ν,A) − m|2
(11)

= ave
[
f 2(ν)σ 2 + (

1− f (ν)
)2

ξ2].
The operations inside the average are performed com-
ponentwise, as in the S language.

Having devised a variance estimatorσ̂ 2 by some
form of pooling, say, we may estimate the risk (11) by

r̂(A, ν)
(12)

= ave
[
f 2(ν)σ̂ 2 + (

1− f (ν)
)2

(z2 − σ̂ 2)
]
.

This is just Stein’s unbiased risk estimator withσ 2

replaced byσ̂ 2. For a specified classA of annihilator
pairsA, we define theadaptive PLS estimator ofm to
be the candidate PLS estimator with smallest estimated
risk:

m̂PLS= m̂PLS(ν̂, Â)
(13)

where(ν̂, Â) = arg min
(A,ν)∈A×[0,∞]3

r̂(A, ν).

This adaptive estimator is an empirical approximation
to the oracle candidate PLS estimator that minimizes
the unknown risk (11) over(A, ν) ∈ A × [0,∞]3.

Computational algorithms, case studies, and multi-
parametric asymptotics for̂mPLS were developed by
Beran (2002). Under model (6), subject to restrictions
on the richness of the annihilator classA and to as-
sumptions that ensure consistency ofσ̂ 2, the risk of
the adaptive PLS estimator̂mPLS converges to that of
the oracle candidate estimator as the number of factor-
level combinations tends to infinity. By construction,
this limiting risk cannot exceed that of the MVU esti-
mator. In case studies, it is not unusual for the adap-
tive PLS estimator to reduce risk by a factor of 3 or
more over that of the MVU estimator. For two-way lay-
outs with nominal factors, the adaptive PLS estimator
generated byAk = Hk essentially coincides with the
multiple shrinkage estimator studied by Stein (1966).
For two-way layouts with ordinal factors, the adaptive
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PLS estimator based on local polynomial annihilators
can be strikingly more efficient than the MVU estima-
tor and is akin to spline fits in two-way functional data
analysis.

The foregoing discussion of the two-way layout
illustrates a technology developed over the past five
decades for better estimation in multiparametric and

nonparametric models. The role of sufficiency and
ancillarity has been inconsequential in this substantial
portion of modern statistics.
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Rejoinder
D. A. S. Fraser

1. INTRODUCTION

My appreciation and thanks go to the reviewers for
their thoughtful and careful comments on ancillaries
and conditional inference. It is a special delight to be
able to participate further in ongoing discussion of the
topics.

As part of this, I express my sincere thanks to the
Editor, George Casella, for advice on the final versions
of the paper and for arranging discussants who have a
wide spectrum of views. I wish also to acknowledge the
very large contributions of the previous Editor, Leon
Gleser, for his encouragement over many decades to
bring to written form an examination of ancillaries and
conditional inference; indeed his support stems from
his days as a graduate student at Stanford, where I had
the good fortune and opportunity to argue closely with
him.

The three discussants express very different views
with very little overlap of the points they raise. Rudy
Beran expresses the view that “statistics is the develop-
ment, study and implementation of algorithms for data
analysis.” While I fully share Rudy’s enthusiasm for
such data algorithms and their importance, I hesitate
on such a catholic view that the whole of statistics is
algorithms. Indeed the claim is not dissimilar to that
of decision theory in the mid-twentieth century, that
statistics is just deductive behavior or the application
of decision rules: just change “data algorithm” to “de-
cision algorithm.” The escape from that decision the-
ory philosophy is only partial at best and perhaps an
overemphasis on data algorithms would assist the es-
cape. Surely there is a large place for determining what
is known in any context of interest and for not being
pressed into such extreme discipline directions. Indeed
it is now possible in some generality to report the total

inference information from a model-with-data investi-
gation; see Sections 2 and 3.

Ron Butler enquires concerning predictive inference
and the extent to which the conditioning methods
can be applied. Clearly they can be applied, and
one direction involves treating a probability for a
future observation as just a parameter of interest
for the original model and then proceeding with the
conditioning approach.

Ron also examines in detail how the sensitivity
directions approach works in comparison with some
alternative ancillary methods. He does find that they
uncover familiar ancillaries, thus allowing a more
predictable and mechanical access to the methods
based on such ancillaries. Of course, in addition, the
sensitivity approach provides an easy and direct access
to the new high accuracy approximation methods,
which are thus available quite generally for wide areas
of application.

He then reports on a simulation to compare various
methods for a simple exponential example and finds
that they compare favorably with an exact calculation.
We find that the exact distribution for the conditional
case can be examined directly and present simulation
results that show the new methods are even closer to
the truth than Ron’s calculations suggest; see Sections
4 and 5.

Ib Skovgaard notes the widespread lack of profes-
sional statistical approval for conditioning and that, de-
spite this, conditioning is in fact frequently used in
practice. He provides a persuasive example. While he
does not directly address the stigmata connected with
conditioning or the social origins of the stigmata, he
does speak positively of many aspects of condition-
ing, and indeed asks whether or how a conditioning
imperative might be derived from some optimality ap-
proach. He then comments on aspects of conditioning,
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and raises insightful and serious questions about many
aspects of the recommended methodology; see Sec-
tions 6–9. Section 10 then provides a brief overview.

2. STATISTICS IS . . . ALGORITHMS FOR
DATA ANALYSIS

Data-analysis algorithms are undoubtedly making
major contributions to statistical methods and will con-
tinue to do so, often in areas neglected or underexam-
ined by traditional mainstream statistics. However, the
suggestion that they form all of statistics seems more
a measure of the enthusiasm and optimism of those in-
volved. In particular, the implied suggestion that sta-
tistical models and data have largely been superceded
by the algorithms neglects immense important areas of
statistics. Consider the use of many generalized linear
models or the analysis of categorical data arrays which
just now are amenable to the recent higher-order like-
lihood methods. Would you want the possible benefits
of a new drug therapy to be evaluated by an algorithm?

Rudy provides four examples that illustrate an
“experienced statistician selecting a data-analytic algo-
rithm. . . .” All four examples involve normality with
independent errors and common variance, a very spe-
cialized textbook-type formulation. All yield quite eas-
ily what can be called a presentation of the total
inference information. What Rudy presents are innova-
tive ways to repackage this total inference information
for specific interests or purposes, something to which
he has made substantial contributions.

The examples could at least have involved nonnor-
mality. We all acknowlege that data rarely come to us
as if from the skinny-tailed normal. Then if the analysis
is based on the nonnormal case, we would find that an-
cillary inference procedures are needed. Indeed these
alternatives are the focus of the paper and are available
in the literature; for a range of examples in the general
regression context, see Fraser, Wong and Wu (1999).

This is not to say that repackaging the total inference
information for specific purposes in not important; it
certainly is, but it is secondary to the considerations
here.

3. SUFFICIENCY AND ANCILLARITY

Rudy notes, “The role of sufficiency and ancillarity
has been inconsequential in this substantial portion of
modern statistics” and then discusses the four examples
mentioned above. All the examples have independent
normal errors with common variance, and because
of the rotational symmetry of the composite normal

error distribution, everything factors into independent
normal pieces, each addressing a different orthogonal
parameter or addressing pure error with mean zero: the
simplicity of the familiar analysis of variance context!

The examples are to illustrate how to repackage the
full inference information to focus on particular inter-
est parameters. This is of course an important area and
one to which Rudy has made strong contributions. It
is also one that the paper addresses, for scalar parame-
ters; see Fraser (2003) for more general cases. How-
ever, neither sufficiency nor ancillarity is concerned
with this information repackaging. If the examples had
departed from the over simple normal, then ancillar-
ity would play a major role, as described in the paper.
To ignore the then available structure and default to
marginal methods is to blatently throw away the well
defined information. Of course the repackaging is still
needed, but you address it from what you know.

In the paper a prominent theme concerning suffi-
ciency is that in broad generality it is not needed for
statistical analysis and, indeed, that it has lulled the
theoretical side of statistics into complacency so that
effective alternatives are not discussed or investigated.
So with regard to sufficiency, I fully support Rudy’s
view that it is not needed, and indeed go further and
suggest that its widespread acceptance has been seri-
ously damaging to statistics.

What then ancillarity? For such normal examples an-
cillarity works, but can be ignored because with simple
normal error everything factors into independent pieces
as described above. Such cases do not well represent
real cases, but we stick with them for no obvious good
reasons beyond the methodological simplicity.

Rudy makes frequent references to optimality. Op-
timality has of course a strong appeal. Express the
desired properties in the form of an optimality crite-
rion together with the related modeling, and we have
a mathematical problem that is often very challenging
and an obtained solution has all the stature of optimal-
ity. However, as Cox (1958) mentioned rather gently,
“With (respect) to certain. . . long-run properties, the
unconditional (procedure) may be in order, although
it may be doubted whether the specification of de-
sired properties is. . . very sensible.” Put more bluntly,
unconditional analysis allows a trade-off between the
known case you have in hand and other cases that
might have occurred but did not, thus allowing one to
optimize the chosen optimality criterion over a broader
context at the expense of the present context. For many,
the message seems lost in the medium.
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4. PREDICTION

Ron discusses predictive inference and the extent to
which the conditional methods can “accommodate the
dual problem of prediction.” He mentions the use of
sufficiency (Butler, 1986, 1989) to develop a pivotal
quantity to obtain inference for a future observation
and also the use of conditioning (Barnard, 1986) to
develop a pivotal quantity for such purposes; some
steps for the latter may be found in Fraser and Haq
(1969, 1970). These and other methods suggested
by Ron seem very promising. An alternative is to
treat a probability for a future observation as yet
another parameter of the original model and follow the
likelihood routes described in the paper.

5. TRUE p VALUES

Ron discusses several kinds of ancillary that have
been used for conditional inference, and then examines
them for an exponential model example. One ancillary
is the first-order ancillary affine ancillary (Efron and
Hinkley, 1978; Barndorff-Nielsen, 1986). Another an-
cillary is the second-order ancillary given by the like-
lihood ratio statistic for testing the given model in a
larger embedding model, often available in simple ex-
amples with exponential form that allows embedding
in a saturated model; this leads to third-order infer-
ence. An extension allows second-order inference and
uses a locally defined score variable coupled with di-
rections obtained from the mean value of those score

variables (Fraser and Reid, 2001). Another second- and
higher-order ancillary is that obtained from the sen-
sitivity directions. It yields third-order inference and
for familiar exponential-type examples, as Ron notes,
agrees with the preceding ancillary. For many other ex-
amples, however, the exponential structure is not avail-
able and yet the sensitivity ancillary is easily accessible
(see, e.g., Fraser, Reid and Wu, 1999; Fraser, Wong and
Wu, 1999).

For a simple exponential model example, Ron con-
siders three methods for calculating an approximate
p value for a particular data point: the signed like-
lihood ratio (SLR) method using approximate nor-
mality, the Skovgaard (1996) method using implicit
conditioning, and the sensitivity directions method us-
ing approximate conditioning. He also obtains an exact
p value based on the numerical integration of the dis-
tribution for θ̂ .

The example Ron uses is a(2,1) exponential model
formed by y1 with an exponential distribution that
has rate parameterθ and byy2 with an exponential
distribution that has rate parametereθ . The observed
data point is taken to be(1,2). For testing sayθ = 1/2,
the observedp value calculated using the sensitivity
directions aproach is 0.238, or 0.23771 to extra places.
For variousθ values(1/2,3/4,1,3/2,2) Ron records
p values obtained by the three methods; some of these
are reproduced here in Table 1. He finds that the
sensitivity direction approach is closer to the exact

TABLE 1
Observed significance probability from the data point (1,2) for testing θ , where

there are two exponential variables with rate parameters (θ,expθ)

θ

Method 0.5 0.75 1 1.5 2

MLE
Integrationa 0.189 0.0689 0.0194 0.03489 0.05120
True 0.18747 0.09063 0.04336 0.02759 0.0376
(2σ) (0.00242) (0.00178) (0.00126) (0.0354) (0.0317)

SLR
Normal 0.325 0.130 0.0392 0.02112 0.05315
True 0.1610 0.0518 0.0136 0.0337 NA
(2σ) (0.0023) (0.0014) (0.0371) (0.0312) NA

Skovgaard
Second order 0.259 0.0990 0.0289 0.03796 0.05219

Sensitivity
Third order 0.23771 0.08641 0.02391 0.035829 0.051404
True 0.24201 0.08691 0.02461 0.0382 NA
(2σ) (0.0027) (0.0017) (0.0396) (0.0318) NA

aFrom Butler.
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than the Skovgaard approach or the signed likelihood
approach.

To obtain true values here, we resort to simulations
(Wong, 2003) and obtain such values to any accuracy
by sampling. Accordingly withN = 100,000 repeti-
tions we find for the special data point(1,2) that the
true p value is 0.24201 with a 2σ simulation limit
0.0027. The simulatedp values are obtained by con-
ditionally measuring departure of data from true and
then simulating to get the true probability position of
the particular data point in question. For the data point
(1,2), Table 1 records the truep value with 2σ limit
corresponding to variousp values obtained by the var-
ious methods mentioned above.

The sensitivity directions approach yields a value
very close to the true, although clearly not within
the tight 2σ simulation limits. This departure can
be attributed to the approximation involved in the
conditioning and the very small sample sizen = 1. The
Skovgaard approach also yields a reasonablep value,
but substantially farther from the true; it too could be
assessed against its own implicit way of measuring
departure of data from true, but consistent with the
conditional theme of the paper, we use the measure of
departure given by the sensitivity directions. It seems
clear in the example that the sensitivity directions
approach gives remarkable accuracy.

6. CONDITIONING IMPLIES SUFFICIENCY

Ib Skovgaard mentions that “conditioning on. . .
ancillaries is used frequently in practice, almost un-
consciously” and cites a persuasive example. He also
mentions the darker side that a “majority of the statis-
tical community (have) given up on the idea (of using
ancillaries).”

As part of this discussion he cites the nonuniqueness
of maximal ancillaries and the well known Birnbaum
result that the principles of sufficiency and condition-
ing together imply the likelihood principle. What is
less widely known is that the conditioning principle
alone implies the likelihood principle (Evans, Fraser
and Monette, 1985, 1986). The details of the deriva-
tion provide key insights to the role of sufficiency in
the earlier argument to the likelihood principle: that it
lumps together sample space points, ignoring the in-
tegrity of the underlying variables, treating the model
as just frequencies attached to unassociated points and
ignoring structure other than provided by the mini-
malist statistical model; for some recent views on this
issue, see McCullagh (2002), and for an earlier and

less structured view, see Fraser (1968). The details
also provide yet another strong statement concerning
the role and appropriateness of sufficiency. The proof
from conditioning to likelihood also indicates how, in
the minimalist statistical model, the nonuniqueness of
ancillaries follows from the arbitrary lumping together
of sample points. Indeed this can be used to create a
nominal proof for quite arbitrary results (Evans, Fraser
and Monette, 1985, 1986).

All of which points back to the minimalist statistical
model as being at the root of most of the apparent
difficulties in statistical inference. Of course, in real
examples continuity and integrity of variables are
implicitly included in much the way, as Ib notes, that
a lot of conditioning is done in applications without
really noticing it.

Thus ignore sufficiency, add continuity and integrity
of variables as explicit parts of the statistical model,
and be prepared to condition widely and sensibly.
As Ib notes, issues “of conditioning. . . should be
considered more seriously in practice.” Ib also has
some concerns about detail which I address below.

7. CONDITIONING OR OPTIMALITY?

This section title is a small variation on Ib’s: just
replace “optimal inference” with “optimality.” Some-
how the term optimal inference seems to be two words
in contradiction: either you get the total inference
concerning the unknown or you do not. Perhaps you
should target getting it all, even though subsequently
you might package and target it on specific parame-
ter characteristics; recall the various examples men-
tioned by Rudy that deal with focussed final inference.
I feel skeptical generally about seeking a measure and
then optimizing with respect to that measure, but here
seeking a measure of total inference information with-
out first having some understanding of total informa-
tion does seem like putting things in the wrong order.
Surely you would want the inference material assem-
bled before you try to measure it numerically. How
successful has the measuring of information been? Not
that some measures of information have not been abun-
dantly useful and, as emphasized in the paper, the re-
lated use of optimization allows you to trade higher
value in one context against a lower value in other con-
texts, so you are not presenting things as they are. Can
we expect an optimization approach then to tell us what
the total inference is in a particular context? It seems
unlikely.

Ib then describes an appealing approach that in-
volves squared error of prediction and a notion of
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relevance. This is persuasive and its development is
promising, the preceding discussion notwithstanding.

8. ASYMPTOTIC SOLUTIONS?

Many inference methods in statistics have evolved in
the asymptotic context following patterns found with
exponential models, and location and transformation
models. Exponential models provide the pattern for
obtaining accuratep values from observed likelihood
functions (Lugannani and Rice, 1980) using (3.14) and
using a Fourier inversion for distribution functions to
advance an earlier saddlepoint inversion for density
functions (Daniels, 1954). The high third-order accu-
racy for such results was then extended for scalar pa-
rameter and variable models from the exponential case
to the general asymptotic case: this used a technical
modification of the Wald-type ingredientq, and was
implicit in Barndorff-Nielsen (1986), explicit in Fraser
(1990) and, in alternate form (3.15), in Barndorff-
Nielsen (1991).

With nuisance parameters in addition to a scalar in-
terest parameter, an integration over a nuisance para-
meter distribution allows the preceding to be applied
to a scalar pivot for a scalar interest parameter (Fraser
and Reid, 1993; implicit in Barndorff-Nielsen, 1986).
Collectively this covers the case of an asymptotic
model with variable and parameter of the same di-
mension. From the details, particularly the construc-
tion of the nominal or operational parameterϕ(θ), it is
seen that the third-order accuracy needs only the like-
lihood and the gradient of likelihood at the observed
data point. This is a remarkable and powerful fact with
far-reaching implications for statistical methodology.

Location and transformation models by contrast pro-
vide the pattern for extending thesep-value methods
to cases with the dimension of the variable larger than
that of the parameter. The mechanism involves quite
generally the use of ancillaries, exact or approximate
or implicit. Exact ancillaries are widely and directly
available with location and transformation models; in-
deed most ancillaries have their origins in this context.
Approximate ancillaries are then developed by restrict-
ing attention to parameter values close to the observed
maximum likelihood value; for this there are different
approaches. Ib works with the distribution of parame-
ter derivatives of the likelihood function. By contrast
the paper examine how local changes in the parame-
ter affect individual coordinates; this in fact reproduces
the ancillaries in the location and transformation case.
Both approaches generate approximate ancillaries and

thus enable the use of the approximation methods de-
scribed in the preceding paragraph. How can they be
compared?

Refering to his approach, Ib notes, “This gives all
[the] information needed and provides an explicit solu-
tion.” He then adds, “Fraser deliberately discards the
fact that local changes are only required for a suf-
ficient statistic and describes local changes [for] the
entire set of observation.” However, “deliberately dis-
cards. . . [a] fact”: What fact? That the weak likeli-
hood or sufficiency principle says one needs only to
look at the sufficient statistic? Perhaps “fact” only in
the context of total belief in the likelihood-sufficiency
principle. A major claim of the paper is that suffi-
ciency is widely an inappropriate principle: in effect
it works exclusively with frequencies at data points
with the minimalist statistical model, and ignores con-
tinuity and coordinate integrity and the direct effect
of parameter change on individual measurements or
coordinates. Would this make sense for a surveyor or
an astronomer? So rather than discarding a “fact,” there
is the assertion that there is not such fact and that other
substantial facts are being ignored.

Whatever the merits or demerits of the construction
procedures, one can of course see how the end results
perform. For this, consider an example where multiple
ancillaries are present: a covariance matrix in normal
sampling. A covariance matrix can have a positive
lower triangular square root and this generates a
standard ancillary from the obvious transformation
model. However, take a rotation of the coordinates and
then apply the preceding method; a different ancillary
is obtained, and these are different from the ancillary
obtained from the likelihod analysis proposed by Ib,
which does not favor an order for the coordinates.
The context could determine a preference, based on a
choice of how you view the coordinates as measuring
the parameters, and then the other ancillaries would not
be appropriate. Perhaps the seemingly hidden integrity
of coordinate variables is more fact than sufficiency.

9. SOME TECHNICAL QUESTIONS

9.1 Constant Pivots?

The sensitivity directions describe what the ancillary
looks like at the data point. These directions are
obtained by seeing how a change inθ causes a change
in y for a fixed pivot, examining this coordinate by
coordinate of course. Ib then suggests that this “argues
that the pivotsF(yi, θ) should be kept constant (at least
locally) along (a contour) of the conditioning statistic
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as a function of the maximum likelihood estimateθ̂

when this is plugged into the pivot.” He then questions
whether the implied conditioning “statistic agrees with
(F (y1; θ̂), . . . , F (yn; θ̂ ))” and expresses concern that
the conditional distribution from the latter statistic
might be degenerate. I share Ib’s concern for this
statistic, but do note that in general it does not generate
the sensitivity directions ancillary.

Consider the simple example of the standard sym-
metric normal with center on a circle of known ra-
diusρ. A natural pivot is{y1−ρ cos(α), y2−ρ sin(α)},
whereα is the polar angle. At a data point(y1, y2) =
(r cosa, r sina) it generates the sensitivity direction
(−sina,cosa), which is tangent to the circle of ra-
dius r through the data point and is thus tangent
to the familiar ancillaryr for this problem. On the
other hand, the mentioned statistic is equivalent to
(y1 − ρ cosa, y2 − ρ sina), which can be rewritten as
(1− ρ/r)(y1, y2) and is seen to be one–one equivalent
to the data point itself. As a conditioning statistic, it is
as Ib suspected degenerate.

In general, the estimated residuals or, more gener-
ally, the estimated pivots do not generate the ancillary
conditioning; the complication for that route lies in the
gradient ofθ̂ with respect to the data point.

9.2 We Hardly Need Sufficiency

Ib questions the “claim that we hardly need suffi-
ciency. . . ” and raises several related issues. The paper
shows that a method for obtaining ap value from a
sufficient statistic can be duplicated by a conditional
approach, so there is no need to work from a sufficient
statistic because the same can be duplicated otherwise.
Whereas a conditionalp value is also a marginal
p value, he then “in the same vein” suggests that
conditional p values would be superfluous because
they would be available without conditioning. Agreed.
However, they would not be based on the conditional
structure that makes the departure measure sensible for
the particular data point of interest.

Thus, reaffirmation for the initial claim and rejection
for the in-the-same-vein claim. Ib rejects both and
suggests two views, both of which I agree with:

1. Sufficiency restricts the choice of method (with bad
effects).

2. Conditioning restricts the permissible results (for
good reasons).

My views are given in parentheses. So the crunch is
the adherence to sufficiency: one view against and one
view for. Of course sufficiency has heavy traditions
and lots of believers, but is there any real basis for the
belief? It is not visible.

9.3 Does the Conditional p Value Depend on Just
the Sufficient Statistic?

If we do not care about sufficiency, then the question
is academic. If the sufficient statistic has the same
dimension as the parameter, then it is a nonissue
as discussed in the paper. If the dimension of the
sufficient statistic is larger, then available procedures
in the context of sufficiency include conditioning to
bring the dimension down to that of the parameter
and then the discussion in the paper is applicable.
Thus, without loss of generality, it can depend on the
sufficient statistic, but relevant information for making
a sensible choice of conditional measure of departure
may have been lost.

10. DISCUSSION

The theme in the paper is that ancillarity and condi-
tioning lead to a wealth of highly accurate inference
procedures. For the familiar special cases that have
available ancillaries, the procedures give accurate ap-
proximations to the correspondingp value, and for the
wide range of more general cases, the procedures use
natural approximate ancillaries and give again highly
accuratep values.

It has always been my feeling that there must be
logic and structure to natural processes, viewed here
as including statistical reasoning. However, much in
statistics has worked from the minimalist model, often
using optimization to trade off a present instance
against other cases that might have arisen but have
not. The related recommendation that you stand by and
act by rules suggests you have given up on finding
substance to statistical thinking and are relying on an
external decision or algorithmic approach. So certainly
there was persistance in the search for structure in
the statistical context, against of course strongly held
views opposing such structure. This never particularly
bothered me and may even have supported the search.
When Ib mentions “stubbornly” it suggests overt forces
to be resisted. I have not seen overt forces, so hardly
acted stubbornly. But substantial structure? Clearly
evident.
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