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ABSTRACT

A simple and accurate method is discussed for approximating the noncen-
tral chi-squared distribution; it is based on recent developments in third order
asymptotic methods. The method is easy to apply and uses only a standard

normal distribution function evaluation.



1. INTRODUCTION

The noncentral chi-squared random variable 7% with p degrees of freedom

and noncentrality parameter p? can be described by

where the z; are independent normally distributed variables with means p;

and variances 1, and
p
pr=D 1
i=1
The corresponding distribution function can be expressed, (for example, John-

son & Kotz 1970, p. 132) as

L, :
Gpta) = P0* <0 =5 0 pe
Jj=0 )

where P(x3,,; < ) is the distribution function of a chi-squared variable with
(p+ 2j) degrees of freedom.

The noncentral chi-squared distribution is an important distribution and
is often used to calculate the power of tests on the mean of a multivariate
normal distribution; see Anderson (1975, p. 75) and Patnaik (1949) for some
discussion of various applications.

To avoid the infinite sum in (1.1), various approximations have been pro-

posed. In particular, by inverting the cumulant generating function and using

an Edgeworth expansion, Cox & Reid (1987) obtained the approximation

P(r*<z)=P < (1.2)
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An asymptotically equivalent approximation was also given in Cox & Reid

(1987),
P(r2§x)%P<X;§a:<1—p—2>>, (1.3)

p

but this modification was not always satisfactory. An approximation closest

in spirit to (1.2) and (1.3) was given by Bol’shev & Kuznetzov (1963):

P(r*<z)=P lxﬁ <z (1 - '05 + %p‘LWﬂ +0(p%). (1.4)
Note that ignoring the third term in the braces gives (1.3) which is asymptot-
ically equivalent to (1.2).

Wang & Gray (1993) suggested using the Gém)-transform to approximate
(1.1). The method requires the evaluation of an infinite sum and also the
derivatives of a complicated function f(x) defined in their equation (4). Even
though this method is extremely accurate, it is not nearly as simple as the
other approximations.

Cohen (1988) provided a procedure for evaluating a noncentral chi-squared
distribution. The method requires the availability of a tabulation of the three
lowest degrees of freedom of the noncentral chi-squared distribution function
or equivalently an effective computer algorithm for their evaluation; also it
requires recursive evaluations. Posten (1989) provided another recursive algo-
rithm for evaluating the noncentral chi-squared distribution function.

In this paper, a new approximation is proposed. The method is simple,
has third order accuracy, and is derived from a general inference procedure
developed in Fraser & Reid (1995); it is particularly accurate in the extreme

tail.



In Section 2, we discuss briefly the recent third order procedure. In Section
3, we show how this method can be applied to approximate the density and
distribution functions for the noncentral chi-squared distribution and how it
can approximate a percentile for that distribution. Examples are given in

Section 4 and some concluding remarks are recorded in Section 5.
2. THIRD ORDER SIGNIFICANCE

The recent third order approximations have evolved from the saddlepoint
method (Daniels, 1954; Barndorff-Nielsen & Cox, 1979) or from the direct anal-
ysis and Taylor series expansion of log density functions (Barndorff-Nielsen,
1986; DiCiccio, Field & Fraser, 1990; Fraser, 1990; Fraser & Reid, 1995).
These third order approximations are typically based on likelihood and can
give high accuracy even for very small samples.

Third order significance for testing whether a scalar parameter, say (),
has the value ¥ can be obtained in many general contexts from a Lugannani

& Rice (1980) type formula

1 1
o) = o) + () { 1 - & 1)
or from a Barndorff-Nielsen (1986) r* type formula
p(Y) =d(r") = (R — R 'log g) (2.2)

where ¢(-) and ®(-) are the standard normal density and distribution functions,
R is of signed log likelihood root form, and @ is a standardized maximum
likelihood departure. Detailed definitions for R and () depend on the type
and generality of the problem; see for example Lugannani & Rice (1980),
Barndorff-Nielsen (1986), and Fraser & Reid (1995).



Note that p() in (2.1) and (2.2) is generally known as the significance
function and can be interpreted as giving the probability to the left of the
observed data point for any chosen 1, in the same way as the probability left
of an observed t value in normal sampling provides a significance assessment
of a value for the mean. Therefore, for testing the hypothesis Hy : b = 1,
the one-sided observed level of significance is

p(tho) or 1 — p(to)

and the usual two-sided observed level of significance is

2min{p(vo), 1 — p(to)}-

In addition, a (1 — «) x 100% confidence interval for v is

(min{p~'(/2),p~ (1 — a/2)}, maz{p~ ' (a/2),p" (1 — a/2)}).

A detail discussion of p(¢) is given in Fraser (1991).

It was shown in Lugannani & Rice (1980) and Barndorff-Nielsen (1986)
that for specific problems, (2.1) and (2.2) have third order accuracy, O(n~3/?),
in providing a uniformly distributed significance function or p-value.

The definition of R is fairly standard to all problems and is obtained from
the traditional likelihood ratio. It is called the signed likelihood root and has
the form

R = sgn(sh — v)[2{€(0) — £(0,)}]"/? (2.3)
where £(0) = £(0;y°) is the observed likelihood, @ is the maximum likelihood
value for the full parameter, and éw is the same but subject to the constraint
¥(0) = 1. Under the hypothesis 1(f) = v, R is standard normal to the first

order.



The definition of () requires more than the observed likelihood function.
The additional information is obtained from the gradient of the likelihood

function at the data point

d

p(0) = d—yE(H;y)\yo ; (2.4)

this give a new exponential-type parametrization. Formula (2.4) is for the
special case where the dimension of the variable y is the same as the dimension
say p of the parameter 6, a case that applies for the present problem. In more
general contexts the gradient is taken in p specially chosen directions at the
data point (Fraser & Reid, 1995).

A scalar combination x(#) of the coordinates of ¢(#) is then chosen to

behave like ¥)(0) near 6.

(6
x(@) = 22 (2.5
|9 (0y)]
where ¥, (0) = (0/90)1(0) = 1y (0){ 0y ()} evaluated at 6y, gives the linear
combination. The standardized maximum likelihood departure is then given

as

R 1/2
. Ny j
Q=%M¢—@MW%WWM%—MEL} 2.6
70w ()]
where jp9 = —{ggr (é) and jM(HAw) = —lyy (%) are full and nuisance information

matrices, and

\J0e)| = AGsS 7o (04)] = [ ()] ()| 2

are information determinants recalibrated to the ¢ parametrization; the matrix

ox (By) is px (p—1) and |y (04)] = |©h (04)ox (64)]/%. Q is standard normal



to the first order. The combination (2.1) or (2.2) of the present R and @ is

however third order accurate as described earlier.



3. THIRD ORDER APPROXIMATION FOR
THE NONCENTRAL CHI-SQUARED

Consider a generalization of Fisher’s (1957) normal distribution on the
circle. Let y = pa + e where p is positive, « is a p-dimensional unit vector,
and ey, ..., ey is a sample from the normal distribution with mean 0 and known
variance o2. The parameter is = (p,a) with p taken as the parameter of
interest.

The distribution of 7? /02 = ¥ y?/o? is noncentral chi-squared with p de-
grees of freedom and noncentrality p®/o3. As a consequence of scale properties,

it suffices to carry out the calculations for the case of = 1.

The log likelihood function at the point vy is

16) =16:0) = pY i — P Y03 /2 = p Y wsos — 22 (31)

The full model maximum likelihood estimate is § = (p, &) = (r, u) where u is

the unit vector y/r. The maximum log likelihood is
1(0) = r?/2. (3.2)

The constrained maximum likelihood estimate is 8, = (p, &,) = (p, u) and the

constrained maximum log likelihood is

1(8,) = pr — p*/2. (3.3)
We can now calculate the log likelihood ratio statistic

R? = 21(0) = 1(9,)] = 2(r*/2 = pr + p*/2) = (r — p)’



and then the signed square root of the log likelihood statistic

R =sgn(r — p)[(r — p)*]'/* =7 - p. (3.4)

The observed information recalibrated on the ¢ scale is

|je0tp(é)‘ =L (3.5)

For the nuisance parameter information, we rewrite the log likelihood function

as

1O) = prd_yicu/r — p°[2 = prd_ uiey; — p*/2
and initially examine the single component factor Y- u;c; = cos(u, @) that de-
pends on «. The second derivative determinant of the factor at « = &, = u is
-1, as calculated most easily using appropriately rotated o coordinates. It fol-
lows that the nuisance information determinant is (pr)P~! using « coordinates

and is
A~ T p_l
j(aa) (op) = (;) (3'6)

in the ¢ coordinates. The unit vector combination of the coordinates of ¢

~

that is used to measure departure from ¢(6,) is ¢(0) - u; the departure itself

is ¢(0) -u— ¢(0,) - u =r — p. The appropriate standardized version of this is

N 1/2
_ |700(0)] _ p\P-1/2
Q—(T—p){ié)‘} — (r—p) (;) . (3.7)

|j(aa)( p

The probability, G 2(r?), to the left of an observed r? for the noncentral
chi-squared distribution with p degrees of freedom and noncentrality p? is

given exactly by (1.1). This probability can approximated, with third order



accuracy, by 1 — p(p) where p(p) is defined in either (2.1) or (2.2) using R and
@ from (3.4) and (3.7).

In many contexts, the Lugannani and Rice (2.1) formula seems to give
excellent approximations although in extreme cases it can give values outside
the (0,1) range for probabilities. The alternate way of combining R and @
using the Barndorff-Nielsen (2.2) formula is particularly attractive in its sim-
plicity here: the distribution function for the noncentral chi-squared variable
r? with noncentrality p? and p degrees of freedom can then be approximated

by treating
p— llogr —logp
2 r—p

2= (r—p) - (38)

as a standard normal variable. Also, by taking normal percentiles for z in (3.8),
we can solve for the corresponding percentiles of the noncentral chi-squared
distribution; as the functions involved are simple, it is to be expected that the
ordinary Newton method will work well for this. Also by differentiating the
distribution function, say based on the standardized variable (3.8), we obtain

an approximation of the noncentral chi-squared density function.
4. EXAMPLES

In all the examples, the exact probabilities are calculated from

Y2y

;! P(X123—|—2j <r?)
J=0 )

where NV is an integer and

e[

N P(xoion <17) <1071



Table 1 records selected values of the distribution function for the noncen-
tral chi-squared distribution with p degrees of freedom and noncentrality p?
using both the exact and the approximate formulas discussed above. Approx-
imations (1.3) and (1.4) seem unsatisfactory; the Cox & Reid’s approximation
(1.2) is good when p is small. The proposed methods give good approxima-
tions, particularly (2.2) which involves evaluating the standard normal distri-

bution function using (3.8).

Table la: Approximations to G ,2(r?) with p = 2

p 1 2
r 3 4 ) 3 4 )
Cox & Reid (1.2) || 0.9502 0.9952 0.9998 | 0.7768 0.9305 0.9845
Cox & Reid (1.3) || 0.8946 0.9817 0.9981 | 0.0000 0.0000 0.0000
Bol'shev et al (1.4) || 0.9831 0.9999 1.0000 | 1.0000 1.0000 1.0000
(2.1) || 0.9575 0.9972 0.9999 | 0.7870 0.9661 0.9978
(2.2) || 0.9578 0.9972 0.9999 | 0.7874 0.9661 0.9978
Exact (1.1) || 0.9563 0.9971 0.9999 | 0.7856 0.9659 0.9978
P ) 10
r 3 6 8 7 11 13
Cox & Reid (1.2) || 0.2835 0.7364 0.9066 | 0.3815 0.6946 0.8093
Cox & Reid (1.3) || 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000
Bol’shev et al (1.4) || 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000
(2.1) || 0.0167 0.8182 0.9983 | 0.0011 0.8295 0.9984
(2.2) || 0.0167 0.8183 0.9983 | 0.0011 0.8295 0.9984
Exact (1.1) || 0.0166 0.8181 0.9983 | 0.0011 0.8295 0.9984




Table 1b: Approximations to G,2(r?) with p =5

P 1 3
r 2 4 ) 2 3 6
Cox & Reid (1.2) || 0.3513 0.9796 0.9992 | 0.0788 0.8881 0.9752
Cox & Reid (1.3) || 0.3308 0.9747 0.9988 | 0.0000 0.0000 0.0000
Bol’shev et al (1.4) || 0.3501 0.9834 0.9995 | 0.7781 1.0000 1.0000
(2.1) || 0.1154 0.9765 0.9992 | 0.0242 0.9293 0.9942
(2.2) || 0.3496 0.9810 0.9993 | 0.0351 0.9318 0.9944
Exact (1.1) || 0.3472 0.9809 0.9993 | 0.0331 0.9313 0.9944
; 5 10
r 3 6 8 8 11 13
Cox & Reid (1.2) || 0.0869 0.6938 0.9416 | 0.3074 0.6699 0.8464
Cox & Reid (1.3) || 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000
Bol'shev et al (1.4) || 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000
(2.1) || 0.0055 0.7349 0.9963 | 0.0130 0.7905 0.9976
(2.2) || 0.0060 0.7374 0.9964 | 0.0131 0.7909 0.9976
Exact (1.1) || 0.0059 0.7368 0.9964 | 0.0131 0.7908 0.9976
Table 1c: Approximations to G2(r?) with p =10
P 3 )
r 4 6 7 4 7 9
Cox & Reid (1.2) || 0.4122 0.9591 0.9960 | 0.0821 0.8270 0.9899
Cox & Reid (1.3) || 0.0014 0.0364 0.1022 | 0.0000 0.0000 0.0000
Bol'shev et al (1.4) || 0.9192 1.0000 1.0000 | 1.0000 1.0000 1.0000
(2.1) || 0.2003 0.9667 0.9985 | 0.0053 0.8815 0.9995
(2.2) || 0.3842 0.9750 0.9988 | 0.0225 0.8931 0.9996
Exact (1.1) || 0.3825 0.9750 0.9988 | 0.0221 0.8927 0.9996




P 10 20

r 8 11 13 18 21 23
Cox & Reid (1.2) || 0.1700 0.6425 0.8806 | 0.3616 0.6232 0.7708
Cox & Reid (1.3) || 0.0000 0.0000 0.0000 | 0.0000 0.0000 0.0000
Bol'shev et al (1.4) || 1.0000 1.0000 1.0000 | 1.0000 1.0000 1.0000
(2.1) || 0.0056 0.7118 0.9953 | 0.0126 0.7819 0.9974
(2.2) || 0.0062 0.7160 0.9954 | 0.0126 0.7824 0.9974
Exact (1.1) || 0.0062 0.7158 0.9954 | 0.0126 0.7824 0.9974

Figure 1 records the distribution function for the noncentral chi-squared
distribution with 3 degrees of freedom and noncentrality parameter p? = 2 (i.e.
it is a plot of Go(r?) against r? with p = 3). Equation (2.2) gives approxima-
tions closest to the exact solution. Approximations obtained from equations
(2.1) and (1.2) curves are also reasonable, but, the other two approximations

are not satisfactory.
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Figure 2 records the distribution function for the noncentral chi-squared



distribution with 10 degrees of freedom and noncentrality parameter p? = 25
(i.e. it is a plot of G25(r?) against 72 with p = 10). Equation (2.2) and the exact
solution are indistinguishable from each other. The other approximations are

not satisfactory.

Figure 2: Noncentral chi- ared_ distribution function
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5. DISCUSSION

In this paper, we develop a simple third order approximation for the distri-
bution of a noncentral chi-square variable with p degrees of freedom and non-
centrality p?. It is given by ® {r — p— (p — 1)(logr — log p)/2(r — p)} where
®(-) is the standard normal distribution function. It provides high accuracy.

Furthermore, it is easily inverted to give the percentiles of the distribution.
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