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Pleiotropy

I For many complex human diseases, the trait of interest
(”state of disease”) is not directly observable (e.g. diabetes,
hypertension, cardiovascular disease).

I Instead we observe a set of surrogate phenotypes (physical
manifestations of the disease) which may be continuous or
discrete.

I These response variables (phenotypes or outcomes) measure
the underlying trait from different perspectives.

I In order to increase statistical efficiency, it is desirable to
model these outcomes jointly.

I Many studies also involve repeated measures over time in
samples that include clusters (e.g., families) ⇒ complex
dependence structures in the data.

I We are considering here continuous and binary phenotypes.
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The Data and Model

I Let Ycit = (Yc T
cit ,Y

b T
cit )T be the J × 1 vector of responses

(e.g. phenotypes) measured at the tth time on the i th

individual from the cth family (or cluster) for c = 1, 2, ...,C ,
i = 1, 2, ...,Nc , t ∈ {tci1, tci2, ..., tciMci

}, and j = 1, 2, ..., J,
where C denotes the total number of families, Nc is the
number of individuals within the cth family, Mci is the total
number of repeated measurements for individual i in cluster c
and J is the total number of responses.

I The cluster (i.e., family pedigree) structure is known.

I Covariate measurements are available on all items at all times.

I The dependence patterns are modelled via random effects.

I The trait of interest is introduced as a latent variable Ucit .
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Illustration of the Data Structure
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The Statistical Model

I The latent variable model

Uci = Xciα + gc1Mci
+ ZT

ci ⊗ 1Mci
ac + εci , (1)

where:
I Uci = (Uci1, . . . ,UciMci )

T is the vector of the longitudinal LV at
times tci = (tci1, . . . , tciMci )

T

I εci = (εci1, . . . , εciMci )
T is the vector of error terms and

Xci = (X T
ci1, . . . ,X

T
ciMci

)T is a Mci × p2 design matrix for the
fixed effects α

I Zc = (ZT
c1, . . . ,Z

T
cNc

)T is the Cholesky decomposition of the

kinship coefficient matrix of the c th family, Kc , i.e.,
ZcZT

c = Kc .
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The Statistical Model

I ac = (ac1, . . . , acNc )T account for common genetic factors.

I gc account for environmental factors.

I εci ∼ NMci
(0, σ2

εHci ), where Hci is a Mci ×Mci matrix with
the (r , k)th entry equal to ρ|tr−tk | (ρ is the correlation between
the within-subject error terms that are one time unit apart).

I This allows for unequal number of observations between
clusters and varying interval between measurements.

I We are particularly interested in the regression coefficient for
the SNP’s genotype (α) and factor loadings (λ’s).

I Pleiotropy is detected if the SNP’s genotype effect on U and
at least two factor loadings are statistically significant.
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The Statistical Model

I The continuous response model

y c
citj = β0j + bcij + WT

citβj + λjUcit + ecitj , (2)

where ecitj
iid∼ N(0, σ2

j ), Wcit is a p1-dimensional vector of
direct effect covariates.

I The λ’s are the factor loadings that quantify the effect of the
latent variable on each phenotype.

I The random component bcij captures the family-specific
within-subject serial correlations.

I We assume bcij
iid∼ N(0, τ2

j ), and ecitj and bcij are mutually
independent for c = 1, ...,C , i = 1, ...,Nc , t = 1, ...,Mci and
j = 1, ..., J.
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The Statistical Model

I If a response is binary, a generalized linear mixed model is
assumed,

µcitj = β0j + WT
citβj + λjUcit + bcij ,

with a probit link,

E
[
yb
citj |µcitj

]
= p(yb

citj = 1|µcitj) = Φ(µcitj).
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Statistical Complications - Direct or Indirect Covariate?

I Important: Splitting the available covariates into two disjoint
sets that correspond to direct and indirect effects.

I Dependent variables of primary interest → Indirect effects.

I A larger set of indirect effects leads to a more parsimonious
model.

I Matter is complicated by lack of symmetry...



Pleiotropy Latent Variable Model Parameter Expanded Model Simulations

Statistical Complications - Direct or Indirect Covariate?

I Define the LV U∗cit = Ucit − XT
citα

I Switching X from the indirect to the direct set leads to an
equivalent model.

I Switching covariates from direct to indirect effect does lead to
a very different model and may produce different conclusions
along with ...

I ... a significant increase in the deviance information criterion
(DIC).
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Statistical Complications - Identifiability

I For any Q ∈ R\{0} we get an equivalent model

y c
citj = β0j + W T

citβj + λjQ
−1QUcit + bcij + ecitj , (3)

I Without any restriction on λ and the variance of Ucit , an
infinite number of equivalent models can be created.

I We assume that:

I The variance of Ucit is equal to 1 and that λj is non-negative.
I The direct-effect covariates (Wcit) and the indirect-effect

covariates (Xcit) are distinct.
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Statistical Complications - Effect of Ignoring Cluster
Correlation

I Individuals from the same family are genetically related
resulting in correlation between their latent disease status.

I If familial dependence is ignored inference is biased.

I Consider the case of continuous only phenotypes and no
repeated measurements.
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Statistical Complications - Effect of Ignoring Cluster
Correlation

I Model 1 (correct):

ycij = β0j+W T
ci βj+λjUci+ecij , and Uci = XT

ciα+gc+ZT
ci ac+εci ,

where ecij ∼ N(0, σ2
j ) and εci ∼ N(0, 1), λj > 0,

gc ∼ N(0, σ2
g ) and ac ∼ N(0, σ2

aINc ).

I Model 2 (misspecified):

yhj = β0j + W T
h βj + λ̃j Ũh + ehj , and Ũh = X T

h α̃ + εh.

I It can be shown that
λ̃j > λj

and

|α̃| =
λj

λ̃j

|α| < |α|
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Bayesian Model

I We consider a Bayesian framework for inference.

I If conditional conjugate priors are defined for the model
parameters Θ, then a standard Gibbs (SG) sampler can be
used to analyze the posterior distribution.

I The implementation requires introducing the random effects
as latent variables/missing data. The set of all latent variables
is denoted Ω.
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Computational Complications: Torpid Mixing

I Due to high dependence between the components of the
Markov chain corresponding to the parameter vector Θ and
the latent data vector Ω, we observe a very slow mixing of the
chain.

I For instance, a small variance τ2
j leads to small random effects

bcij and vice versa. Similar patterns develop between the
factor loadings λj and the latent variable U.

I These lead to computational inefficiency because the chain
gets stuck in various regions of the sample space
(“bottlenecks”).
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Computational Complications: A simple calculation

I yij = µ+ bj + εij , εij ∼ N(0, σ2) for all 1 ≤ i ≤ n, 1 ≤ j ≤ C .

I Conjugate priors:

p(µ) = N(0,B2
3 ), p(σ2) = IG (A1,B1),

p(bj) = N(0, η2), and p(η2) = IG (A2,B2).

I Conjugate posteriors:

π(η2| . . .) = IG

c

2
+ A2,B2 +

C∑
j=1

b2
j

 ,

p(bj | . . .) = N

(
x̄j−µ
σ2

1/σ2 + 1/(nη2)
,

1

n/σ2 + 1/η2

)
.

I E [η2| . . .] <
∑

j b2
j andV (η2| . . .) <

∑
j b2

j , when c > 5.



Pleiotropy Latent Variable Model Parameter Expanded Model Simulations

Parameter Expansion for Increased Computational
Efficiency

I Parameter Expansion/Auxiliary Variable methods have a long
tradition in MCMC (Besag and Green, JRSSB ’93; Higdon,
JASA ’98; Liu and Wu, JASA ’99; van Dyk and Meng, JCGS
’01)

I These methods aim at eliminating ”bottlenecks” in simulation
experiments by expanding the parameter space or by
introducing ”missing” data/latent variables in the model.

I However, the parameter expansion guidelines need to be
modified/adapted for each model.
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The simple calculation revisited

I yij = µ+ ξ
bj

ξ + εij = µ+ ξb∗j + εij

I p(ξ) = N(0, ψ2), p(b∗j ) = N(0, η∗2).

I π(b∗j | . . .) = N
(

ξ(x̄j−µ)/σ2

ξ2/σ2+1/(nη∗2)
, 1

1/η∗2+nξ2/σ2

)
.

I p(ξ| . . .) = N

( P
j b∗j (x̄j−µ)/σ2

1/(nψ2)+
P

j b∗2
j /σ2 ,

1
1/ψ2+n

P
j b∗2

j /σ2

)
I The model is over-parametrized and the chain

(µ, ξ, σ, η∗, {b∗j }) may not perform better than the original
one.

I But once we transform back to the original scale

bj = b∗j · ξ, η = η∗ · ξ,

we can notice a significant increase in efficiency.

I Notice that the induced prior for η is not the same as the one
used in the original model.
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A Parameter Expanded Model - Continuous Outcomes

I Original model is

y c
citj = βj0 + WT

citβj + λjUcit + bcij + ecitj ,

Ucit = XT
citα + gc + ZT

ci ac + εcit ,

where c = 1, . . . ,C ; i = 1, . . . ,Nc , t = 1 . . .Mci , j = 1, . . . , J.
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A Parameter Expanded Model - Continuous Outcomes

I Introduce auxiliary parameters µ∗, {ξj : 1 ≤ j ≤ J} and ψ
and reparametrise the model.

I Transformed model:

y c
citj = ξj

(
βj0

ξj
− µ∗

λj

ξjψ

)
+WT

citβj+
λj

ψ
(ψUcit+µ∗)+ξj

bcij

ξj
+ecitj ,

ψUcit + µ∗ = µ∗ + XT
citαψ + gcψ + ZT

ci acψ + εcitψ,
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A Parameter Expanded Model - Continuous Outcomes

I Transformed model:

y c
citj = β∗j0 + WT

citβj + λ∗j U∗cit + ξjb
∗
cij + ecitj ,

U∗cit = µ∗ + XT
citα

∗ + g∗c + ZT
ci a
∗
c + +ε∗cit .

I The parameters are linked via

α = α∗/ψ, Ucit = (U∗cit−µ∗)/ψ, σ2
a = σ∗2a /ψ

2, σ2
g = σ∗2g /ψ

2,

λj = λ∗j ψ, βj0 = ξjµ
∗
bj + λ∗j µ

∗, τ 2
j = ξ2

j τ
∗2
j , for all 1 ≤ j ≤ J.
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A Parameter Expanded Model - Continuous Outcomes

I b∗cij ∼ N(µ∗bj , τ
∗2
j ), g∗c ∼ N(0, σ∗2g ), a∗c ∼ NNc (0, σ∗2a INc ) and

ε∗ci ∼ NKci
(0, ψ2Hci ).

I The conditional conjugate priors assigned to
θ∗ = (α∗, λ∗ . . . , ψ) impose particular priors on θ = (α, λ, . . .).

I The parametrization is redundant and the algorithm is not
efficient on the expanded state space, but it gains efficiency
for the original set of parameters!
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A Parameter Expanded Model - Mixed Outcomes

I When the traits are mixed denote {y c
citj : 1 ≤ j ≤ J1} the

continuous outcomes and {yb
citj : J1 + 1 ≤ j ≤ J} the binary

ones.

I The probit model is expanded using the latent variables yb∗
citj

so that yb
citj = 1(0,∞)(yb∗

citj).
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A Parameter Expanded Model - Mixed Outcomes

I The continuous response models are expanded as before.

y c
citj = W T

citβj + λ∗j U∗cit + ξjb
∗
cij + ecitj , 1 ≤ j ≤ J1,

p(yb
citj = 1) = Φ(W T

citβj + λ∗j U∗cit + ξjb
∗
cij), J1 + 1 ≤ j ≤ J,

U∗ci = µ∗1Kci
+ Xciα

∗ + g∗c 1Kci
+ 1Kci

Zcia
∗
c + ε∗ci ,

where b∗cij ∼ N(µ∗bj , τ
∗2
j ), g∗c ∼ N(0, σ∗2g ),

a∗c ∼ NNc (0, σ∗2a INc ), ε∗ci ∼ NKci
(0, ψ2Hci ).

I An additional level of parameter expansion is added via
γ = (γJ1+1, . . . , γJ)T ∈ RJ−J1 , a one-to-one mapping
ỹb∗
cikj = γjy

b∗
cikj and set β̃j = γjβj , λ̃

∗
j = γjλ

∗
j and ξ̃j = γjξj . A

priori, γJ1+1, . . . , γJ are iid with prior distribution IG(0.1,0.1).
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Variable Selection

I Of primary interest is the effect of a genetic marker on the
latent variable.

Ucit = X T
citα + ZT

citac + gci + εcit .

I Of secondary interest is to determine whether the jth
phenotype is indeed related to the latent disease status (i.e.
λj = 0 or not).

y c
citj = β0j + bcij + W T

citβj + λjUcit + ecitj .
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Variable Selection

I We can use a spike-and-slab prior for λ∗j (or α∗),

p(λ∗j |ωj) = ωj1{0}(λ
∗
j ) + (1− ωj)TN+(λ∗j |0, 1)

and p(ωj) = Beta(a, b). The relevance of the jth phenotype is
based on P(λj > 0|Y). Easy

I We can consider comparing two models (almost identical, but
one has λj = 0) via Bayes factor. Hard since it requires
computing normalizing constants via Bridge/Path Sampling.

I Compare the two models via Deviance Information Criterion
(DIC). Easy

I Inspect HpdI’s. Easy
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Simulation Design

I We consider 100 families.

I The number of children in the third generation varies from
one to five with probability {20%, 40%, 30%, 7%, 3%}.

I For each individual, we assume that the probability of being
observed longitudinally {1, 2, 3, 4} times is
{10%, 30%, 30%, 30%}

I The time of first measure is set as {0, 1, 1.5, 2} with
probability {50%, 20%, 20%, 10%}.

I The length of time between two consecutive measures is
{1, 2, 3, 3.5} with probability {50%, 20%, 20%, 10%},
respectively, resulting in an unbalanced design.
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Sample Pedigree used in the Simulation Scenarios
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Simulation Scenarios

M1 We consider J = 3 continuous response variables and set
β0 = (5, 5, 5), β11 = β12 = β13 = 1, α1 = −1, α2 = 1,
λ = (5, 5, 5), τ 2 = (0.3, 0.3, 0.3), σ2

1 = σ2
2 = σ2

3 = 1,
σ2

a = 0.3, σ2
g = 0.3, and ρ = 0.3.

M2 We consider J = 4 and we simulate y1, y2 as continuous and
y3, y4 as binary responses. We set β0 = (1, 1, 1, 1), β1j = 1
for all j = 1, . . . , 4, α1 = −1, α2 = 1, λ = (2, 3, 1, 1),
τ 2 = (0.6, 0.6, 0.6, 0.6), σ2

1 = σ2
2 = 1, σ2

a = 1, σ2
g = 1,

ρ = 0.3.
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Measures of Efficiency

I When comparing algorithms A1 and A2 we compare the
effective sample size (ESS) for each parameter via

∆ESS(A1,A2) = 100×
(

ESSA2 − ESSA1

ESSA1

)
I ESS plays a central role in determining the number of

iterations until a certain desired precision is attained.
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ACF plots for M2: λ1 − λ4
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Trace plots for M2: α1, λ1
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M2: Simulation Results

Parameters Value SG PX2-HC ∆ESS

Est. RMSE Est RMSE

α
α1 -1.0 -1.003 0.024 -1.002 0.024 923
α2 1.0 1.000 0.050 1.000 0.050 83

λ
λ1 2.0 2.001 0.039 2.001 0.036 1124
λ2 3.0 3.001 0.060 3.002 0.057 1145
λ3 1.0 1.010 0.054 1.001 0.051 361
λ4 1.0 1.017 0.062 1.009 0.057 381

σ2
a 1.0 1.021 0.140 1.019 0.136 166
σ2

g 1.0 1.024 0.188 1.022 0.190 34
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M2: Ignoring clusters

Parameters True Considering cluster Ignoring cluster
bias sd RMSE bias sd RMSE

α
α1 -1.0 0.006 0.023 0.024 0.369 0.026 0.370
α2 1.0 -0.004 0.046 0.046 -0.370 0.066 0.376

λ
λ1 2.0 0.009 0.036 0.037 1.176 0.113 1.181
λ2 3.0 0.016 0.054 0.056 1.754 0.165 1.761
λ3 1.0 0.017 0.056 0.058 0.608 0.099 0.616
λ4 1.0 0.008 0.058 0.058 0.595 0.103 0.604
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M2: HPDI’s for λ1

HPDI’s constructed under Standard Gibbs (left) and PX-DA
(right):
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GAW18: Genetic study of Hypertension

I Data included genotypes from a real human whole genome
sequencing study (N = 483 individuals) and systolic and
diastolic blood pressure phenotypes plus age, sex, medication
use and cigarette smoking.

I The data were longitudinal, with three measurements for most
participants at roughly 5-year intervals.

I Among the 464 individuals, 396 individuals have at least one
blood pressure measures (90 have only one, 78 have two, 131
have three and 97 have four measurements).

I The length of time between two consecutive measurements
ranges from 3 to 9 years, and the number of family members
varies from 11 to 36.
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GAW18: Genetic study of Hypertension

I We focused on a set of six SNPs that had been reported to be
significantly associated with either DBP or the binary
hypertension trait

I We applied the Bayesian LVM method to analyze one SNP at
a time assuming an additive genetic model.

I The phenotypes are SBP and DBP, and the covariates include
the genotype of the SNP, age and sex.
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GAW18: Results for SNP rs9816772

Model Covariates DIC

Direct Indirect

1 Age+Sex SNP 15729.3
2 Age Sex+SNP 15744.0
3 Sex Age+SNP 15226.5
4 - Age +Sex+SNP 15948.3
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GAW18: Results for SNP rs9816772

• rs9816772 had been identified to be associated with DBP.

Parameter Estimate logBF 95% HpdI

SBP λ1 13.15 255.3 (12.19, 14.11)
DBP λ2 7.60 139.6 (7.01, 8.14)

Sex for SBP β11 -0.66 -0.074 (-2.12, 0.81)
Sex for DBP β21 -1.79 2.017 (-2.92, -0.65)

rs9816772 α1 -0.045 -0.653 (-0.208, 0.124)
Age α2 0.043 126.53 (0.036, 0.049)
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Genetic study of type 1 diabetes (T1D) complications.

I The study sample consists of n = 1300 individuals with T1D
from the Diabetes Control and Complications Trial (DCCT)

I Various phenotypes thought be to related to T1D
complication severity, including glycosylated hemoglobin
(HbA1c) and diastolic (DBP) and systolic blood pressure
(SBP). We define hyperglycaemia HPG = 1(HbA1C > 8).

I Previous studies have identified rs7842868 on chromosome 8
as a SNP significantly associated with DBP.

I Our goal here is to formally perform a multi-phenotype
analysis, jointly analyzing the measured manifest variables
using the proposed Bayesian LVM methodology. This
approach allows us not only to determine if rs7842868 is
associated with the latent conceptual T1D complication
variable, but also to test if DBP and SBP are truly related to
the LV.
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Genetic study of type 1 diabetes (T1D) complications

Analysis of SNP rs7842868

Parameter Estimate 95% HpdI l̂ogBF

SBP λ1 6.621 (6.153, 7.077) 114.85
DBP λ2 3.842 (3.566, 4.110) 112.98
HPG λ3 0.011 ( 2.19

107 , 2.98
102 ) -1.05

rs7842868 α1 -0.269 (-0.372, -0.164) 10.06
sex α2 -0.721 (-0.866, -0.584) 62.27

cohort α3 0.443 ( 0.299, 0.585) 20.15
treatment α4 0.128 (-0.004, 0.263) 0.366
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This is just the beginning...

I When is the conjectured existence of the LV defensible? What
does it really represent?

I Indirect/Direct Covariates dilemma: does assignation depend
on the SNP or SNP/Environment interactions? Can we get
more “clear cut” criteria?

I Evaluate the contribution of each phenotype to the model
(rather than 0/1 decision). May be useful to reduce the
number of phenotypes.

I Too computational for looking at thousands of genes. It
currently takes about 2mins per SNP. Maybe a combination of
Bayes/Frequentist methods can speed things up.
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