Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Approximate Computation for Approximate Bayesian Models

Radu Craiu

Department of Statistical Sciences University of Toronto

Joint with Evgeny Levi (Toronto)

SPSR, November 2022

Theory 0000

MCMC at the crossroads

- Large data and/or intractable likelihoods have brought Bayesian computation at a crossroads.
- Consider observed data y₀ ∈ 𝔅, likelihood function L(θ|y₀) (or sampling distribution f(y|θ)), prior p(θ) with θ ∈ R^d.
- Focus is on $\pi(\theta|\mathbf{y}_0) \propto f(\mathbf{y}_0|\theta)p(\theta)$.
- The Metropolis-Hastings sampler is one of the most used algorithms in MCMC.
 - Given the current state of the chain θ , draw $\xi \sim q(\xi|\theta)$.
 - Accept ξ with probability min $\left\{1, \frac{\pi(\xi|\mathbf{y}_0)q(\theta|\xi)}{\pi(\theta|\mathbf{y}_0)q(\xi|\theta)}\right\}$.
 - If ξ is accepted, the next state is ξ , otherwise it is (still) θ .
- Note that π(θ|y₀) ∝ p(θ)L(θ|y₀) needs to be computed at each iteration. (hence L(θ|y₀) must also be computable)

Massive data set

- $L(\theta|\mathcal{D})$ is computable, but data is massive.
- Possible remedies:
 - precomputing (Boland et al., EJS, 2018)
 - sequential processing (Bardenet et el. 2014; Korratikara et al. 2014)
 - divide and conquer (Neiswanger et al. 2013; Wang and Dunson 2013; Scott et al. 2016; Entezari et al. 2018; Nemeth and Sherlock 2018; Changye and Robert 2019)
 - subsampling (Quiroz et al. 2018; Campbell and Broderick 2019)

Divide and conquer

D &C: Divide data into batches, y⁽¹⁾ ∪ ... y^(K), distribute the sampling from the K sub-posteriors

 $\pi_j(\theta) \propto [L_k(\theta|\mathbf{y}^{(j)})]^a [p_j(\theta)]^b$

among K processing units

- Depending on a, b values, design recombination strategies for the π_j-samples to recover the characteristics of the full posterior distribution.
- Challenge: provide theoretical guarantees or assess approximation errors beyond the Gaussian case.

Subsampling for MCMC - Quiroz et al. 2018

- Pseudo-marginal idea (Andrieu and Roberts 2009): Replace L(θ|y₀) by an unbiased estimator.
- Let u = {u₁,..., u_m} be iid random variables uniformly distributed over {1,..., N} and y_u = {y_{u1},..., y_{um}}.
- ► Then $I_m(\theta|\mathbf{y}_u) = \frac{1}{m} \sum_{k=1}^m I_{u_k}(\theta|y_{u_k})$, is unbiased for the average log-likelihood $\frac{1}{N} \sum_{k=1}^N I_k(\theta|y_k)$
- Introduce control variates to reduce variance of I_m
- Adjust the estimator $\exp[I_m(\theta|\mathbf{y}_u)]$ to be unbiased for $L(\theta|\mathbf{y}_0)$

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Motivation for ABC

When the likelihood L(θ|y₀) is not computable but one can sample from f(y|θ) for all θ's....

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Motivation for ABC

- When the likelihood L(θ|y₀) is not computable but one can sample from f(y|θ) for all θ's....
- Approximate Bayesian Computation (ABC)
- Bayesian Synthetic Likelihood (BSL)

Double jeopardy: Large data and Intractable Likelihood

- The generation of pseudo-data can be expensive, e.g. climate change scenarios (Oyebamiji et al. 2015) or hurricane surges (Plumlee et al. 2021)
- Most of methods that address the challenge of large data cannot be used directly for intractable models.
- Today: discuss an approach that can be used with ABC and BSL.

Theory 0000 Numerical Experiments

7

A remarkable algorithm- ABC

► ABC:

- Sample $\theta \sim p(\theta)$ and $\mathbf{y} \sim f(\mathbf{y}|\theta)$;
- Compute distance:

$$\delta(\mathbf{y}) := \|\mathbf{S}(\mathbf{y}), \mathbf{S}(\mathbf{y}_0)\| = \sqrt{[\mathbf{S}(\mathbf{y}) - \mathbf{S}(\mathbf{y}_0)]^T A [\mathbf{S}(\mathbf{y}) - \mathbf{S}(\mathbf{y}_0)]}$$

• If $\delta(\mathbf{y}) < \epsilon$ retain $(\boldsymbol{\theta}, \mathbf{y})$ as a draw from

$$\pi_\epsilon(oldsymbol{ heta}, \mathbf{y} | \mathbf{y}_0) \propto p(oldsymbol{ heta}) f(\mathbf{y} | oldsymbol{ heta}) \mathbf{1}_{\{\delta(\mathbf{y}) < \epsilon\}}$$

• The marginal target (in θ) is

$$\pi_{\epsilon}(\boldsymbol{\theta}|\mathbf{y}_{0}) = \int_{\mathcal{Y}} \pi_{\epsilon}(\boldsymbol{\theta}, \mathbf{y}|\mathbf{y}_{0}) d\mathbf{y} \propto$$

$$\propto p(\boldsymbol{\theta}) \underbrace{\int_{\mathcal{Y}} f(\mathbf{y}|\boldsymbol{\theta}) \mathbf{1}_{\{\delta(\mathbf{y}) \leq \epsilon\}} d\mathbf{y}}_{\text{approximate likelihood}} = p(\boldsymbol{\theta}) \underbrace{\Pr(\delta(\mathbf{y}) \leq \epsilon | \boldsymbol{\theta}, \mathbf{y}_{0})}_{:=h(\boldsymbol{\theta})}$$

Approximate Bayesian Computation (ABC) ○●○○○○○○○○○ Theory 0000 Numerical Experiments

Vanilla ABC

- Sampling candidate θ's from the prior is inefficient, especially if the prior is in conflict with the data (Evans and Moshonov, 2006).
- ► Marjoram et al (2003) propose an ABC-MCMC in which candidate moves are generated using a proposal q(θ|θ_t) and they are accepted or rejected based on a MH-type rule.

Zooming in on the target

- We consider building a chain with target $\pi_{\epsilon}(\boldsymbol{\theta}|\mathbf{y}_0)$.
- Consider proposal $ilde{ heta} \sim q(heta| oldsymbol{ heta}_t)$
- A Metropolis-Hastings sampler requires calculating

 $\frac{p(\tilde{\theta})h(\tilde{\theta})q(\theta_t|\tilde{\theta})}{p(\theta_t)h(\theta_t)q(\tilde{\theta}|\theta_t)}$

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

A marginal yet important target

Lee et al (2012) propose to use
$$\tilde{\mathbf{y}}_1, \dots, \tilde{\mathbf{y}}_J \sim f(\mathbf{y}|\tilde{\boldsymbol{\theta}})$$
 to estimate

$$\widehat{h}(\widetilde{oldsymbol{ heta}}) = J^{-1} \sum_{j=1}^J \mathbf{1}_{\{\delta(\widetilde{oldsymbol{ extbf{y}}}_j) < \epsilon\}}$$

▶ Wilkinson (2013) generalizes to smoothing kernels

- Bornn et al (2014) make the case of using J = 1.
- Idea in this talk: Recycle past proposals to estimate $h(\tilde{\theta})$.

Theory 0000

History repeating itself

- At time *n* the proposal is $(\zeta_{n+1}, \mathbf{w}_{n+1}) \sim q(\zeta | \theta^{(n)}) f(\mathbf{w} | \zeta)$
- At iteration N, all the proposals ζ_n, the accepted and rejected ones, along with corresponding distances δ_n = δ(w_n) are available for 0 ≤ n ≤ N − 1.
- This is the history, denoted Z_{N-1} , of the chain.

Theory 0000

A selective memory helps

• Given a new proposal $\zeta^* \sim q(|\theta^{(t)})$, we generate $\mathbf{w}^* \sim f(\cdot|\zeta^*)$ and compute $\delta^* = \delta(S(\mathbf{w}^*))$. Set $\zeta_N = \zeta^*$, $\mathbf{w}_N = \mathbf{w}^*$, $\mathcal{Z}_N = \mathcal{Z}_{N-1} \cup \{(\zeta_N, \delta_N)\}$ and estimate $h(\zeta^*)$ using

$$\hat{h}(\zeta^*) = \frac{\sum_{n=1}^{N} W_{Nn}(\zeta^*) \mathbf{1}_{\delta_n < \epsilon}}{\sum_{n=1}^{N} W_{Nn}(\zeta^*)},$$
(1)

where $W_{Nn}(\zeta^*) = W(||\zeta_n - \zeta^*||)$ are weights and $W : \mathbf{R} \to [0, \infty)$ is a decreasing function.

• An alternative to (1) is to use a subset of size K of Z_N

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Good news

- ▶ If $\delta^* > \epsilon \Rightarrow$ rejection for ABC-MCMC
- But if $\exists \zeta^*$ with a corresponding $\delta < \epsilon$ then $h(\zeta^*) \neq 0$

Compare

$$ilde{h}(\zeta^*) = rac{1}{\mathcal{K}} \sum_{j=1}^{\mathcal{K}} \mathbf{1}_{\{ ilde{\delta}_j < \epsilon\}} \hspace{2mm} \Rightarrow \hspace{2mm} \mathsf{unbiased}$$

$$\hat{h}(\zeta^*) = \frac{\sum_{n=1}^{N} W_{Nn}(\zeta^*) \mathbf{1}_{\{\tilde{\delta}_n < \epsilon\}}}{\sum_{n=1}^{N} W_{Nn}(\zeta^*)} \Rightarrow \text{ consistent}$$

When K is small - reduce variability.

When K is large - reduce costs.

Complications

- ► If the past samples are used to modify the kernel ⇒ Adaptive MCMC
- In order to avoid AMCMC conditions for validity, we separate the samples used as proposals from those used to estimate h
- At each time t:
 - We use the Independent Metropolis sampler, i.e. q(ζ|θ^(t)) = q(ζ)

Generate two independent samples

$$\{(\zeta_{t+1}, \mathbf{w}_{t+1}), (\tilde{\zeta}_{t+1}, \tilde{\mathbf{w}}_{t+1})\} \stackrel{\mathsf{iid}}{\sim} q(\zeta) f(\mathbf{w}|\zeta)$$

• Set
$$\mathcal{Z}_{N+1} = \mathcal{Z}_N \cup \{(\tilde{\zeta}_{N+1}, \tilde{\delta}_{N+1})\}$$

Friendly neighbors

- The k-Nearest-Neighbor (kNN) regression approach has a property of uniform consistency
- Set K = √N and relabel history so that (ζ̃₁, δ̃₁) and (ζ̃_N, δ̃_N) corresponds to the smallest and largest among all distances { || ζ̃_j − ζ^{*} || : 1 ≤ j ≤ N}
- Weights are defined as:
 - $W_n = 0$ for n > K
 - (U) The uniform kNN with $W_{Nn}(\zeta^*) = 1$ for all $n \leq K$;
 - (L) The linear kNN with
 - $$\begin{split} W_{Nn}(\zeta^*) &= W(\|\tilde{\zeta}_n \zeta^*\|) = 1 \|\tilde{\zeta}_n \zeta^*\| / \|\tilde{\zeta}_K \zeta^*\| \text{ for } n \leq K \text{ so that the weight decreases from 1 to 0 as } n \text{ increases from 1 to } K. \end{split}$$

Indirect inference - A David and Goliath story

- Indirect inference (Gourieroux et al. 1993; Smith Jr 1993)
- Complex model: $f(\mathbf{y}|\boldsymbol{\theta})$ with intractable f
- Simpler model $g(\mathbf{y}|\phi(\theta))$ approximates well $f(\mathbf{y}|\theta)$, with $\dim(\phi) > \dim(\theta)$, g is tractable and $\phi : \Theta \to \Phi$ is unknown
- We can estimate $\hat{\phi}(\theta)$ by sampling $\theta \sim p(\theta)$, $\mathbf{y}_j \sim f(\mathbf{y}|\theta), \ 1 \leq j \leq K$ and estimate ϕ from $\mathbf{y}_1, \dots, \mathbf{y}_K$ using g - repeat
- Posterior $\pi_f(\theta|\mathbf{y}_0) \propto p(\theta) f(\mathbf{y}_0|\theta)$ is then approximated by

$$\pi_{g}(oldsymbol{ heta}|\mathbf{y}_{0}) \propto p(oldsymbol{ heta})g(\mathbf{y}_{0}|\hat{\phi}(oldsymbol{ heta}))$$

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Bayesian Synthetic Likelihood (BSL)

- Alternative approach to bypass the intractability of the sampling distribution proposed by Wood (*Nature*, 2010).
- The simpler model (g): the conditional distribution for a user-defined statistic S(y) given θ is Gaussian with parameters φ(θ) = (μ_θ, Σ_θ)
- The Synthetic Likelihood (SL) procedure assigns to each θ the likelihood SL(θ) = N(s₀; μ_θ, Σ_θ), where s₀ = S(y₀).
- The BSL posterior is $\pi_{BSL}(\theta|s_0) \propto p(\theta)\mathcal{N}(s_0; \mu_{\theta}, \Sigma_{\theta}).$
- Acceptance ratios for a MH sampler are estimated from m statistics (s₁, · · · , s_m) sampled from their conditional distribution given θ.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Bayesian Synthetic Likelihood (BSL)

• Generate
$$\mathbf{y}_i \sim f(\mathbf{y}|\theta)$$
 and set $s_i = S(\mathbf{y}_i), i = 1, \cdots, m$

Estimate

$$\hat{\mu}_{ heta} = rac{\sum_{i=1}^{m} s_i}{m}, \ \hat{\Sigma}_{ heta} = rac{\sum_{i=1}^{m} (s_i - \hat{\mu}_{ heta})(s_i - \hat{\mu}_{ heta})^T}{m-1},$$

• An MCMC sampler designed for $\pi_{BSL}(\theta|s_0) \propto p(\theta)SL(\theta|s_0)$ requires

$$\min\left\{1, \frac{p(\theta)SL(\theta|s_0)q(\theta_t)}{p(\theta_t)SL(\theta_t|s_0)q(\theta)}\right\}$$

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

A different POV: Precomputation

• Given a proposal
$$q$$
, precompute
 $\mathcal{Z} = \{(\xi_h, s_h = (s_h^{(1)}, \dots, s_h^{(m)})^T) : 1 \le h \le H\}$ where $\xi_h q$,
 $\mathbf{w}_h^{(1)}, \dots, \mathbf{w}_h^{(m)} \stackrel{iid}{\sim} f(\mathbf{w}|\xi_h)$ and set $s_h^{(j)} = S(\mathbf{w}_h^{(j)})$ for all
 $1 \le j \le m$.

• Given a proposal θ^* at *t*-th iteration

$$\tilde{\mu}(\theta^{*}) = \frac{\sum_{h=1}^{K} [W_{h}(\theta^{*}) \frac{1}{m} \sum_{j=1}^{m} s_{h}^{(j)}]}{\sum_{h=1}^{K} W_{h}(\theta^{*})},$$

$$\tilde{\Sigma}(\theta^{*}) = \frac{\sum_{h=1}^{K} [W_{h}(\theta^{*}) \frac{1}{m} \sum_{j=1}^{m} (s_{h}^{(j)} - \hat{\mu}_{\theta^{*}}) (s_{h}^{(j)} - \hat{\mu}_{\theta^{*}})^{T}]}{\sum_{h=1}^{K} W_{h}(\theta^{*})}.$$
(2)

• We use m = 1.

Approximate Bayesian Computation (ABC)

Theory ●000 Numerical Experiments

A bit of theory

- **(B1)** Θ is a compact set.
- **(B2)** $q(\theta) > 0$ is a continuous density (proposal).
- **(B3)** $p(\theta) > 0$ is a continuous density (prior).
- **(B4)** $h(\theta)$ continuous function of θ .
- (B5) In kNN estimation assume that $K(N) = \sqrt{N}$ with uniform or linear weights.

Approximate Bayesian Computation (ABC)

Theory 0●00 Numerical Experiments

Some comfort

- Let P(·, ·) denote the transition kernel of our AABC sampler, if h(θ) were computed exactly.
- The stationary distribution of a chain with kernel $P(\cdot, \cdot)$ is μ
- The approximate kernel at time t is denoted \hat{P}_t
- The distribution of θ_t is denoted $\mu_t := \nu \hat{P}_1 \dots \hat{P}_t$

Approximate Bayesian Computation (ABC)

Theory 00€0 Numerical Experiments

Some comfort

Vanishing TV Theorem

Suppose that (A1)- (A3) are satisfied . Let π denote the invariant measure of P and ν be any probability measure on (Θ, \mathcal{F}_0) , then

$$\left\|\mu - \frac{\sum_{t=0}^{M-1} \nu \hat{P}_1 \cdots \hat{P}_t}{M}\right\|_{TV} \leq O(M^{-1}) + O(M^{-1}\epsilon) + O(\epsilon),$$

More Comfort

Approximate Bayesian Computation (ABC)

Theory ○○○● Numerical Experiments

Vanishing MSE Theorem

Let π denote the invariant measure of *P*, $f(\theta)$ be a bounded function and $\theta^{(0)} \sim \nu$, where ν is a probability distribution. Then

$$E\left[\left(\mu f - \frac{1}{M}\sum_{t=0}^{M-1} f(\theta^{(t)})\right)^2\right] \le |f|^2 [O(M^{-1}) + O(\epsilon^2) + O(M^{-1}\epsilon)]$$

where $\mu f = E_{\mu}f$.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Numerical Experiments: Ricker's Model

A particular instance of hidden Markov model:

$$\begin{aligned} x_{-49} &= 1; \quad z_i \stackrel{iid}{\sim} \mathcal{N}(0, \exp(\theta_2)^2); \quad i = \{-48, \cdots, n\}, \\ x_i &= \exp(\exp(\theta_1))x_{i-1}\exp(-x_{i-1} + z_i); \quad i = \{-48, \cdots, n\}, \\ y_i &= Pois(\exp(\theta_3)x_i); \quad i = \{-48, \cdots, n\}, \end{aligned}$$

where $Pois(\lambda)$ is Poisson distribution

Only y = (y₁, · · · , y_n) sequence is observed, because the first 50 values are ignored.

Numerical Experiments: Ricker's Model

Define summary statistics $S(\mathbf{y})$ as the 14-dimensional vector whose components are:

(C1)
$$\#\{i: y_i = 0\},\$$

(C2) Average of \mathbf{y} , $\bar{\mathbf{y}}$,

(C3:C7) Sample auto-correlations at lags 1 through 5,

(C8:C11) Coefficients $\beta_0, \beta_1, \beta_2, \beta_3$ of cubic regression $(y_i - y_{i-1}) = \beta_0 + \beta_1 y_i + \beta_2 y_i^2 + \beta_3 y_i^3 + \epsilon_i, i = 2, ..., n,$

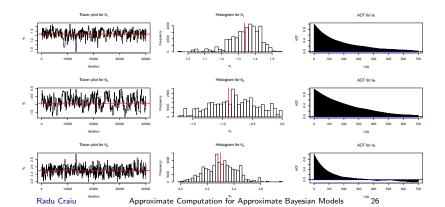
C12-C14) Coefficients $\beta_0, \beta_1, \beta_2$ of quadratic regression $y_i^{0.3} = \beta_0 + \beta_1 y_{i-1}^{0.3} + \beta_2 y_{i-1}^{0.6} + \epsilon_i, i = 2, \dots, n.$

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Numerical Experiments: Ricker's Model - ABC/RWM

Figure: Ricker's model: ABC-RW Sampler. Each row corresponds to parameters θ_1 (top row), θ_2 (middle row) and θ_3 (bottom row) and shows in order from left to right: Trace-plot, Histogram and Auto-correlation function. Red lines represent true parameter values.

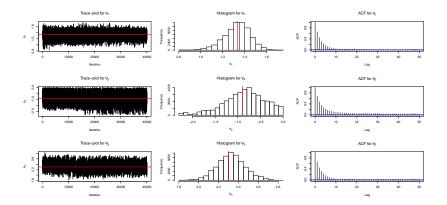


Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Numerical Experiments: Ricker's Model - ABC

Figure: Ricker's model: AABC-U Sampler.



Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Numerical Experiments: Ricker's Model - ABC

	Diff with exact			Diff with true parameter			Efficiency	
Sampler	DIM	DIC	ΤV	$\sqrt{\text{Bias}^2}$	\sqrt{VAR}	\sqrt{MSE}	ESS	ESS/CPU
ABC-RW	0.135	0.0201	0.389	0.059	0.180	0.189	87	0.199
AABC-U	0.147	0.0279	0.402	0.076	0.190	0.204	3563	4.390
AABC-L	0.141	0.0258	0.392	0.070	0.189	0.201	4206	5.193
BSL-RW	0.129	0.0080	0.382	0.038	0.206	0.209	131	0.030
ABSL-U	0.103	0.0054	0.377	0.023	0.170	0.171	284	0.180
ABSL-L	0.106	0.0051	0.382	0.012	0.173	0.173	207	0.135

Table: Summaries based on 40K samples

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Example: Stochastic Volatility

Stochastic volatility model with stable errors:

$$\begin{split} v_i &\stackrel{iid}{\sim} \mathcal{N}(0,1); \ w_i \stackrel{iid}{\sim} Stab(\theta_4,-1); \ i = \{1,\cdots,500\} \\ x_1 &\sim \mathcal{N}(0,1/(1-\theta_1^2)); \\ x_i &= \theta_1 x_{i-1} + v_i; \quad i = \{2,\cdots,500\}, \\ \text{Observed data: } y_i &= \sqrt{\exp[\theta_2 + \exp(\theta_3)x_i]} w_i; \quad i = \{1,\cdots,500\}. \end{split}$$

- Here Stab(θ₄, −1) is a stable distribution with parameters θ₄ ∈ [0, 2] and skew parameter −1.
- True parameter values: $\theta_1 = 0.95$, $\theta_2 = -2$, $\theta_3 = -1$, and $\theta_4 = 1.8$.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Example: Stochastic Volatility

For summary statistics we use a 7-dimensional vector whose components are:

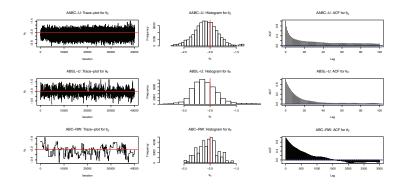
(C1)
$$\#\{i: y_i^2 > \text{quantile}(\mathbf{y}_0^2, 0.99)\},\$$

- (C2) Average of **y**²,
- (C3) Standard deviation of y^2 ,
- (C4) Sum of the first 5 auto-correlations of y^2 ,
- (C5) Sum of the first 5 auto-correlations of $\{\mathbf{1}_{\{y_i^2 < \text{quantile}(\mathbf{y}^2, 0, 1)\}}\}_{i=1}^n$
- (C6) Sum of the first 5 auto-correlations of $\{\mathbf{1}_{\{y_i^2 < \text{quantile}(\mathbf{y}^2, 0.5)\}}\}_{i=1}^n$,
- (C7) Sum of the first 5 auto-correlations of $\{\mathbf{1}_{\{y_i^2 < \text{quantile}(\mathbf{y}^2, 0.9)\}}\}_{i=1}^n$.

Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Example: Stochastic Volatility cont..



Approximate Bayesian Computation (ABC)

Theory 0000 Numerical Experiments

Example: Stochastic Volatility cont..

	Diff with SMC			Diff with true parameter			Efficiency	
Sampler	DIM	DIC	ΤV	$\sqrt{\text{Bias}^2}$	\sqrt{VAR}	\sqrt{MSE}	ESS	ESS/CPU
ABC-RW	0.078	0.0126	0.205	0.248	0.198	0.317	24	0.069
AABC-U	0.069	0.0124	0.170	0.250	0.183	0.310	1303	1.617
AABC-L	0.069	0.0132	0.161	0.246	0.181	0.305	1256	1.546
BSL-RW	0.044	0.0116	0.122	0.225	0.181	0.289	123	0.037
ABSL-U	0.063	0.0133	0.228	0.225	0.181	0.289	832	0.735
ABSL-L	0.061	0.0140	0.230	0.236	0.183	0.299	757	0.671

Table: Summaries based on 40K samples

Concluding remarks

- Our methods show good results even if q(ξ|θ) = N(θ, Σ) but theory is not fully developed.
- Ideally we want to combine with adaptive MCMC.
- The computational burden can prohibit the full reach for these approximate methods so more solutions are needed.

All papers available at: http://www.utstat.toronto.edu/craiu/Papers/index.html