Calibration Model

Bayes Model 00000 Bayesian Estim. 00 Model Selection

Simulation Results

Bayesian Inference for Conditional Copula models with Continuous and Binary Responses

Radu Craiu

Department of Statistics University of Toronto

Joint with Avideh Sabeti (Toronto) and Mian Wei (Toronto)

Université Montpellier April 14, 2014

Calibration Model

Bayes Model 00000 Bayesian Estim. 00 Model Selection

Simulation Results

Outline

Introduction Conditional Copulas

Calibration Model

Continuous Response Case

Bayes Model

Mixed Response Case

Bayesian Estim.

Bayesian Curve Fitting with Cubic Splines

Model Selection

Two Problems

Simulation Results

Estimation Performance Model Selection Performance

Introduction	Calibration Model	Bayes Model 00000	Bayesian Estim. 00	Model Selection	Simulation Results
Copulas					

- Copula functions are used to model dependence between continuous random variables.
- (Sklar,'59) If Y₁, Y₂ are continuous r.v.'s with distribution functions (df) F₁, F₂, there exists an unique copula function C : [0, 1] × [0, 1] → [0, 1] such that

$$F_{12}(t,s) = \Pr(Y_1 \le t, Y_2 \le s) = C(F_1(t), F_2(s)).$$

- C is a distribution function on $[0, 1]^2$ with uniform margins.
- The copula bridges the marginal distributions with the joint distribution.

 Introduction
 Calibration Model
 Bayes Model
 Bayesian Estim.
 Model Selection
 Simulation Results

 000
 00
 000
 00
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000<

Inference for Copula Models

Early on: abundance of theoretical developments: construction of new copula families and connections with dependence concepts (NA, PQD/NQD, PRD/NRD, etc). Joe ('97), Nelsen ('06).

Statistical inference for classical parametric copulas

- Joint Maximum Likelihood: numerical methods
- ► Two-stage approach: Joe (JMVA, '05)
- Semiparametric approach: Genest, Khoudi and Rivest (Bmka, '95)
- Copula selection and goodness-of-fit (Berg, Eur. J. of Finance, '09).
- Emphasis is placed on copula applications in statistics.
- ► Today: Dynamic regimes of dependence.

Calibration Model

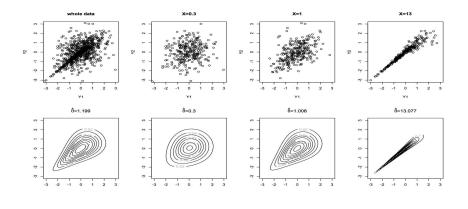
Bayes Model

Bayesian Estim. 00 Model Selection

Simulation Results

Example: Blood pressure

Example It is known that there is a dependence between blood pressure (BP) and body mass index (BMI). What if the dependence varies with subject's age? Can we still use copulas?



Introduction	Calibration Model	Bayes Model 00000	Bayesian Estim. 00	Model Selection	Simulation Results
Example	: Twin We	ight			

- Twin live births in which both babies survived in the first year of life with mothers of age between 18 and 40.
- Study the dependence between the birth weights of twins, BW₁ and BW₂.
- The gestational age, GA, is an important factor for prenatal growth.
- How does GA influence the dependence between BW₁ and BW₂?

IntroductionCalibration ModelBayes ModelBayesian Estim.Model Selection000000000000000

Selection Sim

Simulation Results

Example: Smoking cessation

- The smoking cessation study of Liu, Daniels and Marcus (JASA '09) :
 - Q = smoking cessation (0=No, 1=Yes)
 - $\mathsf{W} = \mathsf{weight} \ \mathsf{change}$
 - $X = time \ spent \ exercising$
- Does exercise weaken the association between smoking status and weight gain?

Introduction •00	Calibration Model	Bayes Model 00000	Bayesian Estim. 00	Model Selection	Simulation Results
C U U					

► The conditional copula of (Y₁, Y₂)|X = x, is the conditional joint distribution function of U = F_{1|X}(Y₁|x) and

Conditional Copulas

- $V = F_{2|X}(Y_2|x)$ given X = x (Patton, Int'l Econ. Rev. '06).
- Consider a random sample {x_i, y_{1i}, y_{2i}}_{1≤i≤n} and suppose F_{1|X} and F_{2|X} are the unknown marginal conditional cdf's.
- The parametric conditional copula model assumes

$$(Y_{1i}, Y_{2i})|X = x_i \sim C(F(Y_{1i}|x_i), F(Y_{2i}|x_i)|\theta(x_i)).$$

Marginals and copula are conditional on the same variables.

 Introduction
 Calibration Model
 Bayes Model
 Bayesian Estim.
 Model Selection
 Simulation Results

 0
 0
 00000
 00
 00
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000

General comments

- Conditional copulas (CC) broaden the range of applications.
 (i) more realistic use of copula models in regression settings.
 (ii) improve the interpretability and understanding of covariate-varying dependence structures.
- Flexible models for the relationship between the association measure (copula parameter, Kendall's tau, etc) and covariate(s) are needed.

Introduction	Calibration Model	Bayes Model	Bayesian Estim.	Model Selection	Simulation Results
000	00	00000	00	000	000000000000000000000000000000000000000
A secon	id motivatio	n			

- ► Joint models for high dimensional data.
- ► The joint distribution of (U₁, U₂, U₃) is modelled using the pair copula model is

$$c(u_1, u_2, u_3) = c_{12}(u_1, u_2)c_{23}(u_2, u_3)c_{13|2}(u_{1|2}, u_{3|2}; u_2)$$

where $u_{k|2} = Pr(U_k \le u_k | U_2 = u_2)$.

Acar, Genest and Neslehova (JMVA, '12) show that wrongly assuming c_{13|2} is the same for all u₂ leads to biased estimators.

000	•0	00000	00	000	000000000000000000000000000000000000000
Introduction	Calibration Model	Bayes Model	Bayesian Estim.	Model Selection	Simulation Results

Dependence models for CC's in Linear Regression Models

V₁, V₂ are continuous r.v.'s, V_i ~ N(Xβ_i, σ²_i), for i = 1, 2.
Jointly.

$$f(V_1, V_2|X) = \prod_{i=1}^2 \frac{1}{\sigma_i} \phi\left(\frac{V_i - X\beta_i}{\sigma_i}\right) \\ \times c^{(1,1)} \left\{ \Phi\left(\frac{V_1 - X\beta_1}{\sigma_1}\right), \Phi\left(\frac{V_2 - X\beta_2}{\sigma_2}\right) \middle| \theta(X) \right\},$$

where $c^{(a,b)}(u,v|\theta) = \partial^{a+b}C(u,v|\theta)/\partial u^a \partial v^b$, for all $0 \le a, b \le 1$.

Choose g such that g(θ(x_i)) = η(x_i), where η : R → R is the calibration function in inferential focus.

Introduction 000	Calibration Model ⊙●	Bayes Model 00000	Bayesian Estim. 00	Model Selection	Simulation Results
Calibrat	ion Model				

 A modified version of the cubic spline model of Smith and Kohn (J. Econometrics, '96), Fan et al. (JCGS, '10)

$$\eta(z) = \sum_{j=0}^{3} \alpha_j z^j + \sum_{k=1}^{K} \psi_k (z - \gamma_k)^3_+.$$

Number and location of knots is influential.

Introduction Calibration Model Bayes I

Bayes Model

Bayesian Estim. 00 Model Selection

Simulation Results

Why a Bayesian approach?

- Joint modelling avoids the propagation of errors.
- Samples from π(ω|D) lead to finite sample variance estimates, pointwise credible regions, computation of model selection criteria.
- Allows data-driven choice of knots location.
- Can use Bayesian model averaging to account for model uncertainty.
- ► Requires careful examination of the prior's influence.

Introduction	Calibration Model	Bayes Model	Bayesian Estim.	Model Selection	Simulation Results
000	00	00000	00	000	000000000000000000000000000000000000000

Bayesian Curve Fitting with Cubic Splines

- ► Alternative to reversible-jump MCMC approach.
- Partition the range of X into K_{max} intervals, I_k, and introduce auxiliary variables

$$\zeta_k = \begin{cases} 1 & \text{if there is a knot } \gamma_k \text{ in } I_k \text{ and } \psi_k \neq 0 \\ 0 & \text{if there is no knot in } I_k \text{ and } \psi_k = 0 \end{cases}$$

$$\blacktriangleright \eta(z) = \sum_{j=0}^{3} \alpha_j z^j + \sum_{k=1}^{K_{max}} \psi_k \zeta_k (z - \gamma_k)^3_+,$$

Introduction	Calibration Model	Bayes Model	Bayesian Estim.	Model Selection	Simulation Results
000	00	00000	00	000	000000000000000000000000000000000000000
_ .					

Bayesian Curve Fitting with Cubic Splines (cont'd)

Let |ζ| = ∑_{k=1}^{K_{max} ζ_k be the number of knots that are used in the model and set:}

(i)
$$\lambda \sim \text{Binomial}(K_{max}, p = 0.5).$$

(ii) $p(|\zeta| | \lambda) \propto \frac{\lambda^{|\zeta|}}{|\zeta|!} \mathbf{1}_{\{|\zeta| \le K_{max}\}}$
(iii) $p(\zeta | |\zeta|) = {\binom{K_{max}}{|\zeta|}}^{-1}$, all configurations are equally likely.
 $\blacktriangleright p(\zeta) = p(\zeta | |\zeta|)p(|\zeta|).$

 Introduction
 Calibration Model
 Bayes Model
 Bayes an Estim.
 Model Selection
 Simulation Results

 Bayesian
 Curve
 Fitting with
 Cubic Splines (cont'd)
 Cont'd)

Prior distributions:

$$\begin{array}{ll} \vec{\alpha} & \sim & \textit{MVN}(0, 10I_4) \\ \vec{\psi} & \sim & \textit{N}(0, 10I_{\textit{K}_{max}}) \\ \gamma_j & \sim & \textit{Uniform}[I_j], \ j = 1, \dots, \textit{K}_{max} \end{array}$$

Introduction 000	Calibration Model 00	Bayes Model	Bayesian Estim. 00	Model Selection	Simulation Results
	1.01				

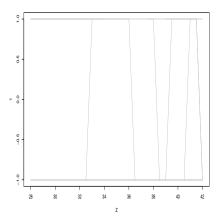


Figure: 500 curves generated from the prior spline model with $K_{max} = 4$.

Introduction	
000	

Calibration Model

Bayes Model

Bayesian Estim. 00 Model Selection

Simulation Results

Prior specification

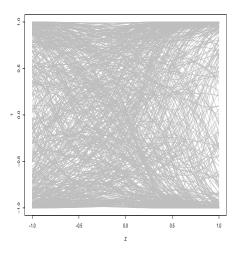


Figure: 500 curves generated from the prior spline model with $K_{max} = 4$. Covariate is standardized.

Introduction 000	Calibration Model	Bayes Model	Bayesian Estim. 00	Model Selection	Simulation Results
Multiple	e covariates				

- ► Numerical problems when the number of covariates is large.
- Additive model approach

$$\eta(z_1,\ldots,z_r)=\sum_{j=1}^r\eta_j(z_j)$$

- Additivity is not preserved when changing dependence measure.
- When r is large we may want to use simpler models (piecewise constant).

Calibration Model 00 Bayes Model

Bayesian Estim. 00 Model Selection

Simulation Results

Intermezzo

► So far:

- Motivation for CC models
- Continuous Response Case
- Calibration function model
- Multiple covariates.
- Next:
 - Mixed Response Case
 - Model selection issues
 - Simulation results.

Introduction 000	Calibration Model	Bayes Model ●0000	Bayesian Estim. 00	Model Selection	Simulation Results
Depende	ence models	for CC's	in Nonline	ear Regress	ion
Models					

- Measured outcome consists of a binary, Q, and a continuous r.v. W
- ► Assume a logistic regression model for the binary response.

• For subject
$$j$$
 ($j = 1, ..., n$) we observe:

 $Q_j \sim Bernoulli\left(\frac{\exp(\beta_1 X_j)}{1+\exp(\beta_1 X_j)}\right)$ the binary observed outcome $W_j \sim N(\beta_2 X_j, \sigma^2)$: the continuous observed outcome X_i : observed covariate

• Conditional copula dependence model for Q, W|X.

 Introduction
 Calibration Model
 Bayes Model
 Bayes Model
 Bayes an Estim.
 Model Selection
 Simulation Results

 Dependence models for CC's in Nonlinear Regression

 Models (cont'd)

- Estimation for probit/logistic model involves the use of a latent normal/logistic random variable - the binary response variable is equal to the sign of the latent variable.
- ► Consider $Q_j = \mathbf{1}\{Y_j > 0\}$ where Y_j is a latent logistic random variable with density $f_L(y|A) = \frac{\exp(A-y)}{(1+\exp(A-y))^2}$.
- The latent variable Y is introduced to facilitate computation (for EM, DA).
- Sometimes *Y* offers a deeper interpretation of the model.
- Marginalization preserves the copula model for (Y, W)|X.

Introduction 000	Calibration Model	Bayes Model 00●00	Bayesian Estim. 00	Model Selection	Simulation Results
The Sta	tistical Mo	del			

The contribution of the *j*th sample to the observed-data likelihood

$$\Pr(Q_j = a, W_j | X_j, \omega) = \frac{\phi\{(W_j - X_j\beta_2)/\sigma_2\}}{\sigma_2} \times \left[c^{(0,1)} \left\{ \frac{\exp(aX_j\beta_1)}{1 + \exp(X_j\beta_1)}, \Phi\left(\frac{W_j - X_j\beta_2}{\sigma_2}\right) \middle| \theta(X_j) \right\} \right]^{1-a} \times \left[1 - c^{(0,1)} \left\{ \frac{\exp\{(1-a)X_j\beta_1\}}{1 + \exp(X_j\beta_1)}, \Phi\left(\frac{W_j - X_j\beta_2}{\sigma_2}\right) \middle| \theta(X_j) \right\} \right]^a,$$

where $a \in \{0, 1\}$ and ω represents the vector of all the parameters involved in the model.

Introduction 000	Calibration Model	Bayes Model 000€0	Bayesian Estim. 00	Model Selection	Simulation Results
The Sta	atistical Mo	del			

- We assume that the dependence between the latent variable Y and W is characterized by the same conditional copula C{·, ·|θ(X)}.
- The contribution of the *j*th sample to the *complete data likelihood* would be (if the Y's were observed)

$$f(Y_j, W_j | X_j, \omega) = f_L(Y_j | X_j \beta_1) \frac{1}{\sigma_2} \phi\left(\frac{W_j - X_j \beta_2}{\sigma_2}\right) \\ \times c^{(1,1)} \left\{ F_L(Y_j | X_j \beta_1), \Phi\left(\frac{W_j - X_j \beta_2}{\sigma_2}\right) \middle| \theta(X_j) \right\}$$

►
$$\Pr(Q_j = 0, W_j | X_j, \omega) = \int_{-\infty}^{0} f(Y_j, W_j | X_j, \omega) dY_j$$

Introduction 000	Calibration Model	Bayes Model 0000●	Bayesian Estim. 00	Model Selection	Simulation Results
Remarks					

- The usual dependence measures can be used in the bivariate continuous and mixed outcome models.
- If at least one variable is discrete, the dependence parameters are functions of all the parameters in the model,
- Conditional on X, the population Kendall's tau is

$$\begin{aligned} \tau(\omega|X) &= 4 \mathrm{E}\{H(Q, W|X)|X\} - 1 &= \frac{3 + 2\exp(\beta_1 X) + 3\exp(2\beta_1 X)}{\{1 + \exp(\beta_1 X)\}^2} \\ &- 4 \int_{\mathbf{R}} \left[\frac{1}{\sigma_2} \phi\left(\frac{w - X\beta_2}{\sigma_2}\right) \times \right. \\ &\times C\left\{\frac{1}{1 + \exp(X\beta_1)}, \Phi\left(\frac{w - X\beta_2}{\sigma_2}\right) \middle| \theta(X)\right\}\right] \mathrm{d}w, \end{aligned}$$

where $H(\cdot, \cdot|X)$ is the conditional joint cdf of (Q, W) given X.

Calibration Model

Bayes Model

Bayesian Estim. ●0 Model Selection

Simulation Results

Computation Algorithm

- The posterior distribution π is not analytically tractable.
- The sampling scheme requires to alternate between:
 i) sampling the latent variables from their conditional distribution and
 - ii) sampling from the conditional posterior distribution of each parameter (given the complete data).

Introduction Calibration Model Bayes Model Bayes Model Bayes Model Selection Simulation Results

Computation Algorithm (cont'd)

- For most components (Y's, β's, log(σ), α's and ψ's) we use Metropolis-Hastings updates:
- Step I Sample a proposal $ilde{\omega} \sim q(\cdot|\omega_t, s_\omega)$
- Step II $\omega_{t+1} = \tilde{\omega}$ with probability $\min\{1, \frac{\pi(\tilde{\omega}|EE)q(\omega_t|\tilde{\omega}, s_{\omega})}{\pi(\omega_t|EE)q(\tilde{\omega}|\omega_t, s_{\omega})}\}$; otherwise $\omega_{t+1} = \omega_t$.
- ► Choice of s_w is important and tuning can be time-consuming. We use adaptive MCMC to tune the s_w's "on the go".

Calibration Model

Bayes Model

Bayesian Estim. 00 Model Selection

Simulation Results

Two Selection Problems

- ► Selection of the copula family among a set of candidates.
- Determine whether a parametric calibration function (esp. constant) is suitable.
- Deviance Information Criterion (DIC Spiegelhalter et al, JRSSB '02).
- Cross-validated marginal likelihood criterion (Geisser and Eddy, JASA '79).

Introduction 000	Calibration Model	Bayes Model 00000	Bayesian Estim. 00	Model Selection ○●○	Simulation Results
Selectio	n via DIC				

The DIC is defined as

$$DIC(\mathcal{M}) = 2E[\Delta(\omega)|\mathcal{D}_{obs}] - \Delta(E[\omega|\mathcal{D}_{obs}])$$
(1)

where the model deviance $\Delta(\omega) = -2 \ln p(\mathcal{D}_{obs}|\omega, \mathcal{M})$

- All the required expectations in (1) can be computed using Monte Carlo samples.
- Models with the lowest DIC value are preferred.

A CV Marginal Likelihood Criterion

 \blacktriangleright The criterion computed under model ${\cal M}$ is

$$H(\mathcal{M}) = \sum_{i=1}^{n} \log p(Q_i, W_i | \mathcal{D}_{obs, -i}, \mathcal{M})$$

•
$$E[f(Q_i, W_i | \vec{\zeta}, \vec{\omega})^{-1}] = \frac{1}{p(\mathcal{D}_{obs})} \int \frac{f(\mathcal{D}_{obs} | \vec{\zeta}, \vec{\omega}) p(\vec{\zeta}, \vec{\omega})}{f(Q_i, W_i | \vec{\zeta}, \vec{\omega})} d\vec{\zeta} d\vec{\omega}$$
$$= \frac{1}{p(\mathcal{D}_{obs})} \int f(\mathcal{D}_{obs, -i} | \vec{\zeta}, \vec{\omega}) p(\vec{\zeta}, \vec{\omega}) d\vec{\zeta} d\vec{\omega} = \frac{p(\mathcal{D}_{obs, -i})}{p(\mathcal{D}_{obs})}$$
$$= \frac{1}{p(Q_i, W_i | \mathcal{D}_{obs, -i})}$$

$$\blacktriangleright p(Q_i, W_i | \mathcal{D}_{obs, -i}, \mathcal{M}) \approx \left[\frac{1}{M} \sum_{m=1}^{M} \frac{1}{f(Q_i, W_i | \vec{\zeta}^{(m)}, \vec{\omega}^{(m)})}\right]^{-1},$$

Introduction	
000	

Calibration Model

Bayes Model 00000 Bayesian Estim. 00 Model Selection

Simulation Results

Simulations

- We performed a large number of simulations to study:
 - the spline model's flexibility in capturing non-linear trends in the calibration function
 - the power to select the correct copula model and to determine the form of the calibration function.
 - the use of additive models for two covariates.
 - variable selection using two criteria.

Introduction 000	Calibration Model	Bayes Model 00000	Bayesian Estim. 00	Model Selection	Simulation Results
Simulati	ons				

► We have generated data under the Clayton copula family for two sample sizes, n = 150, 450. Three dependence patterns are created using the following calibration functions:

C1:
$$\eta(z) = \ln(3)$$
;
C2: $\eta(z) = \ln\{0.07z^6 - 0.37(z+1)(z-0.5) + 0.3\}$;
C3: $\eta(z) = \ln\{4.5 - 1.5\sin(\pi z)\}$.

► The data is analyzed using three copula families: Clayton, Frank and Gumbel with the corresponding link functions g_C(x) = ln(1 + x), g_F(x) = x and g_G(x) = ln(x - 1), respectively.

Calibration Model

Bayes Model

Bayesian Estim. 00 Model Selection

Simulation Results

Simulation Results

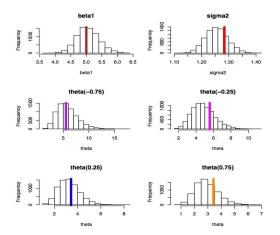
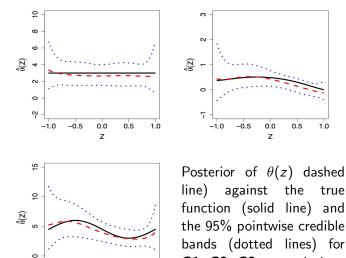


Figure: Histograms of posterior samples obtained from all the parallel MCMC chains when data is generated using a Clayton copula under scenario **C3**. The solid line marks the true parameter value.

Introduction	Calibration Model	Bayes Model	Bayesian Estim.	Model Selection
000	00	00000	00	000

Simulation Results

Simulation Results



1.0

0.0 0.5

-0.5

-1.0

C1, C2, C3 respectively.

1.0

Introduction	Calibration Model	Bayes Model	Bayesian Estim.	Model Selection	Simulation Results
000	00	00000	00	000	000000000000000000000000000000000000000

Ectio	matio	n Resi	il+c
LSUI	Ilatio		JILS

		<i>n</i> = 150			<i>n</i> = 450	
Copula	IBias ²	IVar	IMSE	IBias ²	IVar	IMSE
			Scena	rio C1		
Clayton	0.91	4.56	5.47	0.19	1.56	1.75
Frank	23.84	2.90	26.74	28.08	1.94	30.02
Gumbel	5.36	11.62	16.98	4.80	4.18	8.98
		Scenario C2				
Clayton	0.78	6.46	7.24	0.1	2.32	3.43
Frank	4.07	5.94	10.01	3.65	1.98	5.63
Gumbel	18.70	16.64	35.34	17.35	14.61	31.96
	Scenario C3					
Clayton	0.53	4.02	4.55	0.08	1.23	1.31
Frank	21.00	2.25	23.25	22.24	1.43	23.67
Gumbel	2.67	10.88	13.55	5.83	3.43	9.26

Calibration Model

Bayes Model

Bayesian Estim. 00 Model Selection

Simulation Results

Copula Selection

Calibration Model

Bayes Model

Bayesian Estim. 00 Model Selection

Simulation Results

Copula Selection

Percentage of selecting the Clayton family \Downarrow

Calibration Model

Bayes Model

Bayesian Estim.

Model Selection

Simulation Results

Copula Selection

Percentage of selecting the Clayton family

\Downarrow						
Criteria	n Frank Gumbel					
	Sce	enario C1				
DIC	150	87%	70%			
	450	98%	99%			
CVML	150	62%	67%			
	450	100%	91%			
	Sce	enario C2				
DIC	150	100%	92%			
	450	98%	99%			
CVML	150	99%	100%			
	450	100%	99%			
	Sce	enario C3				
DIC	150	94%	80%			
	450	100%	98%			
CVML	150	86%	60%			
	450	100%	97%			

Calibration Model

Bayes Model

Bayesian Estim.

Model Selection

Simulation Results

Copula Selection

Percentage of selecting the Clayton family

\checkmark							
Criteria	n	Frank	Gumbel				
	Scenario C1						
DIC	150	87%	70%				
	450	98%	99%				
CVML	150	62%	67%				
	<mark>450</mark>	100%	91%				
	Sce	nario C2					
DIC	150	100%	92%				
	450	98%	99%				
CVML	150	0 99% 100					
	<mark>450</mark>	100%	99%				
	Sce	nario C3					
DIC	150	94%	80%				
	<mark>450</mark>	100%	98%				
CVML	150	86%	60%				
	<mark>450</mark>	100%	97%				

Calibration Model

Bayes Model

Bayesian Estim. 00 Model Selection

Simulation Results

Copula Selection

Percentage of selecting the Clayton family

\downarrow							
Criteria	n	Frank	Gumbel				
	Scenario C1						
DIC	150	87%	70%				
	<mark>450</mark>	98%	99%				
CVML	150	62%	67%				
	450	100%	91%				
	Sce	nario C2					
DIC	150	100%	92%				
	<mark>450</mark>	98%	99%				
CVML	150	99%	100%				
	450	100%	99%				
	Sce	nario C3					
DIC	150	94%	80%				
	450	100%	98%				
CVML	150	86%	60%				
	<mark>450</mark>	100%	97%				

Calibration Selection

Calibration Model 00 Bayes Model

Bayesian Estim. 00 Model Selection

Simulation Results

Copula Selection

Percentage of selecting the Clayton family

\downarrow					
Criteria	n	Frank	Gumbel		
	Sce	nario C1			
DIC	150	87%	70%		
	<mark>450</mark>	98%	99%		
CVML	150	62%	67%		
	450	100%	91%		
	Sce	nario C2			
DIC	150	100%	92%		
	450	98%	99%		
CVML	150 99%		100%		
	<mark>450</mark>	100%	99%		
	Sce	nario C3			
DIC	150	94%	80%		
	450	100%	98%		
CVML	150	86%	60%		
	450	100%	97%		

Calibration Selection

Percentage of selecting the calibration function \Downarrow

Calibration Model

Bayes Model

Bayesian Estim. 00 Model Selection

Simulation Results

Copula Selection

Percentage of selecting the Clayton family

\checkmark						
Criteria	n	Frank	Gumbel			
	Sce	nario C1				
DIC	150	87%	70%			
	<mark>450</mark>	98%	99%			
CVML	150	62%	67%			
	450	100%	91%			
	Sce	nario C2				
DIC	150	100%	92%			
	<mark>450</mark>	98%	99%			
CVML	150	99%	100%			
	450	100%	99%			
	Sce	nario C3				
DIC	150	94%	80%			
	<mark>450</mark>	100%	98%			
CVML	150	86%	60%			
	450	100%	97%			

Calibration Selection

Percentage of selecting the calibration function

		\downarrow		
Criteria	n	Spline	Constant	
		Calibration	Calibration	
	5	Scenario C1		
DIC	150	65%	35%	
	450	49%	51%	
CVML	150	66%	34%	
	450	35%	65%	
	5	Scenario C2		
DIC	150	93%	7%	
	450	87% 13%		
CVML	150	96%	4%	
	450	100%	0%	
	S	Scenario C3		
DIC	150	78%	22%	
	450	75%	25%	
CVML	150	66%	34%	
	450	96%	4%	

Calibration Model

Bayes Model

Bayesian Estim. 00 Model Selection

Simulation Results

Copula Selection

Percentage of selecting the Clayton family \downarrow

Criteria	n	Frank	Gumbel				
	Scenario C1						
DIC	150	87%	70%				
	<mark>450</mark>	98%	99%				
CVML	150	62%	67%				
	450	100%	91%				
	Sce	nario C2					
DIC	150	100%	92%				
	<mark>450</mark>	98%	99%				
CVML	150	99%	100%				
	450	100%	99%				
	Sce	nario C3					
DIC	150	94%	80%				
	450	100%	98%				
CVML	150	86%	60%				
	450	100%	97%				

Calibration Selection

Percentage of selecting the calibration function

\Downarrow						
Criteria	n	Spline	Constant			
		Calibration	Calibration			
	S	cenario C1				
DIC	150	65%	35%			
	450	49%	51%			
CVML	150	66%	34%			
	450	35%	65%			
	S	cenario C2				
DIC	150	93%	7%			
	<mark>450</mark>	87%	13%			
CVML	150	96%	4%			
	450	100%	0%			
	S	cenario C3				
DIC	150	78%	22%			
	450	75%	25%			
CVML	150	66%	34%			
	450	96%	4%			

Introduction 000	Calibration Model	Bayes Model 00000	Bayesian Estim. 00	Model Selection	Simulation Results
Twin Da	ata Example	е			

- ► Twin live births in which both babies survived in the first year of life with mothers of age between 18 and 40.
- Study the dependence between the birth weights of twins, BW₁ and BW₂.
- The gestational age, GA, is an important factor for prenatal growth and is therefore chosen as the covariate. We consider a random sample of 30 twin live births for each gestational age (in weeks) between 28 to 45.

Introduction	Calibra
000	00

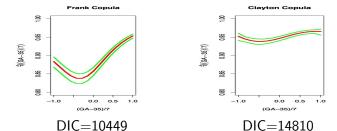
libration Model

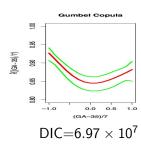
Bayes Model

Bayesian Estim. 00 Model Selection

Simulation Results

Twin Data Example





Calibration Model

Bayes Model

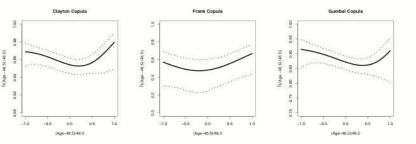
Bayesian Estim. 00 Model Selection

Simulation Results

Example: Burn Injury

- ▶ *n* = 981 burn injury cases
- Occurrence of death $\Rightarrow Q = 1$ for death and Q = 0 for survival
- Total burn area $\Rightarrow W = \log(\text{burn area} + 1)$
- Patient's age
- How age effects the dependence between the severity of burn injury and the probability of death?

Introduction 000	Calibration Model	Bayes Model 00000	Bayesian Estim. 00	Model Selection	Simulation Results
Burn In	jury				



Criteria	n	Clayton	Frank	Gumbel
DIC	981	6865.483	7082.946	6844.854
CVML	981	-3432.229	-3540.972	-3422.06

↑ chosen

Introduction 000	Calibration Model	Bayes Model 00000	Bayesian Estim. 00	Model Selection	Simulation Results
Additive	e Model				

• $Z_1 \& Z_2$ are iid $N(0, 0.35^2)$. • $\eta(z_1, z_2) = 4.5 - 1.5 \sin(z_1 \pi) - 1.5 \sin(z_2 \pi)$

Introduction	
000	

Calibration Model

Bayes Model

Bayesian Estim.

Model Selection

 $Z1_fix = -0.5$

Simulation Results

Additive Model

 $Z1_fix = -0.9$

 $Z1_{fix} = -0.25$

Z1_fix = 0.5

70

 $Z1_fix = 0$

 $Z1_{fix} = -0.75$

Z1_fix = 0.25

θ(Z1, Z2)

8

4

-1.0 0.5

Z1_fix = 0.75

7

θ(Z1, Z2)

8

0

Z2 Z1_fix = 0.9

-1.0 0.5

70

Introduction 000	Calibration Model	Bayes Model 00000	Bayesian Estim. 00	Model Selection	Simulation Results
Variable	Selection				

Introduction	
000	

Calibration Model

Bayes Model 00000 Bayesian Estim. 00 Model Selection

Simulation Results

Variable Selection

• Data were generated under Clayton family; n = 450

Introduction 000	Calibration Model	Bayes Model 00000	Bayesian Estim. 00	Model Selection	Simulation Results
Variable	Selection				

- Data were generated under Clayton family; n = 450
- $X_1 \& X_2 \sim \mathcal{N}(0, 0.35^2)$

Introduction 000	Calibration Model	Bayes Model 00000	Bayesian Estim. 00	Model Selection	Simulation Results
Variable	Selection				

• Data were generated under Clayton family; n = 450

►
$$X_1 \& X_2 \sim \mathcal{N}(0, 0.35^2)$$

► **C3** : $\eta(z) = \ln[4.5 - 1.5\sin(\pi z)]$
► **C4** : $\eta(z_1, z_2) = \ln[4.5 - 1.5\sin(\pi z_1) - 1.5\sin(\pi z_2)]$

Introduction 000	Calibration Model	Bayes Model	Bayesian Estim. 00	Model Selection	Simulation Results
Variable	e Selection				

• Data were generated under Clayton family; n = 450

►
$$X_1 \& X_2 \sim \mathcal{N}(0, 0.35^2)$$

► **C3** : $\eta(z) = \ln[4.5 - 1.5\sin(\pi z)]$
► **C4** : $\eta(z_1, z_2) = \ln[4.5 - 1.5\sin(\pi z_1) - 1.5\sin(\pi z_2)]$

Percentage of selecting the model with correct number of independent variables:

1

Introduction 000	Calibration Model 00	Bayes Model	Bayesian Estim. 00	Model Selection	Simulation Results
Variable	Selection				

• Data were generated under Clayton family; n = 450

►
$$X_1 \& X_2 \sim \mathcal{N}(0, 0.35^2)$$

► **C3** : $\eta(z) = \ln[4.5 - 1.5\sin(\pi z)]$
► **C4** : $\eta(z_1, z_2) = \ln[4.5 - 1.5\sin(\pi z_1) - 1.5\sin(\pi z_2)]$

Percentage of selecting the model with correct number of independent variables:

Criteria	n	1-Covariate 2-Covariate					
Scenario C3							
DIC 450 96% 4%							
CVML	450	96%	4%				
Scenario C4							
DIC	450	0%	100%				
CVML	450	2%	98%				

Introduction 000	Calibration Model	Bayes Model 00000	Bayesian Estim. 00	Model Selection	Simulation Results
Conclus	ions				

- ► Bayesian analysis for conditional copula models with bivariate responses → … multivariate responses?
- Copula selection via DIC (\checkmark) and LP (\checkmark).
- ► Validation of a constant calibration function for continuous (√) and mixed (×) responses.
- ► Additive models for multivariate predictors are promising.
- CC models offer a gateway into joint modelling of high dimensional data using low-dimensional copulas; the performance of this approach remains untested.

Introduction 000	Calibration Model	Bayes Model 00000	Bayesian Estim. 00	Model Selection	Simulation Results
Reference	es				

- * Avideh Sabeti, Mian Wei and R.C (2014) Additive models for *Bivariate Conditional Copulas.* Preprint.
- Elif Acar, R.C. and Fang Yao (2014) Statistical Testing of Covariate Effects in Conditional Copula Models Electr. J. of Statist.
- * R.C. and Avideh Sabeti (2012). In mixed company: Bayesian Inference for Bivariate Conditional Copula Models with Discrete and Continuous Outcomes. JMVA.
- Elif Acar, R.C. and Fang Yao (2011). Dependence Calibration in Conditional Copulas: A Nonparametric Approach., Biometrics.