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Copulas

◮ Copula functions are used to model dependence between
continuous random variables.

◮ (Sklar,’59) If Y1, Y2 are continuous r.v.’s with distribution
functions (df) F1,F2, there exists an unique copula function
C : [0, 1] × [0, 1] → [0, 1] such that

F12(t, s) = Pr(Y1 ≤ t,Y2 ≤ s) = C (F1(t),F2(s)).

◮ C is a distribution function on [0, 1]2 with uniform margins.

◮ The copula bridges the marginal distributions with the joint
distribution.



Introduction Calibration Model Bayes Model Bayesian Estim. Model Selection Simulation Results

Inference for Copula Models

◮ Early on: abundance of theoretical developments:
construction of new copula families and connections with
dependence concepts (NA, PQD/NQD, PRD/NRD, etc). Joe
(’97), Nelsen (’06).

◮ Statistical inference for classical parametric copulas
◮ Joint Maximum Likelihood: numerical methods
◮ Two-stage approach: Joe (JMVA, ’05)
◮ Semiparametric approach: Genest, Khoudi and Rivest (Bmka,

’95)

◮ Copula selection and goodness-of-fit (Berg, Eur. J. of
Finance, ’09).

◮ Emphasis is placed on copula applications in statistics.

◮ Today: Dynamic regimes of dependence.
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Example: Blood pressure

Example It is known that there is a dependence between blood
pressure (BP) and body mass index (BMI). What if the
dependence varies with subject’s age? Can we still use copulas?
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Example: Twin Weight

◮ Twin live births in which both babies survived in the first year
of life with mothers of age between 18 and 40.

◮ Study the dependence between the birth weights of twins,
BW1 and BW2.

◮ The gestational age, GA, is an important factor for prenatal
growth.

◮ How does GA influence the dependence between BW1 and
BW2?
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Example: Smoking cessation

◮ The smoking cessation study of Liu, Daniels and Marcus
(JASA ’09) :

Q = smoking cessation (0=No, 1=Yes)
W = weight change
X = time spent exercising

◮ Does exercise weaken the association between smoking status
and weight gain?
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Conditional Copulas

◮ The conditional copula of (Y1,Y2)|X = x , is the conditional
joint distribution function of U = F1|X (Y1|x) and
V = F2|X (Y2|x) given X = x (Patton, Int’l Econ. Rev. ’06).

◮ Consider a random sample {xi , y1i , y2i}1≤i≤n and suppose
F1|X and F2|X are the unknown marginal conditional cdf’s.

◮ The parametric conditional copula model assumes

(Y1i ,Y2i )|X = xi ∼ C (F (Y1i |xi ),F (Y2i |xi )|θ(xi)).

◮ Marginals and copula are conditional on the same variables.
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General comments

◮ Conditional copulas (CC) broaden the range of applications.
(i) more realistic use of copula models in regression settings.
(ii) improve the interpretability and understanding of
covariate-varying dependence structures.

◮ Flexible models for the relationship between the association
measure (copula parameter, Kendall’s tau, etc) and
covariate(s) are needed.
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A second motivation

◮ Joint models for high dimensional data.

◮ The joint distribution of (U1,U2,U3) is modelled using the
pair copula model is

c(u1, u2, u3) = c12(u1, u2)c23(u2, u3)c13|2(u1|2, u3|2; u2)

where uk|2 = Pr(Uk ≤ uk |U2 = u2).

◮ Acar, Genest and Neslehova (JMVA, ’12) show that wrongly
assuming c13|2 is the same for all u2 leads to biased estimators.
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Dependence models for CC’s in Linear Regression Models

◮ V1,V2 are continuous r.v.’s, Vi ∼ N (Xβi , σ
2
i ), for i = 1, 2.

◮ Jointly,

f (V1,V2|X ) =

2
∏

i=1

1

σi
φ

(

Vi − Xβi

σi

)

× c(1,1)

{

Φ

(

V1 − Xβ1

σ1

)

,Φ

(

V2 − Xβ2

σ2

)
∣

∣

∣

∣

θ(X )

}

,

where c(a,b)(u, v |θ) = ∂a+bC (u, v |θ)/∂ua∂vb, for all
0 ≤ a, b ≤ 1.

◮ Choose g such that g(θ(xi)) = η(xi ), where η : R → R is the
calibration function in inferential focus.
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Calibration Model

◮ A modified version of the cubic spline model of Smith and
Kohn (J. Econometrics, ’96), Fan et al. (JCGS, ’10)

η(z) =

3
∑

j=0

αjz
j +

K
∑

k=1

ψk(z − γk)3+.

◮ Number and location of knots is influential.
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Why a Bayesian approach?

◮ Joint modelling avoids the propagation of errors.

◮ Samples from π(ω|D) lead to finite sample variance estimates,
pointwise credible regions, computation of model selection
criteria.

◮ Allows data-driven choice of knots location.

◮ Can use Bayesian model averaging to account for model
uncertainty.

◮ Requires careful examination of the prior’s influence.
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Bayesian Curve Fitting with Cubic Splines

◮ Alternative to reversible-jump MCMC approach.

◮ Partition the range of X into Kmax intervals, Ik , and introduce
auxiliary variables

ζk =

{

1 if there is a knot γk in Ik and ψk 6= 0
0 if there is no knot in Ik and ψk = 0

◮ η(z) =
∑3

j=0 αjz
j +

∑Kmax

k=1 ψkζk(z − γk)3+,
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Bayesian Curve Fitting with Cubic Splines (cont’d)

◮ Let |ζ| =
∑Kmax

k=1 ζk be the number of knots that are used in
the model and set:

(i) λ ∼ Binomial(Kmax , p = 0.5).

(ii) p(|ζ| | λ) ∝ λ|ζ|

|ζ|! 1{|ζ|≤Kmax}

(iii) p(ζ | |ζ|) =
(

Kmax

|ζ|

)−1
, all configurations are equally likely.

◮ p(ζ) = p(ζ | |ζ|)p(|ζ|).
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Bayesian Curve Fitting with Cubic Splines (cont’d)

◮ Prior distributions:

~α ∼ MVN(0, 10I4)
~ψ ∼ N(0, 10IKmax

)

γj ∼ Uniform[Ij ], j = 1, . . . ,Kmax
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Prior specification

28 30 32 34 36 38 40 42

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Z

τ

Figure: 500 curves generated from the prior spline model with Kmax = 4.
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Prior specification
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Figure: 500 curves generated from the prior spline model with Kmax = 4.
Covariate is standardized.
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Multiple covariates

◮ Numerical problems when the number of covariates is large.

◮ Additive model approach

η(z1, . . . , zr ) =

r
∑

j=1

ηj (zj)

◮ Additivity is not preserved when changing dependence
measure.

◮ When r is large we may want to use simpler models (piecewise
constant).
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Intermezzo

◮ So far:
◮ Motivation for CC models
◮ Continuous Response Case
◮ Calibration function model
◮ Multiple covariates.

◮ Next:
◮ Mixed Response Case
◮ Model selection issues
◮ Simulation results.
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Dependence models for CC’s in Nonlinear Regression
Models

◮ Measured outcome consists of a binary, Q, and a continuous
r.v. W

◮ Assume a logistic regression model for the binary response.

◮ For subject j (j = 1, . . . ,n) we observe:

Qj ∼ Bernoulli
“

exp(β1Xj )

1+exp(β1Xj )

”

the binary observed outcome

Wj ∼ N(β2Xj , σ
2) : the continuous observed outcome

Xj : observed covariate

◮ Conditional copula dependence model for Q,W |X .
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Dependence models for CC’s in Nonlinear Regression
Models (cont’d)

◮ Estimation for probit/logistic model involves the use of a
latent normal/logistic random variable - the binary response
variable is equal to the sign of the latent variable.

◮ Consider Qj = 1{Yj > 0} where Yj is a latent logistic random
variable with density fL(y |A) = exp(A−y)

(1+exp(A−y))2
.

◮ The latent variable Y is introduced to facilitate computation
(for EM, DA).

◮ Sometimes Y offers a deeper interpretation of the model.

◮ Marginalization preserves the copula model for (Y ,W )|X .
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The Statistical Model

◮ The contribution of the jth sample to the observed-data
likelihood

Pr(Qj = a,Wj |Xj , ω) =
φ{(Wj − Xjβ2)/σ2}

σ2
×

×

[

c(0,1)

{

exp(aXjβ1)

1 + exp(Xjβ1)
,Φ

(

Wj − Xjβ2)

σ2

)
∣

∣

∣

∣

θ(Xj)

}]1−a

×

[

1 − c(0,1)

{

exp{(1 − a)Xjβ1}

1 + exp(Xjβ1)
,Φ

(

Wj − Xjβ2

σ2

) ∣

∣

∣

∣

θ(Xj)

}]a

,

where a ∈ {0, 1} and ω represents the vector of all the
parameters involved in the model.
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The Statistical Model

◮ We assume that the dependence between the latent variable
Y and W is characterized by the same conditional copula
C{·, ·|θ(X )}.

◮ The contribution of the jth sample to the complete data

likelihood would be (if the Y ’s were observed)

f (Yj ,Wj |Xj , ω) = fL (Yj |Xjβ1)
1

σ2
φ

(

Wj − Xjβ2

σ2

)

× c(1,1)

{

FL (Yj |Xjβ1) ,Φ

(

Wj − Xjβ2

σ2

)
∣

∣

∣

∣

θ(Xj)

}

.

◮ Pr(Qj = 0,Wj |Xj , ω) =
0
∫

−∞
f (Yj ,Wj |Xj , ω)dYj
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Remarks

◮ The usual dependence measures can be used in the bivariate
continuous and mixed outcome models.

◮ If at least one variable is discrete, the dependence parameters
are functions of all the parameters in the model,

◮ Conditional on X , the population Kendall’s tau is

τ(ω|X ) = 4E{H(Q,W |X )|X} − 1 =
3 + 2 exp(β1X ) + 3 exp(2β1X )

{1 + exp(β1X )}2

− 4

∫

R

[

1

σ2
φ

(

w − Xβ2

σ2

)

×

× C

{

1

1 + exp(Xβ1)
,Φ

(

w − Xβ2

σ2

)∣

∣

∣

∣

θ(X )

}]

dw ,

where H(·, ·|X ) is the conditional joint cdf of (Q,W ) given X.
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Computation Algorithm

◮ The posterior distribution π is not analytically tractable.

◮ The sampling scheme requires to alternate between:
i) sampling the latent variables from their conditional
distribution and
ii) sampling from the conditional posterior distribution of each
parameter (given the complete data).
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Computation Algorithm (cont’d)

◮ For most components (Y ’s, β’s, log(σ), α’s and ψ’s) we use
Metropolis-Hastings updates:

Step I Sample a proposal ω̃ ∼ q(·|ωt , sω)

Step II ωt+1 = ω̃ with probability min{1, π(ω̃|EE)q(ωt |ω̃,sω)
π(ωt |EE)q(ω̃|ωt ,sω)}; otherwise

ωt+1 = ωt .

◮ Choice of sω is important and tuning can be time-consuming.
We use adaptive MCMC to tune the sω’s “on the go” .
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Two Selection Problems

◮ Selection of the copula family among a set of candidates.

◮ Determine whether a parametric calibration function (esp.
constant) is suitable.

◮ Deviance Information Criterion (DIC - Spiegelhalter et al,
JRSSB ’02).

◮ Cross-validated marginal likelihood criterion (Geisser and
Eddy, JASA ’79).
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Selection via DIC

◮ The DIC is defined as

DIC (M) = 2E [∆(ω)|Dobs ] − ∆(E [ω|Dobs ]) (1)

where the model deviance ∆(ω) = −2 ln p(Dobs |ω,M)

◮ All the required expectations in (1) can be computed using
Monte Carlo samples.

◮ Models with the lowest DIC value are preferred.
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A CV Marginal Likelihood Criterion

◮ The criterion computed under model M is

H(M) =
n

∑

i=1

log p(Qi ,Wi |Dobs,−i ,M)

• E [f (Qi ,Wi |~ζ, ~ω)−1] =
1

p(Dobs)

∫

f (Dobs |~ζ, ~ω)p(~ζ, ~ω)

f (Qi ,Wi |~ζ, ~ω)
d~ζd~ω

=
1

p(Dobs)

∫

f (Dobs,−i |~ζ, ~ω)p(~ζ, ~ω)d~ζd~ω =
p(Dobs,−i )

p(Dobs)

=
1

p(Qi ,Wi |Dobs,−i )

◮ p(Qi ,Wi |Dobs,−i ,M) ≈

[

1
M

M
∑

m=1

1

f (Qi ,Wi |~ζ(m),~ω(m))

]−1

,
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Simulations

◮ We performed a large number of simulations to study:

◮ the spline model’s flexibility in capturing non-linear trends in
the calibration function

◮ the power to select the correct copula model and to determine
the form of the calibration function.

◮ the use of additive models for two covariates.
◮ variable selection using two criteria.
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Simulations

◮ We have generated data under the Clayton copula family for
two sample sizes, n = 150, 450. Three dependence patterns
are created using the following calibration functions:

C1: η(z) = ln(3);
C2: η(z) = ln{0.07z6 − 0.37(z + 1)(z − 0.5) + 0.3};
C3: η(z) = ln{4.5 − 1.5 sin(πz)}.

◮ The data is analyzed using three copula families: Clayton,
Frank and Gumbel with the corresponding link functions
gC (x) = ln(1 + x), gF (x) = x and gG (x) = ln(x − 1),
respectively.
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Simulation Results

Figure: Histograms of posterior samples obtained from all the parallel
MCMC chains when data is generated using a Clayton copula under
scenario C3. The solid line marks the true parameter value.
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Simulation Results

Posterior of θ(z) dashed
line) against the true
function (solid line) and
the 95% pointwise credible
bands (dotted lines) for
C1, C2, C3 respectively.
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Estimation Results

n = 150 n = 450
Copula IBias2 IVar IMSE IBias2 IVar IMSE

Scenario C1

Clayton 0.91 4.56 5.47 0.19 1.56 1.75

Frank 23.84 2.90 26.74 28.08 1.94 30.02
Gumbel 5.36 11.62 16.98 4.80 4.18 8.98

Scenario C2

Clayton 0.78 6.46 7.24 0.1 2.32 3.43
Frank 4.07 5.94 10.01 3.65 1.98 5.63

Gumbel 18.70 16.64 35.34 17.35 14.61 31.96

Scenario C3

Clayton 0.53 4.02 4.55 0.08 1.23 1.31
Frank 21.00 2.25 23.25 22.24 1.43 23.67

Gumbel 2.67 10.88 13.55 5.83 3.43 9.26
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Copula Selection
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Copula Selection

Percentage of selecting
the Clayton family

⇓
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Copula Selection

Percentage of selecting
the Clayton family

⇓
Criteria n Frank Gumbel

Scenario C1

DIC 150 87% 70%
450 98% 99%

CVML 150 62% 67%
450 100% 91%

Scenario C2

DIC 150 100% 92%
450 98% 99%

CVML 150 99% 100%
450 100% 99%

Scenario C3

DIC 150 94% 80%
450 100% 98%

CVML 150 86% 60%
450 100% 97%
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Copula Selection
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450 100% 99%
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450 100% 97%
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Copula Selection Calibration Selection

Percentage of selecting
the Clayton family

⇓
Criteria n Frank Gumbel
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450 100% 97%
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Copula Selection Calibration Selection
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Copula Selection Calibration Selection
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Criteria n Spline Constant
Calibration Calibration

Scenario C1

DIC 150 65% 35%
450 49% 51%

CVML 150 66% 34%
450 35% 65%

Scenario C2

DIC 150 93% 7%
450 87% 13%

CVML 150 96% 4%
450 100% 0%

Scenario C3

DIC 150 78% 22%
450 75% 25%

CVML 150 66% 34%
450 96% 4%
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Copula Selection Calibration Selection
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Twin Data Example

◮ Twin live births in which both babies survived in the first year
of life with mothers of age between 18 and 40.

◮ Study the dependence between the birth weights of twins,
BW1 and BW2.

◮ The gestational age, GA, is an important factor for prenatal
growth and is therefore chosen as the covariate. We consider
a random sample of 30 twin live births for each gestational
age (in weeks) between 28 to 45.
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Twin Data Example

DIC=10449 DIC=14810

DIC=6.97 × 107
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Example: Burn Injury

◮ n = 981 burn injury cases

◮ Occurrence of death ⇒ Q = 1 for death and Q = 0 for
survival

◮ Total burn area ⇒ W = log(burn area + 1)

◮ Patient’s age

◮ How age effects the dependence between the severity of burn
injury and the probability of death?
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Burn Injury

Criteria n Clayton Frank Gumbel
DIC 981 6865.483 7082.946 6844.854
CVML 981 -3432.229 -3540.972 -3422.06

⇑

chosen
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Additive Model

◮ Z1 & Z2 are iid N(0, 0.352).

◮ η(z1, z2) = 4.5 − 1.5 sin(z1π) − 1.5 sin(z2π)
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Additive Model
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Variable Selection
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Variable Selection

◮ Data were generated under Clayton family; n = 450
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Variable Selection

◮ Data were generated under Clayton family; n = 450

◮ X1 & X2 ∼ N (0, 0.352)
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Variable Selection

◮ Data were generated under Clayton family; n = 450

◮ X1 & X2 ∼ N (0, 0.352)

◮ C3 : η(z) = ln[4.5 − 1.5 sin(πz)]

◮ C4 : η(z1, z2) = ln[4.5 − 1.5 sin(πz1) − 1.5 sin(πz2)]
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Variable Selection

◮ Data were generated under Clayton family; n = 450

◮ X1 & X2 ∼ N (0, 0.352)

◮ C3 : η(z) = ln[4.5 − 1.5 sin(πz)]

◮ C4 : η(z1, z2) = ln[4.5 − 1.5 sin(πz1) − 1.5 sin(πz2)]

◮ Percentage of selecting the model with correct number of
independent variables:
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Variable Selection

◮ Data were generated under Clayton family; n = 450

◮ X1 & X2 ∼ N (0, 0.352)

◮ C3 : η(z) = ln[4.5 − 1.5 sin(πz)]

◮ C4 : η(z1, z2) = ln[4.5 − 1.5 sin(πz1) − 1.5 sin(πz2)]

◮ Percentage of selecting the model with correct number of
independent variables:

Criteria n 1-Covariate 2-Covariate

Scenario C3

DIC 450 96% 4%
CVML 450 96% 4%

Scenario C4

DIC 450 0% 100%

CVML 450 2% 98%
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Conclusions

◮ Bayesian analysis for conditional copula models with bivariate
responses → ... multivariate responses?

◮ Copula selection via DIC (X) and LP (X).

◮ Validation of a constant calibration function for continuous
(X) and mixed (×) responses.

◮ Additive models for multivariate predictors are promising.

◮ CC models offer a gateway into joint modelling of high
dimensional data using low-dimensional copulas; the
performance of this approach remains untested.
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