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MCMC at the crossroads

▶ Large data and/or intractable likelihoods have brought
Bayesian computation at a crossroads.

▶ Consider observed data y0 ∈ Y, likelihood function L(θ|y0)
(or sampling distribution f (y|θ)), prior p(θ) with θ ∈ Rd .

▶ Focus is on π(θ|y0) ∝ f (y0|θ)p(θ).
▶ The Metropolis-Hastings sampler is one of the most used

algorithms in MCMC.
▶ Given the current state of the chain θ, draw ξ ∼ q(ξ|θ).
▶ Accept ξ with probability min

{
1, π(ξ|y0)q(θ|ξ)

π(θ|y0)q(ξ|θ)

}
.

▶ If ξ is accepted, the next state is ξ, otherwise it is (still) θ.

▶ Note that π(θ|y0) ∝ p(θ)L(θ|y0) needs to be computed at
each iteration. (hence L(θ|y0) must also be computable)
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Challenge 1: Massive data set

▶ L(θ|D) is computable, but data is massive.

▶ Precomputing (Boland et al., EJS, 2018)

▶ Sequential processing (Bardenet et el. 2014; Korratikara et al.
2014)

▶ Divide and conquer (Neiswanger et al. 2013; Wang and
Dunson 2013; Scott et al. 2016; Entezari et al. 2018; Nemeth
and Sherlock 2018; Changye and Robert 2019)

▶ Subsampling (Quiroz et al. 2018; Campbell and Broderick
2019 )
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Challenge 2: Intractable likelihoods

▶ When the likelihood L(θ|y0) is not computable but one can
sample from f (y|θ) for all θ’s....

▶ Approximate Bayesian Computation (ABC)

▶ Bayesian Synthetic Likelihood (BSL)
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Double jeopardy: Large data and Intractable Likelihood

▶ The generation of pseudo-data can be expensive, e.g. climate
change scenarios (Oyebamiji et al. 2015) or hurricane surges
(Plumlee et al. 2021)

▶ Most of methods that address the challenge of large data
cannot be used directly for intractable models.

▶ Today: discuss an approach that can be used with ABC and
BSL.
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ABC

▶ ABC:
▶ Sample θ ∼ p(θ) and y ∼ f (y|θ);
▶ Compute distance:

δ(y) := ∥S(y),S(y0)∥ =
√

[S(y)− S(y0)]TA [S(y)− S(y0)]

▶ If δ(y) < ϵ retain (θ, y) as a draw from

πϵ(θ, y|y0) ∝ p(θ)f (y|θ)1{δ(y)<ϵ}

▶ The marginal target (in θ) is

πϵ(θ|y0) =

∫
Y
πϵ(θ, y|y0)dy ∝

∝ p(θ)

∫
Y
f (y|θ)1{δ(y)≤ϵ}dy︸ ︷︷ ︸

approximate likelihood

= p(θ) Pr(δ(y) ≤ ϵ|θ, y0)︸ ︷︷ ︸
:=h(θ)
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Zooming in on the target

▶ We consider building a chain with target πϵ(θ|y0) ∝ p(θ)h(θ).

▶ Consider proposal ξt+1 ∼ q(ξ|θt)

▶ A Metropolis-Hastings sampler requires calculating

p(ξt+1)h(ξt+1)q(θt |ξt+1)

p(θt)h(θt)q(ξt+1|θt)
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A marginal yet important target

▶ Lee et al (2012) propose to use w1, . . . ,wJ ∼ f (w|ξ) to
estimate

ĥ(ξ) = J−1
J∑

j=1

1{δ(wj )<ϵ}

▶ Wilkinson (2013) generalizes to smoothing kernels

▶ Bornn et al (2014) make the case of using J = 1.

▶ Idea in this talk: Recycle past proposals to estimate h(ξ).
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History repeating itself

▶ At time n the proposal is (ζn+1,wn+1) ∼ q(ζ|θn)f (w|ζ)

▶ At iteration n, all the proposals {ζk}k=1:n, either accepted or
rejected, and distances δk = δ(wk) are available.

▶ This is the history, denoted Zn, of the chain.
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A selective memory helps

▶ Given a new proposal ζn+1 ∼ q(|θn), we generate
wn+1 ∼ f (·|ζn+1) and compute δn+1 = δ(wn+1). Let
Zn+1 = Zn ∪ {(ζn+1, δn+1)} and estimate h(ζ∗) using

ĥ(ζ∗) =

∑n
k=1Wk(ζn+1)1δk<ϵ∑n

k=1Wk(ζn+1)
, (1)

where Wk(ζn+1) = W (∥ζk − ζn+1∥) are weights and
W : R → [0,∞) is a decreasing function.

▶ Alternatively, use a subset of the K closest ζks in Zn
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Good news

▶ If δn+1 > ϵ ⇒ rejection for ABC-MCMC

▶ But if ∃ζk with a corresponding δk < ϵ then h(ζn+1) ̸= 0

▶ Compare

h̃(ζ∗) =
1

K

K∑
j=1

1{δ̃j<ϵ} ⇒ unbiased

ĥ(ζ∗) =

∑N
n=1WNn(ζ

∗)1{δ̃n<ϵ}∑N
n=1WNn(ζ∗)

⇒ consistent

▶ When K is small - reduce variability.

▶ When K is large - reduce costs.
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Complications

▶ If the past samples are used to modify the kernel ⇒ Adaptive
MCMC

▶ In order to avoid AMCMC conditions for validity, we separate
the samples used as proposals from those used to estimate h

▶ At each time t:
▶ We use the Independent Metropolis sampler, i.e.

q(ζ|θ(t)) = q(ζ)
▶ Generate two independent samples

{(ζt+1,wt+1), (ζ̃t+1, w̃t+1)}
iid∼ q(ζ)f (w|ζ)

▶ Set ZN+1 = ZN ∪ {(ζ̃N+1, δ̃N+1)}
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Friendly neighbors

▶ The k-Nearest-Neighbor (kNN) regression approach has a
property of uniform consistency

▶ Set K =
√
n and relabel history so that (ζ̃1, δ̃1) and (ζ̃n, δ̃n)

corresponds to the smallest and largest among all distances
{∥ζ̃j − ζn+1∥ : 1 ≤ j ≤ n}

▶ Weights are defined as:
▶ Wk = 0 for k > K

(U) The uniform kNN with Wk(ζn+1) = 1 for all k ≤ K ;
(L) The linear kNN with

Wk(ζk) = W (∥ζ̃k − ζn+1∥) = 1− ∥ζ̃k − ζn+1∥/∥ζ̃K − ζn+1∥ for
k ≤ K so that the weight decreases from 1 to 0 as k increases
from 1 to K .

Radu Craiu Approximate Computation for Approximate Bayesian Models 12



Motivation Approximate Bayesian Computation (ABC) Theory Numerical Experiments

A bit of theory

(B1) Θ is a compact set.

(B2) q(θ) > 0 is a continuous density (proposal).

(B3) p(θ) > 0 is a continuous density (prior).

(B4) h(θ) continuous function of θ.

(B5) In kNN estimation assume that K (n) =
√
n with uniform or

linear weights.
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Some comfort

▶ Let P(·, ·) denote the transition kernel of our AABC sampler,
when h(θ) is computed exactly.

▶ µ denotes stationary distribution for P(·, ·)

▶ The approximate kernel at time t is denoted P̂t

▶ The distribution of θt is denoted µt := νP̂1 . . . ...P̂t
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Some comfort

Vanishing TV Theorem

Suppose that (A1)- (A3) are satisfied . Let π denote the invariant
measure of P and ν be any probability measure on (Θ,F0), then∥∥∥∥∥µ−

∑M−1
t=0 νP̂1 · · · P̂t

M

∥∥∥∥∥
TV

≤ O(M−1) + O(M−1ϵ) + O(ϵ),
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More Comfort

Vanishing MSE Theorem

Let π denote the invariant measure of P, f (θ) be a bounded
function and θ(0) ∼ ν. Then

E

(µf − 1

M

M−1∑
t=0

f (θ(t))

)2
 ≤ |f |2[O(M−1)+O(ϵ2)+O(M−1ϵ)]

where µf = Eµf .
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Numerical Experiments: Ricker’s Model

▶ A particular instance of hidden Markov model:

x−49 = 1; zi
iid∼ N (0, exp(θ2)

2); i = {−48, · · · , n},
xi = exp(exp(θ1))xi−1 exp(−xi−1 + zi ); i = {−48, · · · , n},
yi = Pois(exp(θ3)xi ); i = {−48, · · · , n},

where Pois(λ) is Poisson distribution

▶ Only y = (y1, · · · , yn) sequence is observed, because the first
50 values are ignored.
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Numerical Experiments: Ricker’s Model

Define summary statistics S(y) as the 14-dimensional vector whose
components are:

(C1) #{i : yi = 0},
(C2) Average of y, ȳ ,

(C3:C7) Sample auto-correlations at lags 1 through 5,

(C8:C11) Coefficients β0, β1, β2, β3 of cubic regression
(yi − yi−1) = β0 + β1yi + β2y

2
i + β3y

3
i + ϵi , i = 2, . . . , n,

(C12-C14) Coefficients β0, β1, β2 of quadratic regression
y0.3i = β0 + β1y

0.3
i−1 + β2y

0.6
i−1 + ϵi , i = 2, . . . , n.
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Numerical Experiments: Ricker’s Model - ABC/RWM

Figure: Ricker’s model: ABC-RW Sampler. Each row corresponds to
parameters θ1 (top row), θ2 (middle row) and θ3 (bottom row) and
shows in order from left to right: Trace-plot, Histogram and
Auto-correlation function. Red lines represent true parameter values.
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Numerical Experiments: Ricker’s Model - ABC

Figure: Ricker’s model: AABC-U Sampler.
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Numerical Experiments: Ricker’s Model - ABC

Diff with exact Diff with true parameter Efficiency

Sampler DIM DIC TV
√
Bias2

√
VAR

√
MSE ESS ESS/CPU

ABC-RW 0.135 0.0201 0.389 0.059 0.180 0.189 87 0.199
AABC-U 0.147 0.0279 0.402 0.076 0.190 0.204 3563 4.390
AABC-L 0.141 0.0258 0.392 0.070 0.189 0.201 4206 5.193
BSL-RW 0.129 0.0080 0.382 0.038 0.206 0.209 131 0.030
ABSL-U 0.103 0.0054 0.377 0.023 0.170 0.171 284 0.180
ABSL-L 0.106 0.0051 0.382 0.012 0.173 0.173 207 0.135

Table: Summaries based on 40K samples
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Concluding remarks

▶ Precomputation! Useful also for Bayesian synthetic likelihood
methods.

▶ We obtain good results even if q(ξ|θ) = N (θ,Σ) but more
theory needed.

▶ The computational burden can prohibit the full reach of
approximate methods so more solutions are needed.

▶ Computation
♡→ Statistics.

▶ Is it time for more Statistics
♡→ Computation?

All papers available at:
http://www.utstat.toronto.edu/craiu/
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