Approximate Computation for Approximate Bayesian Models

Radu Craiu
Department of Statistical Sciences
University of Toronto
Joint with Evgeny Levi (Toronto)

MCMC at the crossroads

- Large data and/or intractable likelihoods have brought Bayesian computation at a crossroads.
- Consider observed data $\mathbf{y}_{0} \in \mathcal{Y}$, likelihood function $L\left(\boldsymbol{\theta} \mid \mathbf{y}_{0}\right)$ (or sampling distribution $f(\mathbf{y} \mid \boldsymbol{\theta})$), prior $p(\boldsymbol{\theta})$ with $\boldsymbol{\theta} \in \mathbf{R}^{d}$.
- Focus is on $\pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{0}\right) \propto f\left(\mathbf{y}_{0} \mid \boldsymbol{\theta}\right) p(\boldsymbol{\theta})$.
- The Metropolis-Hastings sampler is one of the most used algorithms in MCMC.
- Given the current state of the chain θ, draw $\xi \sim q(\xi \mid \theta)$.
- Accept ξ with probability $\min \left\{1, \frac{\pi\left(\xi \mid y_{0}\right) q(\theta \mid \xi)}{\pi\left(\theta \mid y_{0}\right) q(\xi \mid \theta)}\right\}$.
- If ξ is accepted, the next state is ξ, otherwise it is (still) θ.
- Note that $\pi\left(\boldsymbol{\theta} \mid \mathbf{y}_{0}\right) \propto p(\boldsymbol{\theta}) L\left(\boldsymbol{\theta} \mid \mathbf{y}_{0}\right)$ needs to be computed at each iteration. (hence $L\left(\theta \mid \mathbf{y}_{0}\right)$ must also be computable)

Challenge 1: Massive data set

- $L(\theta \mid \mathcal{D})$ is computable, but data is massive.
- Precomputing (Boland et al., EJS, 2018)
- Sequential processing (Bardenet et el. 2014; Korratikara et al. 2014)
- Divide and conquer (Neiswanger et al. 2013; Wang and Dunson 2013; Scott et al. 2016; Entezari et al. 2018; Nemeth and Sherlock 2018; Changye and Robert 2019)
- Subsampling (Quiroz et al. 2018; Campbell and Broderick 2019)

Challenge 2: Intractable likelihoods

- When the likelihood $L\left(\theta \mid \mathbf{y}_{0}\right)$ is not computable but one can sample from $f(\mathbf{y} \mid \theta)$ for all θ 's....
- Approximate Bayesian Computation (ABC)
- Bayesian Synthetic Likelihood (BSL)

Double jeopardy: Large data and Intractable Likelihood

- The generation of pseudo-data can be expensive, e.g. climate change scenarios (Oyebamiji et al. 2015) or hurricane surges (Plumlee et al. 2021)
- Most of methods that address the challenge of large data cannot be used directly for intractable models.
- Today: discuss an approach that can be used with ABC and BSL.
- ABC :
- Sample $\boldsymbol{\theta} \sim p(\boldsymbol{\theta})$ and $\mathbf{y} \sim f(\mathbf{y} \mid \boldsymbol{\theta})$;
- Compute distance:

$$
\delta(\mathbf{y}):=\left\|\mathbf{S}(\mathbf{y}), \mathbf{S}\left(\mathbf{y}_{0}\right)\right\|=\sqrt{\left[\mathbf{S}(\mathbf{y})-\mathbf{S}\left(\mathbf{y}_{0}\right)\right]^{T} A\left[\mathbf{S}(\mathbf{y})-\mathbf{S}\left(\mathbf{y}_{0}\right)\right]}
$$

- If $\delta(\mathbf{y})<\epsilon$ retain $(\boldsymbol{\theta}, \mathbf{y})$ as a draw from

$$
\pi_{\epsilon}\left(\boldsymbol{\theta}, \mathbf{y} \mid \mathbf{y}_{0}\right) \propto p(\boldsymbol{\theta}) f(\mathbf{y} \mid \boldsymbol{\theta}) \mathbf{1}_{\{\delta(\mathbf{y})<\epsilon\}}
$$

- The marginal target (in $\boldsymbol{\theta}$) is

$$
\begin{aligned}
\pi_{\epsilon}\left(\boldsymbol{\theta} \mid \mathbf{y}_{0}\right) & =\int_{\mathcal{Y}} \pi_{\epsilon}\left(\boldsymbol{\theta}, \mathbf{y} \mid \mathbf{y}_{0}\right) d \mathbf{y} \propto \\
& \propto p(\boldsymbol{\theta}) \underbrace{\int_{\mathcal{Y}} f(\mathbf{y} \mid \boldsymbol{\theta}) \mathbf{1}_{\{\delta(\mathbf{y}) \leq \epsilon\}} d \mathbf{y}}_{\text {approximate likelihood }}=p(\boldsymbol{\theta}) \underbrace{\operatorname{Pr}\left(\delta(\mathbf{y}) \leq \epsilon \mid \boldsymbol{\theta}, \mathbf{y}_{0}\right)}_{:=h(\boldsymbol{\theta})}
\end{aligned}
$$

Zooming in on the target

- We consider building a chain with target $\pi_{\epsilon}\left(\boldsymbol{\theta} \mid \mathbf{y}_{0}\right) \propto p(\boldsymbol{\theta}) h(\boldsymbol{\theta})$.
- Consider proposal $\xi_{t+1} \sim q\left(\xi \mid \boldsymbol{\theta}_{t}\right)$
- A Metropolis-Hastings sampler requires calculating

$$
\frac{p\left(\xi_{t+1}\right) h\left(\xi_{t+1}\right) q\left(\boldsymbol{\theta}_{t} \mid \xi_{t+1}\right)}{p\left(\boldsymbol{\theta}_{t}\right) h\left(\boldsymbol{\theta}_{t}\right) q\left(\xi_{t+1} \mid \boldsymbol{\theta}_{t}\right)}
$$

A marginal yet important target

- Lee et al (2012) propose to use $\mathbf{w}_{1}, \ldots, \mathbf{w}_{J} \sim f(\mathbf{w} \mid \xi)$ to estimate

$$
\widehat{h}(\xi)=J^{-1} \sum_{j=1}^{J} \mathbf{1}_{\left\{\delta\left(\mathbf{w}_{j}\right)<\epsilon\right\}}
$$

- Wilkinson (2013) generalizes to smoothing kernels
- Bornn et al (2014) make the case of using $J=1$.
- Idea in this talk: Recycle past proposals to estimate $h(\xi)$.

History repeating itself

- At time n the proposal is $\left(\zeta_{n+1}, \mathbf{w}_{n+1}\right) \sim q\left(\zeta \mid \theta_{n}\right) f(\mathbf{w} \mid \zeta)$
- At iteration n, all the proposals $\left\{\zeta_{k}\right\}_{k=1: n}$, either accepted or rejected, and distances $\delta_{k}=\delta\left(\mathbf{w}_{k}\right)$ are available.
- This is the history, denoted \mathcal{Z}_{n}, of the chain.

A selective memory helps

- Given a new proposal $\zeta_{n+1} \sim q\left(\mid \theta_{n}\right)$, we generate $\mathbf{w}_{n+1} \sim f\left(\cdot \mid \zeta_{n+1}\right)$ and compute $\delta_{n+1}=\delta\left(\mathbf{w}_{n+1}\right)$. Let $\mathcal{Z}_{n+1}=\mathcal{Z}_{n} \cup\left\{\left(\zeta_{n+1}, \delta_{n+1}\right)\right\}$ and estimate $h\left(\zeta^{*}\right)$ using

$$
\begin{equation*}
\hat{h}\left(\zeta^{*}\right)=\frac{\sum_{k=1}^{n} W_{k}\left(\zeta_{n+1}\right) \mathbf{1}_{\delta_{k}<\epsilon}}{\sum_{k=1}^{n} W_{k}\left(\zeta_{n+1}\right)} \tag{1}
\end{equation*}
$$

where $W_{k}\left(\zeta_{n+1}\right)=W\left(\left\|\zeta_{k}-\zeta_{n+1}\right\|\right)$ are weights and $W: \mathbf{R} \rightarrow[0, \infty)$ is a decreasing function.

- Alternatively, use a subset of the K closest $\zeta_{k} \mathrm{~s}$ in \mathcal{Z}_{n}

Good news

- If $\delta_{n+1}>\epsilon \Rightarrow$ rejection for ABC-MCMC
- But if $\exists \zeta_{k}$ with a corresponding $\delta_{k}<\epsilon$ then $h\left(\zeta_{n+1}\right) \neq 0$
- Compare

$$
\begin{gathered}
\tilde{h}\left(\zeta^{*}\right)=\frac{1}{K} \sum_{j=1}^{K} \mathbf{1}_{\left\{\tilde{\delta}_{j}<\epsilon\right\}} \Rightarrow \text { unbiased } \\
\hat{h}\left(\zeta^{*}\right)=\frac{\sum_{n=1}^{N} W_{N n}\left(\zeta^{*}\right) \mathbf{1}_{\left\{\tilde{\delta}_{n}<\epsilon\right\}}}{\sum_{n=1}^{N} W_{N n}\left(\zeta^{*}\right)} \Rightarrow \text { consistent }
\end{gathered}
$$

- When K is small - reduce variability.
- When K is large - reduce costs.

Complications

- If the past samples are used to modify the kernel \Rightarrow Adaptive MCMC
- In order to avoid AMCMC conditions for validity, we separate the samples used as proposals from those used to estimate h
- At each time t :
- We use the Independent Metropolis sampler, i.e.

$$
q\left(\zeta \mid \theta^{(t)}\right)=q(\zeta)
$$

- Generate two independent samples

$$
\left\{\left(\zeta_{t+1}, \mathbf{w}_{t+1}\right),\left(\tilde{\zeta}_{t+1}, \tilde{\mathbf{w}}_{t+1}\right)\right\} \stackrel{\text { iid }}{\sim} q(\zeta) f(\mathbf{w} \mid \zeta)
$$

- Set $\mathcal{Z}_{N+1}=\mathcal{Z}_{N} \cup\left\{\left(\tilde{\zeta}_{N+1}, \tilde{\delta}_{N+1}\right)\right\}$

Friendly neighbors

- The k-Nearest-Neighbor (kNN) regression approach has a property of uniform consistency
- Set $K=\sqrt{n}$ and relabel history so that $\left(\tilde{\zeta}_{1}, \tilde{\delta}_{1}\right)$ and $\left(\tilde{\zeta}_{n}, \tilde{\delta}_{n}\right)$ corresponds to the smallest and largest among all distances $\left\{\left\|\tilde{\zeta}_{j}-\zeta_{n+1}\right\|: 1 \leq j \leq n\right\}$
- Weights are defined as:
- $W_{k}=0$ for $k>K$
(U) The uniform $k N N$ with $W_{k}\left(\zeta_{n+1}\right)=1$ for all $k \leq K$;
(L) The linear kNN with
$W_{k}\left(\zeta_{k}\right)=W\left(\left\|\tilde{\zeta}_{k}-\zeta_{n+1}\right\|\right)=1-\left\|\tilde{S}_{k}-\zeta_{n+1}\right\| /\left\|\tilde{\zeta}_{k}-\zeta_{n+1}\right\|$ for
$k \leq K$ so that the weight decreases from 1 to 0 as k increases from 1 to K.

A bit of theory

(B1) Θ is a compact set.
(B2) $q(\theta)>0$ is a continuous density (proposal).
(B3) $p(\theta)>0$ is a continuous density (prior).
(B4) $h(\theta)$ continuous function of θ.
(B5) In kNN estimation assume that $K(n)=\sqrt{n}$ with uniform or linear weights.

Some comfort

- Let $P(\cdot, \cdot)$ denote the transition kernel of our AABC sampler, when $h(\boldsymbol{\theta})$ is computed exactly.
- μ denotes stationary distribution for $P(\cdot, \cdot)$
- The approximate kernel at time t is denoted \hat{P}_{t}
- The distribution of $\boldsymbol{\theta}_{t}$ is denoted $\mu_{t}:=\nu \hat{P}_{1} \ldots \ldots \hat{P}_{t}$

Some comfort

Vanishing TV Theorem

Suppose that (A1)- (A3) are satisfied. Let π denote the invariant measure of P and ν be any probability measure on (Θ, \mathcal{F}_{0}), then

$$
\left\|\mu-\frac{\sum_{t=0}^{M-1} \nu \hat{P}_{1} \cdots \hat{P}_{t}}{M}\right\|_{T V} \leq O\left(M^{-1}\right)+O\left(M^{-1} \epsilon\right)+O(\epsilon),
$$

More Comfort

Vanishing MSE Theorem

Let π denote the invariant measure of $P, f(\theta)$ be a bounded function and $\theta^{(0)} \sim \nu$. Then
$E\left[\left(\mu f-\frac{1}{M} \sum_{t=0}^{M-1} f\left(\theta^{(t)}\right)\right)^{2}\right] \leq|f|^{2}\left[O\left(M^{-1}\right)+O\left(\epsilon^{2}\right)+O\left(M^{-1} \epsilon\right)\right]$
where $\mu f=E_{\mu} f$.

Numerical Experiments: Ricker's Model

- A particular instance of hidden Markov model:

$$
\begin{aligned}
& x_{-49}=1 ; \quad z_{i} \stackrel{i i d}{\sim} \mathcal{N}\left(0, \exp \left(\theta_{2}\right)^{2}\right) ; \quad i=\{-48, \cdots, n\}, \\
& x_{i}=\exp \left(\exp \left(\theta_{1}\right)\right) x_{i-1} \exp \left(-x_{i-1}+z_{i}\right) ; \quad i=\{-48, \cdots, n\}, \\
& y_{i}=\operatorname{Pois}\left(\exp \left(\theta_{3}\right) x_{i}\right) ; \quad i=\{-48, \cdots, n\},
\end{aligned}
$$

where $\operatorname{Pois}(\lambda)$ is Poisson distribution

- Only $\mathbf{y}=\left(y_{1}, \cdots, y_{n}\right)$ sequence is observed, because the first 50 values are ignored.

Numerical Experiments: Ricker's Model

Define summary statistics $S(\mathbf{y})$ as the 14-dimensional vector whose components are:
(C1) $\#\left\{i: y_{i}=0\right\}$,
(C2) Average of \mathbf{y}, \bar{y},
(C3:C7) Sample auto-correlations at lags 1 through 5,
(C8:C11) Coefficients $\beta_{0}, \beta_{1}, \beta_{2}, \beta_{3}$ of cubic regression

$$
\left(y_{i}-y_{i-1}\right)=\beta_{0}+\beta_{1} y_{i}+\beta_{2} y_{i}^{2}+\beta_{3} y_{i}^{3}+\epsilon_{i}, i=2, \ldots, n
$$

C12-C14) Coefficients $\beta_{0}, \beta_{1}, \beta_{2}$ of quadratic regression $y_{i}^{0.3}=\beta_{0}+\beta_{1} y_{i-1}^{0.3}+\beta_{2} y_{i-1}^{0.6}+\epsilon_{i}, i=2, \ldots, n$.

Numerical Experiments: Ricker's Model - ABC/RWM

Figure: Ricker's model: ABC-RW Sampler. Each row corresponds to parameters θ_{1} (top row), θ_{2} (middle row) and θ_{3} (bottom row) and shows in order from left to right: Trace-plot, Histogram and Auto-correlation function. Red lines represent true parameter values.

Numerical Experiments: Ricker's Model - ABC

Figure: Ricker's model: AABC-U Sampler.

Numerical Experiments: Ricker's Model - ABC

Diff with exact				Diff with true parameter			Efficiency	
Sampler	DIM	DIC	TV	$\sqrt{\text { Bias }^{2}}$	$\sqrt{\text { VAR }}$	$\sqrt{\text { MSE }}$	ESS	ESS/CPU
ABC-RW	0.135	0.0201	0.389	0.059	0.180	0.189	87	0.199
AABC-U	0.147	0.0279	0.402	0.076	0.190	0.204	3563	4.390
AABC-L	0.141	0.0258	0.392	0.070	0.189	0.201	4206	5.193
BSL-RW	0.129	0.0080	0.382	0.038	0.206	0.209	131	0.030
ABSL-U	0.103	0.0054	0.377	0.023	0.170	0.171	284	0.180
ABSL-L	0.106	0.0051	0.382	0.012	0.173	0.173	207	0.135

Table: Summaries based on 40 K samples

Concluding remarks

- Precomputation! Useful also for Bayesian synthetic likelihood methods.
- We obtain good results even if $q(\xi \mid \theta)=\mathcal{N}(\theta, \Sigma)$ but more theory needed.
- The computational burden can prohibit the full reach of approximate methods so more solutions are needed.
- Computation $\xrightarrow{\circ}$ Statistics.
- Is it time for more Statistics $\xrightarrow{0}$ Computation?

All papers available at:
http://www.utstat.toronto.edu/craiu/

