Randomized Quasi-Monte Carlo for MCMC

Radu Craiu¹ Christiane Lemieux²

¹Department of Statistics, Toronto

²Department of Statistics, Waterloo

Third Workshop on Monte Carlo Methods Harvard, May 2007

Outline

Local Search/Optimization Algorithms: MTM

Multiple-Try Metropolis and variations

- Multi-distributed MTM
- Multiple-Correlated-Try Metropolis

Randomized Quasi-Monte Carlo

- Antithetic or Stratified Sampling?
- QMC and Randomized QMC: Discussion and Examples
- Latin Hypercube Sampling
- Korobov Rule
- Beyond uniformity

Examples

Bonus Algorithm - Multi-Annealed Metropolis

Local Search and Optimization Algorithms (LSOA)

- Search locally a region of the state space to sample from.
- Adapt locally to improve the efficiency of the algorithm.
- Local Search and Optimization Algorithms (LSOA): Multiple-Try Metropolis (Liu, Liang and Wong, JASA 2000), Hit-and-Run (Chen and Schmeiser, JCGS 1993), Adaptive Direction Sampling (Gilks, Roberts and George, Stat. 1994),

Delayed rejection (Green and Mira, Biomka, 2001), Directional Metropolis (Eidsvik and Tjelmeland, Statist. & Comput. 2006).

Idea: Produce a more structured search using stratified sampling. **Today's Topic:** Discussion of RQMC implemented within LSOA.

 Suppose *T* is a proposal distribution such that *T*(*x*|*y*) > 0 ⇔ *T*(*y*|*x*) > 0 and λ(*x*, *y*) is a symmetric function.

• Suppose *T* is a proposal distribution such that $T(x|y) > 0 \Leftrightarrow T(y|x) > 0$ and $\lambda(x, y)$ is a symmetric function.

(i) Draw *K* independent trial proposals y_1, \ldots, y_K from $T(\cdot|x_t)$. Sample one with $p_i \propto w(y_i|x_t) = \pi(y_i)T(x_t|y_i)\lambda(x_t, y_i)$.

• Suppose *T* is a proposal distribution such that $T(x|y) > 0 \Leftrightarrow T(y|x) > 0$ and $\lambda(x, y)$ is a symmetric function.

(i) Draw *K* independent trial proposals y_1, \ldots, y_K from $T(\cdot|x_t)$. Sample one with $p_i \propto w(y_i|x_t) = \pi(y_i)T(x_t|y_i)\lambda(x_t, y_i)$.

(ii) Generate $x_1^*, \ldots, x_{k-1}^* \sim T(\cdot|y)$ and put $x_k^* = x_t$.

• Suppose *T* is a proposal distribution such that $T(x|y) > 0 \Leftrightarrow T(y|x) > 0$ and $\lambda(x, y)$ is a symmetric function.

(i) Draw *K* independent trial proposals y_1, \ldots, y_K from $T(\cdot|x_t)$. Sample one with $p_i \propto w(y_i|x_t) = \pi(y_i)T(x_t|y_i)\lambda(x_t, y_i)$.

(ii) Generate $x_1^*, \ldots, x_{k-1}^* \sim T(\cdot | y)$ and put $x_k^* = x_t$.

(iii) Accept *y* with probability min
$$\left\{1, \frac{\sum_{i=1}^{K} w(y_i|x_t)}{\sum_{i=1}^{K} w(x_i^*|y)}\right\}$$
.

• Suppose *T* is a proposal distribution such that $T(x|y) > 0 \Leftrightarrow T(y|x) > 0$ and $\lambda(x, y)$ is a symmetric function.

(i) Draw *K* independent trial proposals y_1, \ldots, y_K from $T(\cdot|x_t)$. Sample one with $p_i \propto w(y_i|x_t) = \pi(y_i)T(x_t|y_i)\lambda(x_t, y_i)$.

(ii) Generate $x_1^*, \ldots, x_{k-1}^* \sim T(\cdot | y)$ and put $x_k^* = x_t$.

(iii) Accept y with probability min
$$\left\{1, \frac{\sum_{i=1}^{K} w(y_i|x_t)}{\sum_{i=1}^{K} w(x_i^*|y)}\right\}$$
.

Do we better explore the sample space with K proposals ?

• Suppose *T* is a proposal distribution such that $T(x|y) > 0 \Leftrightarrow T(y|x) > 0$ and $\lambda(x, y)$ is a symmetric function.

(i) Draw *K* independent trial proposals y_1, \ldots, y_K from $T(\cdot|x_t)$. Sample one with $p_i \propto w(y_i|x_t) = \pi(y_i)T(x_t|y_i)\lambda(x_t, y_i)$.

(ii) Generate $x_1^*, \ldots, x_{k-1}^* \sim T(\cdot | y)$ and put $x_k^* = x_t$.

(iii) Accept *y* with probability min
$$\left\{1, \frac{\sum_{i=1}^{K} w(y_i|x_i)}{\sum_{i=1}^{K} w(x_i^*|y)}\right\}$$

Do we better explore the sample space with K proposals ?

• As long as we take advantage of the flexibility provided by the MTM.

• The proposals do not have to be identically distributed: $y_j \sim T_j(\cdot | \mathbf{x})$ for $1 \le j \le k$.

Multi-distributed MTM (MD-MTM)

• The proposals do not have to be identically distributed: $y_j \sim T_j(\cdot|x)$ for $1 \le j \le k$.

If $y = y_{j_0}$ is selected than put $x_{j_0}^* = x_t$ and sample $x_j^* \sim T_j(\cdot|y)$.

May accomodate different sampling regimes.

Multi-distributed MTM (MD-MTM)

• The proposals do not have to be identically distributed: $y_j \sim T_j(\cdot|x)$ for $1 \le j \le k$.

If $y = y_{j_0}$ is selected than put $x_{j_0}^* = x_t$ and sample $x_j^* \sim T_j(\cdot|y)$.

May accomodate different sampling regimes.

$$\pi(\mathbf{x}) = 0.3N((-20, -20)^{T}, \Sigma_{1}) + 0.4N((0, 0)^{T}, \Sigma_{2}) + 0.3N((20, 20)^{T}, \Sigma_{3}),$$

where $\Sigma_1 = \text{diag}(0.5, 0.5)$, $\Sigma_2 = \text{diag}(2, 2)$ and $\Sigma_3 = \text{diag}(0.4, 0.4)$.

- Use MD-MTM for a random walk Metropolis with Gaussian proposal and variances $\sigma \in \{5, 50, 100, 150, 200\}$.
- Compare with MTM for a random walk Metropolis constructed with only one of the σ's.

sigma=20

• The proposals do not have to be independent.

Multiple-Correlated-Try Metropolis (MCTM)

• The proposals do not have to be independent.

MCTM(I)

Suppose we sample *K* trial proposals y_1, \ldots, y_K from $\tilde{T}(y_1, \ldots, y_K | x_t)$ where

$$\int \tilde{T}(y_1,\ldots,y_K|x_t)dy_{[-i]}=T(y_i|x_t), \ \forall 1\leq i\leq K.$$

Multiple-Correlated-Try Metropolis (MCTM)

• The proposals do not have to be independent.

MCTM(I)

Suppose we sample *K* trial proposals y_1, \ldots, y_K from $\tilde{T}(y_1, \ldots, y_K | x_t)$ where

$$\widetilde{T}(y_1,\ldots,y_{\mathcal{K}}|x_t)dy_{[-i]}=T(y_i|x_t), \ \forall 1\leq i\leq \mathcal{K}.$$

• The algorithm proceeds as in the independent case with one exception.

Multiple-Correlated-Try Metropolis (MCTM)

• The proposals do not have to be independent.

MCTM(I)

Suppose we sample *K* trial proposals y_1, \ldots, y_K from $\tilde{T}(y_1, \ldots, y_K | x_t)$ where

$$\widetilde{T}(y_1,\ldots,y_{\mathcal{K}}|x_t)dy_{[-i]}=T(y_i|x_t), \ \forall 1\leq i\leq \mathcal{K}.$$

• The algorithm proceeds as in the independent case with one exception.

MCTM (II)

Draw $(x_1^*, \ldots, x_{K-1}^*)$ variates from the conditional transition kernel $\tilde{T}(x_1, \ldots, x_{K-1}|y, x_K = x_t)$ and let $x_K^* = x_t$.

• The proposals do not have to be independent.

MCTM(I)

Suppose we sample *K* trial proposals y_1, \ldots, y_K from $\tilde{T}(y_1, \ldots, y_K | x_t)$ where

$$\widetilde{T}(y_1,\ldots,y_{\mathcal{K}}|x_t)dy_{[-i]}=T(y_i|x_t), \ \forall 1\leq i\leq \mathcal{K}.$$

• The algorithm proceeds as in the independent case with one exception.

MCTM (II)

Draw $(x_1^*, \ldots, x_{K-1}^*)$ variates from the conditional transition kernel $\tilde{T}(x_1, \ldots, x_{K-1}|y, x_K = x_t)$ and let $x_K^* = x_t$.

• We have freedom in choosing \tilde{T} as long as we can perform the conditional sampling step.

•
$$Y_j = (Y_{j1}, \ldots, Y_{jd}) \in \mathbb{R}^d$$
 for $1 \le j \le K$.

•
$$Y_j = (Y_{j1}, \ldots, Y_{jd}) \in \mathbb{R}^d$$
 for $1 \le j \le K$.

$$\mathsf{E}\left[||\mathsf{Y}_1 - \mathsf{Y}_2||^2\right] = \mathsf{E}\left[\sum_{h=1}^d (\mathsf{Y}_{1h} - \mathsf{Y}_{2h})^2\right] = \sum_{h=1}^d \sigma_h^2 (1 - \rho_h).$$

•
$$Y_j = (Y_{j1}, \ldots, Y_{jd}) \in \mathbb{R}^d$$
 for $1 \le j \le K$.

$$\mathsf{E}\left[||Y_1 - Y_2||^2\right] = \mathsf{E}\left[\sum_{h=1}^d (Y_{1h} - Y_{2h})^2\right] = \sum_{h=1}^d \sigma_h^2 (1 - \rho_h).$$

- One possible choice is ρ_h = -1/(K 1) (covariance matrix needs to be positive definite!).
- The optimal choice of ρ_h depends on σ_h , $1 \le h \le d$.

•
$$Y_j = (Y_{j1}, \ldots, Y_{jd}) \in \mathbb{R}^d$$
 for $1 \le j \le K$.

$$\mathsf{E}\left[||Y_1 - Y_2||^2\right] = \mathsf{E}\left[\sum_{h=1}^d (Y_{1h} - Y_{2h})^2\right] = \sum_{h=1}^d \sigma_h^2 (1 - \rho_h).$$

- One possible choice is ρ_h = -1/(K 1) (covariance matrix needs to be positive definite!).
- The optimal choice of ρ_h depends on σ_h , $1 \le h \le d$.
- Conditional sampling needed for MCTM is straightforward in the case of Gaussian proposals.

•
$$Y_j = (Y_{j1}, ..., Y_{jd}) \in R^d$$
 for $1 \le j \le K$.

$$\mathsf{E}\left[||Y_1 - Y_2||^2\right] = \mathsf{E}\left[\sum_{h=1}^d (Y_{1h} - Y_{2h})^2\right] = \sum_{h=1}^d \sigma_h^2 (1 - \rho_h).$$

- One possible choice is ρ_h = -1/(K 1) (covariance matrix needs to be positive definite!).
- The optimal choice of ρ_h depends on σ_h , $1 \le h \le d$.
- Conditional sampling needed for MCTM is straightforward in the case of Gaussian proposals.
- If Y_j = ψ(X_t, U_j) with ψ increasing in U_j then we need to use U's which are negatively associated (NA Craiu and Meng, AnnStat. 2005).

- QMC is a de-randomized MC; the samples are constructed deterministically.
- QMC: highly uniform and stratified sampling in the unit hypercube.
- Interest: high-uniformity, a.k.a. low discrepancy.

- QMC is a de-randomized MC; the samples are constructed deterministically.
- QMC: highly uniform and stratified sampling in the unit hypercube.
- Interest: high-uniformity, a.k.a. low discrepancy.

For $v \in (0,1)^d$, $B(v) = \{u \in (0,1)^d : 0 < u_j \le v_j, \ 1 \le j \le d\}$.

- QMC is a de-randomized MC; the samples are constructed deterministically.
- QMC: highly uniform and stratified sampling in the unit hypercube.
- Interest: high-uniformity, a.k.a. low discrepancy.

For $v \in (0, 1)^d$, $B(v) = \{u \in (0, 1)^d : 0 < u_j \le v_j, 1 \le j \le d\}$.

For a point set S_n define $\alpha(S_n, v) = \operatorname{card} \{S_n \cap B(v)\}$.

- QMC is a de-randomized MC; the samples are constructed deterministically.
- QMC: highly uniform and stratified sampling in the unit hypercube.
- Interest: high-uniformity, a.k.a. low discrepancy.

For $v \in (0, 1)^d$, $B(v) = \{u \in (0, 1)^d : 0 < u_j \le v_j, \ 1 \le j \le d\}$.

For a point set S_n define $\alpha(S_n, v) = \operatorname{card} \{S_n \cap B(v)\}.$

Star-discrepancy

$$D_n^*(S_n) = \sup_{\mathbf{v}\in(0,1)^d} |\mathbf{v}_1 \dots \mathbf{v}_d - \alpha(S_n, \mathbf{v})/n|.$$

• Efficiency can be connected to discrepancy.

• Efficiency can be connected to discrepancy.

Koksma-Hlawka Theorem

$$\mu - \frac{1}{n}\sum_{u\in S_n}f(u) \leq D_n^*V(f).$$

• Both V(f) and D^* are difficult to compute in general.

• Efficiency can be connected to discrepancy.

Koksma-Hlawka Theorem

$$\left|\mu-\frac{1}{n}\sum_{u\in S_n}f(u)\right|\leq D_n^*V(f).$$

- Both V(f) and D^* are difficult to compute in general.
- Randomized versions of QMC (RQMC) algorithms are used to establish error estimates via Monte Carlo simulation. (Art Owen, Stanford; Christiane Lemieux, Waterloo; Pierre L'Ecuyer, Montréal).
- Randomization is performed so that it preserves the low-discrepancy of the set point.
- Makes QMC set points suitable for MC as marginals are uniform.
- RQMC and MCMC (Owen and Tribble, PNAS '05; Lemieux and Sidorsky, Math. & Comp. Model., 2006).

Latin Hypercube Sampling (LHS)

- Simultaneous stratification of the univariate marginals if U ~ Uniform(0, 1)^d.
- Construction: For $1 \le i \le K$, $1 \le j \le d$:

Latin Hypercube Sampling (LHS)

- Simultaneous stratification of the univariate marginals if U ~ Uniform(0, 1)^d.
- Construction: For $1 \le i \le K$, $1 \le j \le d$:
 - i) $V_{ij} \sim \text{Uniform}(0, 1)$ are i.i.d

- Simultaneous stratification of the univariate marginals if U ~ Uniform(0, 1)^d.
- Construction: For $1 \le i \le K$, $1 \le j \le d$:
 - i) $V_{ij} \sim \text{Uniform}(0, 1)$ are i.i.d
 - ii) $\{\tau_j, 1 \leq j \leq d\}$ are independent permutations of $\{0, \ldots, K-1\}$

- Simultaneous stratification of the univariate marginals if U ~ Uniform(0, 1)^d.
- Construction: For $1 \le i \le K$, $1 \le j \le d$:
 - i) $V_{ij} \sim \text{Uniform}(0, 1)$ are i.i.d

ii) $\{\tau_j, 1 \leq j \leq d\}$ are independent permutations of $\{0, \ldots, K-1\}$

$$U_{ij} = \frac{\tau_j(i-1) + V_{ij}}{K}$$

- Simultaneous stratification of the univariate marginals if U ~ Uniform(0, 1)^d.
- Construction: For $1 \le i \le K$, $1 \le j \le d$:
 - i) $V_{ij} \sim \text{Uniform}(0, 1)$ are i.i.d ii) $\{\tau_i, 1 \le j \le d\}$ are independent permutations of $\{0, \dots, K-1\}$

$$U_{ij} = \frac{\tau_j(i-1) + V_{ij}}{K}$$

• $U^{(i)}$ is the *i*th row of the matrix *U*.

- Simultaneous stratification of the univariate marginals if U ~ Uniform(0, 1)^d.
- Construction: For $1 \le i \le K$, $1 \le j \le d$:
 - i) $V_{ij} \sim \text{Uniform}(0, 1)$ are i.i.d

ii) $\{\tau_j, 1 \leq j \leq d\}$ are independent permutations of $\{0, \dots, K-1\}$

$$U_{ij} = \frac{\tau_j(i-1) + V_{ij}}{K}$$

- $U^{(i)}$ is the *i*th row of the matrix *U*.
- Given U⁽ⁱ⁾ = (U_{i1},..., U_{id}) ∈ (0, 1)^d, 1 ≤ i ≤ K we can use:
 a) For 1 ≤ j ≤ d fixed: {U_{1j},..., U_(Kj)} as a set of NA Uniform(0, 1) r.v.'s.
 b) (U⁽¹⁾,...,U^(K)) as a stratified sample of (0, 1)^d.

LHS and Gaussian sampling: K = 64, d = 2

Independent

х

Bivariate normal

>

• $V_i \sim U(0, 1), U_i = \frac{i+V_i}{K}, Y_i = F_{X_t}^{-1}(U_i), 0 \le i \le K - 1$ (no permutation is needed!).

- $V_i \sim U(0, 1), U_i = \frac{i+V_i}{K}, Y_i = F_{X_t}^{-1}(U_i), 0 \le i \le K 1$ (no permutation is needed!).
- If $Y = Y_{i_0}$ is selected:

- $V_i \sim U(0, 1), U_i = \frac{i+V_i}{K}, Y_i = F_{X_t}^{-1}(U_i), 0 \le i \le K 1$ (no permutation is needed!).
- If $Y = Y_{i_0}$ is selected:

Intuitively, if Y has been generated using a uniform from the interval, $(\frac{i_0}{K}, \frac{i_0+1}{K})$, then we want to sample x_2^*, \ldots, x_k^* using all the K - 1 uniforms which ARE NOT IN $(\frac{i_0}{K}, \frac{i_0+1}{K})$.

- $V_i \sim U(0, 1), U_i = \frac{i+V_i}{K}, Y_i = F_{X_t}^{-1}(U_i), 0 \le i \le K 1$ (no permutation is needed!).
- If $Y = Y_{i_0}$ is selected:

Intuitively, if Y has been generated using a uniform from the interval, $(\frac{i_0}{K}, \frac{i_0+1}{K})$, then we want to sample x_2^*, \ldots, x_k^* using all the K - 1 uniforms which ARE NOT IN $(\frac{i_0}{K}, \frac{i_0+1}{K})$.

i) Put $j_0 = [KF_y(X_t)]$ (where [·] is integer part) and construct a random permutation τ such that $\tau(j_0) = i_0$.

- $V_i \sim U(0, 1), U_i = \frac{i+V_i}{K}, Y_i = F_{X_t}^{-1}(U_i), 0 \le i \le K 1$ (no permutation is needed!).
- If $Y = Y_{i_0}$ is selected:

Intuitively, if Y has been generated using a uniform from the interval, $(\frac{i_0}{K}, \frac{i_0+1}{K})$, then we want to sample x_2^*, \ldots, x_k^* using all the K - 1 uniforms which ARE NOT IN $(\frac{i_0}{K}, \frac{i_0+1}{K})$.

i) Put $j_0 = [KF_y(X_t)]$ (where $[\cdot]$ is integer part) and construct a random permutation τ such that $\tau(j_0) = i_0$. ii) Put $x_{j_0}^* = X_t$, and for $i \neq j_0$ $U_i^* = \frac{\tau(i) + W_i}{K}$ and $x_i^* = F_y^{-1}(U_i^*)$, with $W_i \sim \text{Uniform}(0, 1)$ independent from the *V*'s.

- $V_i \sim U(0, 1), U_i = \frac{i+V_i}{K}, Y_i = F_{X_t}^{-1}(U_i), 0 \le i \le K 1$ (no permutation is needed!).
- If $Y = Y_{i_0}$ is selected:

Intuitively, if Y has been generated using a uniform from the interval, $(\frac{i_0}{K}, \frac{i_0+1}{K})$, then we want to sample x_2^*, \ldots, x_k^* using all the K - 1 uniforms which ARE NOT IN $(\frac{i_0}{K}, \frac{i_0+1}{K})$.

i) Put $j_0 = [KF_y(X_t)]$ (where $[\cdot]$ is integer part) and construct a random permutation τ such that $\tau(j_0) = i_0$. ii) Put $x_{j_0}^* = X_t$, and for $i \neq j_0$ $U_i^* = \frac{\tau(i)+W_i}{K}$ and $x_i^* = F_y^{-1}(U_i^*)$, with $W_i \sim \text{Uniform}(0, 1)$ independent from the V's.

One can get away without permuting at all!!

K points in [0, 1]^d are generated using a generator a ∈ {1,..., K − 1}.

K points in [0, 1]^d are generated using a generator *a* ∈ {1,...,*K* − 1}.

 $S_{\mathcal{K}} = \left\{ \frac{i}{\mathcal{K}} (1, a, a^2 \mod \mathcal{K}, \dots, a^{d-1} \mod \mathcal{K}) \mod 1 \right\}_{0 \le i \le \mathcal{K}-1}.$

K points in [0, 1]^d are generated using a generator *a* ∈ {1,...,*K* − 1}.

 $S_{K} = \left\{ \frac{i}{K} (1, a, a^{2} \mod K, \dots, a^{d-1} \mod K) \mod 1 \right\}_{0 \le i \le K-1}.$

- Bad choices: *a* and *K* are not relatively prime or a = 1.
- The point set is *fully projection regular*, i.e. any lower-dimensional projection contains *K* distinct points.

K points in [0, 1]^d are generated using a generator *a* ∈ {1,...,*K* − 1}.

 $S_{K} = \left\{ \frac{i}{K} (1, a, a^{2} \mod K, \dots, a^{d-1} \mod K) \mod 1 \right\}_{0 \le i \le K-1}.$

- Bad choices: *a* and *K* are not relatively prime or a = 1.
- The point set is *fully projection regular*, i.e. any lower-dimensional projection contains *K* distinct points.

To randomize add a vector $U_{\mathcal{K}} \sim \text{Uniform}(0,1)^d \mod 1$ i.e.

$$S_{\mathcal{K}}^{\mathcal{R}} = S_{\mathcal{K}} + U_{\mathcal{K}} \mod 1.$$

Example: Korobov rule and Gaussian sampling

Radu Craiu (fisher.utstat.toronto.edu/craiu/)

RQMC for MCMC

• Sometimes we want to "favor" regions in the hypercube but uniformity is lost once we transform the QMC point set.

- Sometimes we want to "favor" regions in the hypercube but uniformity is lost once we transform the QMC point set.
- $g: [0,1] \rightarrow [0,1]$ is a bijection and $\tilde{\mathbf{U}} = g(\mathbf{U}) = (g(U_1), \dots, g(U_d)).$
- $Y \sim T(\cdot|X) \Leftrightarrow Y = \psi(X, \mathbf{U})$ so if $Y = \psi(X, \tilde{\mathbf{U}})$ then $Y \sim \tilde{T}(\cdot|X)$.

- Sometimes we want to "favor" regions in the hypercube but uniformity is lost once we transform the QMC point set.
- $g: [0,1] \rightarrow [0,1]$ is a bijection and $\tilde{\mathbf{U}} = g(\mathbf{U}) = (g(U_1), \dots, g(U_d)).$
- $Y \sim T(\cdot|X) \Leftrightarrow Y = \psi(X, \mathbf{U})$ so if $Y = \psi(X, \tilde{\mathbf{U}})$ then $Y \sim \tilde{T}(\cdot|X)$.

If $\lambda(X, Y) = T(Y|X)/\tilde{T}(Y|X)$ is symmetric, i.e. $\lambda(X, Y) = \lambda(Y, X)$, then MCTM can be implemented. without computing \tilde{T} .

- Sometimes we want to "favor" regions in the hypercube but uniformity is lost once we transform the QMC point set.
- $g: [0,1] \rightarrow [0,1]$ is a bijection and $\tilde{\mathbf{U}} = g(\mathbf{U}) = (g(U_1), \dots, g(U_d)).$
- $Y \sim T(\cdot|X) \Leftrightarrow Y = \psi(X, \mathbf{U})$ so if $Y = \psi(X, \tilde{\mathbf{U}})$ then $Y \sim \tilde{T}(\cdot|X)$.

If $\lambda(X, Y) = T(Y|X)/\tilde{T}(Y|X)$ is symmetric, i.e. $\lambda(X, Y) = \lambda(Y, X)$, then MCTM can be implemented. without computing \tilde{T} .

• Example:

$$g(u) = rac{\sin[\pi(u-0.5)]+1}{2}.$$

i) *g* is bijective.

ii) $g(x) = x, \ \forall x \in \{0, 1/2, 1\}, \ g(u) + g(1 - u) = 1, \ \forall u \in (0, 1).$

Randomized Korobov

Radu Craiu (fisher.utstat.toronto.edu/craiu/)

RQMC for MCMC

Suppose T(y|x) is a multivariate Gaussian with no correlation.

$$T(\mathbf{y}|\mathbf{x}) = \prod_{j=1}^{d} \frac{\mathbf{e}^{-(\mathbf{y}_j - \mathbf{x}_j)^2/2\sigma_j^2}}{\sqrt{2\pi\sigma_j^2}}$$

Then

$$\tilde{T}(y|x) = \prod_{j=1}^{d} \frac{e^{-(y_j - x_j)^2/2\sigma_j^2}}{\sqrt{2\pi\sigma_j^2}} \frac{1}{\pi\sqrt{\Phi(\frac{y_j - x_j}{\sigma_j})\left[1 - \Phi(\frac{y_j - x_j}{\sigma_j})\right]}}$$

$$\lambda(\mathbf{y}, \mathbf{x}) = \prod_{j=1}^{d} \frac{1}{\pi \sqrt{\left[1 - \Phi(\frac{\mathbf{x}_j - \mathbf{y}_j}{\sigma_j})\right] \Phi(\frac{\mathbf{x}_j - \mathbf{y}_j}{\sigma_j})}} = \lambda(\mathbf{x}, \mathbf{y}).$$

Radu Craiu (fisher.utstat.toronto.edu/craiu/)

Use MCTM combined with random-ray Monte Carlo to sample from (Gelman and Meng, Am. Stat. '91)

$$\pi(\textbf{x}_1,\textbf{x}_2) \propto \exp\{-(9x_1^2x_2^2 + x_1^2 + x_2^2 - 8x_1 - 8x_2)/2\}$$

RQMC for MCMC

.

- At each iteration a random direction v is generated;
- Along direction *v* we sample proposals *y*₁,..., *y_k* around the current state *x_t* using *y_i* = *x_t* + *r_i* with *r_i* ∼ Uniform(−*σ*, *σ*).

Table: Values of the MSE reduction factor
$$R = \frac{MSE_{anti}}{MSE_{ind}}$$
.

$\sigma \backslash \mathbf{k}$	3	4	5	6
3	0.35	0.53	0.64	0.81
4	0.31	0.42	0.58	0.76
5	0.29	0.40	0.49	0.62

Lupus Data

- Lupus Data (van Dyk and Meng, JCGS 2001): 55 patients, 2 covariates; logistic model.
- The posterior density is proportional to

$$\pi(\beta|\mathbf{x},\mathbf{y}) \propto \prod_{j=0}^{2} \frac{e^{-0.5\beta_{j}/100^{2}}}{100\sqrt{2\pi}} \prod_{i=1}^{55} \left[\frac{\exp(X_{i}^{T}\beta)}{1+\exp(X_{i}^{T}\beta)} \right]^{y_{i}} \left[\frac{1}{1+\exp(X_{i}^{T}\beta)} \right]^{1-y_{i}}$$

• Sample using MCTM with antithetically coupled proposals or stratified proposals via a randomized Korobov set shifted using the transformation *g*.

Table: Values of *R* for β_1 and $p_{25} = \mathbf{1}_{\{\beta_1 > 25\}}$ in the logit example.

	Antithetic			QMC		
$k \setminus \sigma$	2	3	4	2	3	4
3	0.92/0.92	0.90/0.86	0.99/0.95	-	-	-
4	0.94/0.87	0.88/0.88	0.91/0.89	-	-	-
5	0.98/0.96	0.81/0.81	0.89/0.86	-	-	-
6	0.91/0.86	0.86/0.78	0.95/0.92	-	-	-
8	0.81/0.70	0.75/0.69	0.83/0.80	0.69/0.72	0.61/0.60	0.59/0.56
16	0.87/0.81	0.97/0.94	0.91/0.88	0.81/0.81	0.82/0.84	0.76/0.75

Table: Computation Times k = 8

Sample Size	MTM	MCTM (A)	MCTM (S)
10 ⁵	34	36	32

- Inspired by Neal's (Stat. & Comp., 1996) tempered transition method.
- Uses a series of distributions {π_t}_{t∈{1=T₀,T₁,...,T_M}}, constructed between the distribution of interest, π, and π_{T_M}.
- Relies on a "path" that crosses all the intermediate distributions.
- If $1 = T_0 < T_1 < T_2 = T$ and Q_{T_i} is a proposal distribution for $\pi_{T_i} \propto \pi^{1/T_i}$.
- Suppose that $Q_{T_i}(X|Y) = Q_{T_i}(Y|X)$ (e.g., random walk Metropolis).

Given the chain is in state X: i) Sample $X_1 \sim Q_1(\cdot|X), X_2 \sim Q_2(\cdot|X_1), Y_2 \sim Q_2(\cdot|X_2), Y_1 \sim Q_1(\cdot|Y_2).$ ii) Accept Y_1 with probability min $\left\{1, \frac{\pi_0(Y_1)}{\pi_0(X)} \cdot \frac{\pi_2(X_1)\pi_1(Y_2)}{\pi_1(X_1)\pi_2(Y_2)}\right\}.$

Example

MAM(4)

Radu Craiu (fisher.utstat.toronto.edu/craiu/)

RQMC for MCMC

3rd WMCM - May, 2007 25 / 27

Multiple-try extension of the MAM

Multiple-try extension of the MAM

MTM can be implemented by generating multiple paths and compensate using the same number of reverse paths. We have freedom in choosing the "weight of a path".

Multiple-try extension of the MAM

MTM can be implemented by generating multiple paths and compensate using the same number of reverse paths. We have freedom in choosing the "weight of a path".

MAM

Pros : increases the acceptance rate >10 fold, does not require running the parallel chains all the time; Cons: Requires symmetric proposals.

Negative Association for Multiple-Try MAM

- Suppose that X_i ~ Q_i(·|X_{i-1}) ⇔ X_i = ψ_i(X_{i-1}, U_i) with U_i ~ Uniform[0, 1]^d and ψ_i is monotone in each component of U_i.
- $Y_1 = \psi_1(\psi_2(\psi_1(X, U_1), U_2), V_2), V_1)$ and $Y'_1 = \psi_1(\psi_2(\psi_2(\psi_1(X, U'_1), U'_2), V'_2), V'_1).$
- The paths do not need to be generated independently.
- If (U_i, U'_i) and (V_i, V'_i) are negatively associated then Corr(Y₁, Y'₁) < 0 so the average distance between the paths is larger than under independence.