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Copulas

I Copula functions are used to model dependence between
continuous random variables.

I (Sklar,’59) If Y1, Y2 are continuous r.v.’s with distribution
functions (df) F ,G , there exists an unique copula function
C : [0, 1]× [0, 1]→ [0, 1] such that

H(t, s) = Pr(Y1 ≤ t,Y2 ≤ s) = C (F (t),G (s)).

I C is a distribution function on [0, 1]2 with uniform margins.

I The copula bridges the marginal distributions with the joint
distribution.
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Inference for Copula Models

I Early on: abundance of theoretical developments:
construction of new copula families and connections with
dependence concepts (NA, PQD/NQD, PRD/NRD, etc). Joe
(’97), Nelsen (’06).

I Statistical inference for constant copula models:
I Joint Maximum Likelihood: numerical methods
I Two-stage approach: Joe (JMVA, ’05)
I Semiparametric approach: Genest, Khoudi & Rivest (Bmka,

’95)
I Nonparametric approach: Pickands (BISI,’81); Capéraà,

Fougères & Genest (Biomka, ’97) .

I Copula goodness-of-fit and selection (Genest, Remillard &
Beaudoin, IME ’09; Genest, Quessy & Remillard, SJS ’06;
Fermanian, JMVA ’05; Berg, Eur. J. of Finance, ’09).
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Conditional Copula

I Consider a random sample {xi ∈ Rd , y1i ∈ R, y2i ∈ R}1≤i≤n
and suppose FX (y1) and GX (y2) are the unknown marginal
conditional cdf’s.

I The bivariate conditional copula (CC) of (Y1,Y2)|X = x , is
the conditional joint distribution function of U = Fx(Y1) and
V = Gx(Y2) given X = x (Patton, Int’l Econ. Rev. ’06)

Hx(t, s) = Cx(Fx(t),Gx(s))

I The parametric bivariate CC model assumes there is a
parametric family C = {Cθ : θ ∈ Θ} s.t.

Cx(Fx(t),Gx(s)) = Cθ(x)(Fx(Y1),Gx(Y2)).

I The simplifying assumption:

Cx(Fx(y1),Gx(y2)) = C (Fx(y1),Gx(y2)).
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Why CC? Understanding the Dependence Pattern

I We are interested in understanding the covariate effect on the
dependence pattern between responses.

I The smoking cessation study of Liu, Daniels and Marcus
(JASA ’09) :

Q = smoking cessation (0=No, 1=Yes)
W = weight change
X = time spent exercising

I Does exercise weaken the association between smoking status
and weight gain?
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Why CC? Building General Multivariate Distributions

I Joint models for multivariate data.

I If the joint distribution of U1,U2,U3 (Ui ∼ Uniform(0, 1),
1 ≤ i ≤ 3) is modelled using the pair copula model then

c(u1, u2, u3) = c12(u1, u2)c23(u2, u3)c13|2(u1|2, u3|2; u2)

where uk|2 = Pr(Uk ≤ uk |U2 = u2).

I As dimension increases, the bivariate conditional copulas
depend on increasing number of variables.
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Why CC? Regression-based prediction

I In a bivariate CC model the joint density is

hx(y1, y2) = fx(y1)gx(y2)cθ(x)(Fx(y1),Gx(y2)).

I The conditional density of Y1|Y2 = y2,X = x is

hx(y1|y2) = fx(y1)cθ(x)(Fx(y1),Gx(y2)).

I This can be useful when for each item a subset of the
response variables is much easier to measure than the rest.
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Propagation of Errors

I Errors can appear from multiple sources:

cθ(x)+δ3(x)(Fx(y1) + δ1(x),Gx(y2) + δ2(x)) =

correct part︷ ︸︸ ︷
cθ(x)(Fx(y1),Gx(y2))

+

error due to Fx︷ ︸︸ ︷
c
(1,0,0)
θ(x) (Fx(y1),Gx(y2)) δ1(x) +

error due to Gx︷ ︸︸ ︷
c
(0,1,0)
θ(x) (Fx(y1),Gx(y2))δ2(x) +

+

error due to θ(x)︷ ︸︸ ︷
c
(0,0,1)
θ(x) (Fx(y1),Gx(y2))δ3(x) +O(||δ(x)||2)
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Estimation of θ(x) - frequentist approaches

I Acar, Craiu & Yao (Biomcs, 2011) - semiparametric
estimation. Parametric marginals, θ(x) is approximated
nonparametrically via local polynomial estimation.

I Veraverbeke, Omelka & Gijbels (SJS, 2011) - nonparametric
estimation of the copula and marginals.

I ”We observed that the copula estimator may be severely
biased if any of the conditional marginal distributions change
with the value of the covariate X = x” (V., O. & G, 2011)

I Nonparametric estimates in large-ish dimensions d suffer from
curse of dimensionality, unless the volume of data is huge.
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CC: The SA Condition

I When d = dim(X ) >> 1 the curse of dimensionality can be
alleviated with dimension reduction models.

I The SA leads to “dimension crushing”:

Cx(Fx(y1),Gx(y2)) = C (Fx(y1),Gx(y2))

but when is it justifiable?

I Acar, Genest & Nes̆lehová (JMVA, 2012) - discuss the bias
incurred when SA is not justified.

I Acar, Craiu & Yao (EJS, 2013) - Generalized LRT to test a
constant or linear null calibration against a general alternative.

I Gijbels, Omelka & Veraverbeke (Statistics, 2016) -
nonparametric testing procedures.

I Derumigny & Fermanian (arXiv, 2016) - review of state-of-art
and a “work program around SA for the next years”.
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CC: d = dim(X ) > 1

I Sabeti, Wei & Craiu (Stat, 2014) - Bayesian additive CC
models.

I Chavez-Demoulin & Vatter (JMVA, 2015) - Generalized
additive models.

I Lobato, Lloyd & Lobato (NIPS, 2013) - Gaussian Process
models for CC in financial time series.

I Levi & Craiu - Gaussian Process with Single Index Models.
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Why a Bayesian approach?

I Joint modelling can be a bit easier as selection of most tuning
parameters is automatic and data driven.

I The posterior distribution accounts for all sources of variation
(included in the model).

I The Monte Carlo samples from the posterior are used to
compute finite sample variance estimates, pointwise credible
regions and model selection criteria.

I Priors can be used to favour model sparsity.
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Additive Model for Calibration

I X ∈ Rd Y1,Y2 are continuous r.v.’s, Yi ∼ N (µi (X ), σ2i ), for
i = 1, 2.

I Jointly,

hX (Y1,Y2) =
2∏

i=1

1

σi
φ

(
Yi − µi (X )

σi

)
× c

[
Φ

(
Y1 − µ1(X )

σ1

)
,Φ

(
Y2 − µ2(X )

σ2

) ∣∣∣∣θ(X )

]
,

where c(u, v |θ) is the pdf of the conditional copula.
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Additive Model for Calibration

I Usually there is little/no information about the shape of θ(X ).

I Generally θ(X ) has a restricted range, so we estimate the
calibration function η : Rd → R where g(θ(xi )) = η(xi ) (g is
user-specified).

I We assume that

η(x1, . . . , xd) = α0 +
d∑

i=1

η∗i (xi ).

I Additivity is not preserved when changing dependence
measure.
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Additive Model for Calibration

I Sabeti, Wang & Craiu (Stat, 2013) use an AM:

I Each η∗i has the form:

η∗i (xi ) =
3∑

j=1

α
(i)
j x ji +

K (i)∑
k=1

ψ
(i)
k (xi − γ(i)k )3+.

I Number and location of knots {γ1, . . . , γK (i)} is important.
I The knot-related choices are data driven.

I Partition the range of Xi into Kmax intervals, I
(i)
k , and

introduce auxiliary variables

ζ
(i)
k =

{
1 if there is a knot γ

(i)
k in I

(i)
k and ψ

(i)
k 6= 0

0 if there is no knot in I
(i)
k and ψk = 0

I η∗i (xi ) =
∑3

j=1 α
(i)
j x ji +

∑Kmax
k=1 ψ

(i)
k ζ

(i)
k (xi − γ

(i)
k )3+,
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Gaussian Process Prior for CC

I GP is a flexible method when errors are reasonably
approximated by Gaussians.

I GP for marginals when means could be nonlinear functions of
X .

I GP for calibration function could be used in conjunction with
other marginal models.

I Vanilla GP is not helping with the curse of dimensionality and
can be expensive when n is large so modifications are needed.
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Gaussian Process Prior

I GP prior for smooth f without specifying the form of f .

I For x ∈ [−5, 5]n, consider f ∼ Nn(0,K (x , x)) where
Kij(x , x) = k(xi , xj) and fi = f (xi )

L = 1 L = 5
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I Random functions f generated from a GP prior when n = 100

I Cov(f (xi ), f (xj)) = k(xi , xj) = exp{−0.5 ∗ |xi−xj |L

2
}.
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Gaussian Process Estimation

I Observe {yi : 1 ≤ i ≤ n} noisy realizations of f (xi )i=1,n,
yi = f (xi ) + εi , εi ∼ N(0, σ2).

I When interested in predicting f ∗ = (f (x∗j ))j=1,q use(
y
f ∗

)
∼ Nn+q

(
0,

[
K (x , x) + σ2In K (x , x∗)

K (x , x∗) K (x∗, x∗)

])
I The conditional distribution of f ∗ is Gaussian with

E(f ∗|y) = K (x∗, x)

expensive for large n︷ ︸︸ ︷
[K (x , x) + σ2Iq]−1 y

V (f ∗|y) = K (x∗, x∗)− K (x∗, x) [K (x , x) + σ2Iq]−1︸ ︷︷ ︸
expensive for large n

K (x , x∗)
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Computational challenges for GP

I When n is large the computation effort is prohibitive so we
adopt a sparse GP approach.

I The information about f in the data is funnelled using a
smaller sample of size m << n of inducing (or latent)
variables x̃g , 1 ≤ g ≤ m.

I Let f̃ = (f (x̃1), . . . , f (x̃m))T we assume f̃ ∼ N(0,K (X̃ , X̃ ).

I The (Gaussian) conditional distribution of f̃ |X , X̃ involves
K (X , X̃ ) and the inverse of a m ×m matrix.

I Integrating out f̃ yields the (Gaussian) conditional distribution
of f ∗|X ∗,X with similar computational burden.
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Gaussian Process Estimation

I Suppose we know that f : R→ R and

(−4,−3,−1, 0, 2)
f−→ (−2, 0, 1, 2,−1)

I yi |fi ∼ N(fi , σ
2), fi = f (xi ), 1 ≤ i ≤ 5

L = 1 L = 5
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Samples from the posterior distribution of f ∗|y , when σ2 = 0.1.
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Modelling η when d > 1

I Assume that θ(Xi ) = g−1(f (Xi )) and

f = (f (X1), f (X2), . . . , f (Xn))T ∼ N (0,K (X ,X ;w)),

I The (i , j)th element of matrix K (X ,X ;w) is

k(xi , xj ;w) = ew0 exp

[
−

d∑
s=1

(xis − xjs)2

ews

]
.

I The covariance between outputs is defined as a function of
inputs.

I The parameters w in the covariance function k determine
distance between inputs with a significant difference in the
outputs.
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Modelling η when d > 1

I When Xi ∈ Rd a full GP model for the CC has 1 + d
parameters.

I We consider instead the SIM model
f (X ) = f (βTX ).

I GP-SIM model is invariant to nonlinear one-to-one
transformations τ(θ).

I The parameter β is unidentifiable up to a constant so we
assume ||β|| = 1.

I Marginals are fitted also using GP-SIM models.
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Proof of concept

Sc1 f1(x) = 0.6 sin(5x1)− 0.9 sin(2x2),
f2(x) = 0.6 sin(3x1 + 5x2),
τ(x) = 0.7 + 0.15 sin(15xTβ)
β = (1, 3)T/

√
10, σ1 = σ2 = 0.2 n = 400

Clayton Frank Gaussian Clayton SA

Scenario
√

IBias2
√

IVar
√

IMSE
√

IBias2
√

IVar
√

IMSE
√

IBias2
√

IVar
√

IMSE
√

IBias2
√

IVar
√

IMSE

Sc1 0.0223 0.0556 0.0599 0.0491 0.0714 0.0867 0.0664 0.0741 0.0995 0.1071 0.0133 0.1079

Integrated error for the estimator of τ(x).
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Estimation of τ(x)

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X1=0.2

X2

K
e

n
d

a
ll'

s
 t
a

u

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X1=0.8

X2

K
e

n
d

a
ll'

s
 t
a

u

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X2=0.2

X1

K
e

n
d

a
ll'

s
 t
a

u

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

X2=0.8

X1

K
e

n
d

a
ll'

s
 t
a

u



Introduction Motivation for CC Calibration Estimation Calibration Models when dim(X ) >> 1 Numerical Illustrations

Prediction performance

I If yi |x ∼ N(µi (x), σ2i ), i = 1, 2 then

Ex [Y1|Y2 = y2] = µ1(x)+σ1

∫ 1

0

Φ−1(z)cθ(x)

(
z ,Φ

(
y2 − µ2(x)

σ2

))
dz .
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Model misspecification effects

I Marginals:

I f1(x) = 0.6 sin(5x1)− 0.9 sin(2x2)
I f2(x) = 0.6 sin(3x1 + 5x2)
I σ1 = σ2 = 0.2

I Copula:
I β = (1, 3)/

√
10

I τ(x) = 0.7 + 0.15 sin(5xTβ)
I Frank copula

I Y1 and X test points:
I Y1 = −1.5, X = (0.3, 0.3)
I Y1 = −1.0, X = (0.3, 0.7)
I Y1 = −0.5, X = (0.7, 0.3)
I Y1 = 0.0, X = (0.7, 0.7)
I Y1 = 0.5, X = (0.5, 0.5)
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Model misspecification effects

●

●

●

●
●

−1.0 −0.5 0.0 0.5

−
3

−
2

−
1

0
1

2
3

Y2|Y1,X

Y1

Y
2

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

−1.0 −0.5 0.0 0.5

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

Tau(X)

Y1

T
a

u

●

●

●

●

●

● ● ● ● ●

●

●

●

●

●

● ●

● ●

●

Black - true; Red - Correct model; Blue - Correct copula with SA
Green - Wrong copula; Purple - Correct copula with missing covariate



Introduction Motivation for CC Calibration Estimation Calibration Models when dim(X ) >> 1 Numerical Illustrations

Model misspecification effects

I Marginals
I f1(x) = 0.6 sin(5x1)− 0.9 sin(2x2)
I f2(x) = 0.6 sin(3x1 + 5x2)
I σ1 = σ2 = 0.2, X1 ⊥ X2.

I Copula: τ(x) = 0.71
I Model:

I A nonparametric model for marginals and CC based on only x1.
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Model misspecification effects

I Marginals
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Model misspecification effects

I Suppose E[Yi |X1,X2] = fi (αiX1 + βiX2), i=1,2.
I Then

fi (x1, x2) =

fit︷ ︸︸ ︷
fi (x1, 0) +f

(0,1)
i (x1, 0)βix2 + f

(0,2)
i (x1, 0)

β2
i x

2
2

2 +O(||x32 ||),

i = 1, 2

I The marginal residuals still contain high-order information
about x1 which varies with the distribution of x2.
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Model misspecification effects

I Suppose E[Yi |X1,X2] = fi (αiX1 + βiX2), i=1,2.
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fi (x1, 0) +f

(0,1)
i (x1, 0)βix2 + f
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2
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2 +O(||x32 ||),

i = 1, 2

I The marginal residuals still contain high-order information
about x1 which varies with the distribution of x2.
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Three Model Selection Problems

I Choice of copula family.
I Choice of calibration

I Simplifying Assumption or not?
I AM or GP-SIM?

I Covariate selection.
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CV Marginal Likelihood (CVML)

I Calculates the average (over parameter values) prediction
potential for model M via

CVML(M) =
n∑

i=1

log (P(Y1i ,Y2i |D−i ,M)) ,

I D−i is the data set from which the ith observation has been
removed.

I Estimate CVML using

Eπ
[
P(Y1i ,Y2i |ω,M)−1

]
= P(Y1i ,Y2i |D−i ,M)−1

where ω represents the vector of all the parameters and latent
variables in the model.
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Watanabe-Akaike Information Criterion

I An alternative approach to estimating the log pointwise
predictive density (Watanabe, JMLR ’10; Vehtari, Gelman &
Gabry, Stat. Comput, ’16).

I WAIC is defined as

WAIC(M) = −2fit(M) + 2p(M)

I fit(M) =
∑N

i=1 logEπ [P(y1i , y2i |ω,M)]
I p(M) =

∑N
i=1 Varπ[logP(y1i , y2i |ω,M)].

I fit(M) and the penalty p(M) are computed using the
posterior samples.
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Another Two Scenarios

Sc3

f1(x) = 0.6 sin(5x1)− 0.9 sin(2x2)
f2(x) = 0.6 sin(3x1 + 5x2)

τ(x) = 0.5
σ1 = σ2 = 0.2

 SA is true

Sc4

f1(x) = 0.6 sin(5x1)− 0.9 sin(2x2)
f2(x) = 0.6 sin(3x1 + 5x2)

η(x) = 1 + 0.7 sin(3x31 )− 0.5 cos(6x22 )
σ1 = σ2 = 0.2

 AM model is true
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Copula Selection - Results

Frank Gaussian Clayton SA

Scenario CVML WAIC CVML WAIC CVML WAIC

Sc1 100% 100% 100% 100% 98% 98%
Sc4 100% 100% 100% 100% 100% 100%
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Calibration Selection - Results

Clayton Frank Gaussian
Scenario CVML WAIC CVML WAIC CVML WAIC

Sc3 78% 78% 100% 100% 100% 100%

Scenario CVML WAIC

Sc 1 96% 96%
Sc4 94% 94%
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Red Wine

I 11 Physiochemical properties of 1599 varieties of red “Vinho
Verde” Portuguese wine.

I We consider the dependence between fixed acidity and
density. The former is strongly associated with quality of
wine, while the latter is used as a measure of grape quality.

I Covariates: volatile acidity, citric acid, residual sugar,
chlorides, free sulfur dioxide, total sulfur dioxide, pH,
sulphates, alcohol.
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Red Wine
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Red Wine

2.5% quantile mean 97.5% quantile

volatile acidity 0.142 0.274 0.406
citric acid -0.406 -0.320 -0.159

residual sugar -0.315 -0.089 0.244
chlorides -0.303 0.024 0.264

free sulfur dioxide 0.123 0.308 0.514
total sulfur dioxide 0.219 0.396 0.584

pH 0.052 0.166 0.324
sulphates 0.335 0.478 0.611
alcohol 0.381 0.467 0.549

Red wine data: posterior estimates and credible regions for β.
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Conclusions

I Flexible modelling for CC is necessary.

I CC models can be useful in prediction when the dependence is
strong.

I The SA is difficult to detect without a properly calibrated
penalty for model complexity.

I Impact of model misspecification can be significant. Robust
CC’s?

I How to extend these methods to more than two responses
(e.g. vines).

I CC-based models in clustering, adaptive MCMC, spatial
models, statistical genetics.
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