Introduction

Motivation for CC Calibration Estimation Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

Bayesian Inference for Conditional Copula models

Radu Craiu

Department of Statistical Sciences University of Toronto

Joint with Evgeny Levi (Toronto), Avideh Sabeti (Toronto) and Mian Wei (Toronto)

> CRM, Montreal January 27, 2017

Introduction

Motivation for CC

Calibration Estimation

Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

Outline

Introduction

Conditional Copulas

Motivation for CC

Understanding a Dependence Pattern Building Multivariate Distributions Prediction

Copula Misspecification

Calibration Estimation

Frequentist methods Bayesian methods

Calibration Models when $\dim(X) >> 1$

Bayesian Additive Model GP-SIM

Numerical Illustrations

Estimation Model Selection - Copula and Calibration Selection Criteria: CVML and WAIC

Introduction on Motivation for CC Calibration Estimation Calibration Models when dim(X) >> 1 Numerical Illustrations

- Copula functions are used to model dependence between continuous random variables.
- (Sklar,'59) If Y₁, Y₂ are continuous r.v.'s with distribution functions (df) F, G, there exists an unique copula function C : [0, 1] × [0, 1] → [0, 1] such that

$$H(t,s) = \Pr(Y_1 \leq t, Y_2 \leq s) = C(F(t), G(s)).$$

- C is a distribution function on $[0, 1]^2$ with uniform margins.
- The copula bridges the marginal distributions with the joint distribution.

Calibration Estimation Introduction Motivation for CC

Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

Inference for Copula Models

Early on: abundance of theoretical developments: construction of new copula families and connections with dependence concepts (NA, PQD/NQD, PRD/NRD, etc). Joe ('97), Nelsen ('06).

Statistical inference for constant copula models:

- Joint Maximum Likelihood: numerical methods
- Two-stage approach: Joe (JMVA, '05)
- Semiparametric approach: Genest, Khoudi & Rivest (Bmka, '95)
- Nonparametric approach: Pickands (BISI,'81); Capéraà, Fougères & Genest (Biomka, '97).
- Copula goodness-of-fit and selection (Genest, Remillard & Beaudoin, IME '09; Genest, Quessy & Remillard, SJS '06; Fermanian, JMVA '05; Berg, Eur. J. of Finance, '09).

Motivation for CC Introduction Calibration Estimation Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

Conditional Copula

- Consider a random sample $\{x_i \in \mathbf{R}^d, y_{1i} \in \mathbf{R}, y_{2i} \in \mathbf{R}\}_{1 \le i \le n}$ and suppose $F_X(y_1)$ and $G_X(y_2)$ are the unknown marginal conditional cdf's.
- The bivariate conditional copula (CC) of $(Y_1, Y_2)|X = x$, is the conditional joint distribution function of $U = F_x(Y_1)$ and $V = G_x(Y_2)$ given X = x (Patton, Int'l Econ. Rev. '06)

$$H_{x}(t,s) = \frac{C_{x}(F_{x}(t),G_{x}(s))}{C_{x}(s)}$$

The parametric bivariate CC model assumes there is a parametric family $C = \{C_{\theta} : \theta \in \Theta\}$ s.t.

$$C_{x}(F_{x}(t),G_{x}(s))=C_{\theta(x)}(F_{x}(Y_{1}),G_{x}(Y_{2})).$$

The simplifying assumption:

$$C_x(F_x(y_1), G_x(y_2)) = C(F_x(y_1), G_x(y_2)).$$

Introduction Motivation for CC 0000

Calibration Estimation

Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

Why CC? Understanding the Dependence Pattern

- We are interested in understanding the covariate effect on the dependence pattern between responses.
- The smoking cessation study of Liu, Daniels and Marcus (JASA '09) :
 - Q =smoking cessation (0=No, 1=Yes)
 - W = weight change
 - X = time spent exercising
- Does exercise weaken the association between smoking status and weight gain?

Why CC? Building General Multivariate Distributions

- Joint models for multivariate data.
- If the joint distribution of U₁, U₂, U₃ (U_i ∼ Uniform(0, 1), 1 ≤ i ≤ 3) is modelled using the pair copula model then

$$c(u_1, u_2, u_3) = c_{12}(u_1, u_2)c_{23}(u_2, u_3)c_{13|2}(u_{1|2}, u_{3|2}; u_2)$$

where $u_{k|2} = Pr(U_k \le u_k | U_2 = u_2)$.

 As dimension increases, the bivariate conditional copulas depend on increasing number of variables.

Motivation for CC Calibration Estimation Introduction 00

Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

Why CC? Regression-based prediction

In a bivariate CC model the joint density is

 $h_x(y_1, y_2) = f_x(y_1)g_x(y_2)c_{\theta(x)}(F_x(y_1), G_x(y_2)).$

• The conditional density of $Y_1 | Y_2 = y_2, X = x$ is

$$h_x(y_1|y_2) = f_x(y_1)c_{\theta(x)}(F_x(y_1), G_x(y_2)).$$

This can be useful when for each item a subset of the response variables is much easier to measure than the rest. Introduction OOOO Calibration Estimation

Calibration Models when $\dim(X) >> 1$

Numerical Illustrations

Propagation of Errors

Errors can appear from multiple sources:

 $c_{\theta(x)+\delta_{3}(x)}(F_{x}(y_{1}) + \delta_{1}(x), G_{x}(y_{2}) + \delta_{2}(x)) = \underbrace{c_{\theta(x)}(F_{x}(y_{1}), G_{x}(y_{2}))}_{\text{error due to } F_{x}} \underbrace{\text{error due to } G_{x}}_{\text{error due to } G_{x}} + \underbrace{c_{\theta(x)}^{(1,0,0)}(F_{x}(y_{1}), G_{x}(y_{2})) \delta_{1}(x)}_{\text{error due to } \theta(x)} + \underbrace{c_{\theta(x)}^{(0,1,0)}(F_{x}(y_{1}), G_{x}(y_{2}))\delta_{2}(x)}_{\text{error due to } \theta(x)} + \underbrace{c_{\theta(x)}^{(0,0,1)}(F_{x}(y_{1}), G_{x}(y_{2}))\delta_{3}(x)}_{\text{error due to } \theta(x)} + \mathcal{O}(||\delta(x)||^{2})$

Estimation of $\theta(x)$ - frequentist approaches

- Acar, Craiu & Yao (Biomcs, 2011) semiparametric estimation. Parametric marginals, θ(x) is approximated nonparametrically via local polynomial estimation.
- Veraverbeke, Omelka & Gijbels (SJS, 2011) nonparametric estimation of the copula and marginals.
- "We observed that the copula estimator may be severely biased if any of the conditional marginal distributions change with the value of the covariate X = x" (V., O. & G, 2011)
- Nonparametric estimates in large-ish dimensions d suffer from curse of dimensionality, unless the volume of data is huge.

Motivation for CC Calibration Estimation Introduction 0000

Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

CC: The SA Condition

- When $d = \dim(X) >> 1$ the curse of dimensionality can be alleviated with dimension reduction models.
- The SA leads to "dimension crushing":

 $C_{x}(F_{x}(v_{1}), G_{x}(v_{2})) = C(F_{x}(v_{1}), G_{x}(v_{2}))$

but when is it justifiable?

- Acar, Genest & Nešlehová (JMVA, 2012) discuss the bias incurred when SA is not justified.
- Acar, Craiu & Yao (EJS, 2013) Generalized LRT to test a constant or linear null calibration against a general alternative.
- Gijbels, Omelka & Veraverbeke (Statistics, 2016) nonparametric testing procedures.
- Derumigny & Fermanian (arXiv, 2016) review of state-of-art and a "work program around SA for the next years".

Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

CC: $d = \dim(X) > 1$

- Sabeti, Wei & Craiu (Stat, 2014) Bayesian additive CC models.
- Chavez-Demoulin & Vatter (JMVA, 2015) Generalized additive models.
- Lobato, Lloyd & Lobato (NIPS, 2013) Gaussian Process models for CC in financial time series.
- Levi & Craiu Gaussian Process with Single Index Models.

Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

Why a Bayesian approach?

- Joint modelling can be a bit easier as selection of most tuning parameters is automatic and data driven.
- The posterior distribution accounts for all sources of variation (included in the model).
- The Monte Carlo samples from the posterior are used to compute finite sample variance estimates, pointwise credible regions and model selection criteria.
- Priors can be used to favour model sparsity.

Motivation for CC Calibration Estimation Calibration Models when dim(X) >> 1 Numerical Illustrations Introduction

•000000000

Additive Model for Calibration

► $X \in \mathbf{R}^d$ Y_1, Y_2 are continuous r.v.'s, $Y_i \sim \mathcal{N}(\mu_i(X), \sigma_i^2)$, for i = 1, 2.

Jointly,

$$\begin{split} h_X(Y_1, Y_2) &= \prod_{i=1}^2 \frac{1}{\sigma_i} \phi\left(\frac{Y_i - \mu_i(X)}{\sigma_i}\right) \\ &\times \quad c \left[\Phi\left(\frac{Y_1 - \mu_1(X)}{\sigma_1}\right), \Phi\left(\frac{Y_2 - \mu_2(X)}{\sigma_2}\right) \middle| \theta(X) \right], \end{split}$$

where $c(u, v|\theta)$ is the pdf of the conditional copula.

Motivation for CC Introduction Calibration Estimation Calibration Models when dim(X) >> 1 Numerical Illustrations 000000000

Additive Model for Calibration

- Usually there is little/no information about the shape of $\theta(X)$.
- Generally $\theta(X)$ has a restricted range, so we estimate the calibration function $\eta : \mathbf{R}^d \to \mathbf{R}$ where $g(\theta(x_i)) = \eta(x_i)$ (g is user-specified).
- We assume that

$$\eta(x_1,\ldots,x_d)=\alpha_0+\sum_{i=1}^d\eta_i^*(x_i).$$

Additivity is not preserved when changing dependence measure.

Calibration Models when $\dim(X) >> 1$ Numerical Illustrations 0000000000

Additive Model for Calibration

- Sabeti, Wang & Craiu (Stat, 2013) use an AM:
 - Each η_i^* has the form:

$$\eta_i^*(x_i) = \sum_{j=1}^3 \alpha_j^{(i)} x_i^j + \sum_{k=1}^{K^{(i)}} \psi_k^{(i)} (x_i - \gamma_k^{(i)})_+^3.$$

- Number and location of knots $\{\gamma_1, \ldots, \gamma_{K^{(i)}}\}$ is important.
- The knot-related choices are data driven.
- Partition the range of X_i into K_{max} intervals, $I_k^{(i)}$, and introduce auxiliary variables

$$\zeta_k^{(i)} = \begin{cases} 1 & \text{if there is a knot } \gamma_k^{(i)} \text{ in } I_k^{(i)} \text{ and } \psi_k^{(i)} \neq 0 \\ 0 & \text{if there is no knot in } I_k^{(i)} \text{ and } \psi_k = 0 \end{cases}$$

•
$$\eta_i^*(x_i) = \sum_{j=1}^3 \alpha_j^{(i)} x_j^j + \sum_{k=1}^{K_{max}} \psi_k^{(i)} \zeta_k^{(i)} (x_i - \gamma_k^{(i)})^3 +$$

Introduction Motivation for CC

Calibration Estimation Calibration Models when dim(X) >> 1 Numerical Illustrations

Gaussian Process Prior for CC

- GP is a flexible method when errors are reasonably approximated by Gaussians.
- GP for marginals when means could be nonlinear functions of Χ.
- GP for calibration function could be used in conjunction with other marginal models.
- Vanilla GP is not helping with the curse of dimensionality and can be expensive when *n* is large so modifications are needed.

Motivation for CC Calibration Estimation Introduction

Calibration Models when dim(X) >> 1 Numerical Illustrations 0000000000

Gaussian Process Prior

- GP prior for smooth f without specifying the form of f.
- For $x \in [-5, 5]^n$, consider $f \sim N_n(0, K(x, x))$ where $K_{ii}(x,x) = k(x_i,x_i)$ and $f_i = f(x_i)$

• Random functions f generated from a GP prior when n = 100

• Cov $(f(x_i), f(x_j)) = k(x_i, x_j) = \exp\{-0.5 * \frac{|x_i - x_j|^2}{r}\}.$

Motivation for CC Calibration Estimation Calibration Models when dim(X) >> 1 Numerical Illustrations Introduction

0000000000

Gaussian Process Estimation

- Observe $\{y_i : 1 \le i \le n\}$ noisy realizations of $f(x_i)_{i=1,n}$, $\mathbf{y}_i = f(\mathbf{x}_i) + \epsilon_i, \ \epsilon_i \sim N(0, \sigma^2).$
- When interested in predicting $f^* = (f(x_i^*))_{j=1,q}$ use

$$\begin{pmatrix} y \\ f^* \end{pmatrix} \sim N_{n+q} \left(\mathbf{0}, \begin{bmatrix} K(x,x) + \sigma^2 \mathbf{I}_n & K(x,x^*) \\ K(x,x^*) & K(x^*,x^*) \end{bmatrix} \right)$$

• The conditional distribution of f^* is Gaussian with

$$E(f^*|y) = \mathcal{K}(x^*, x) \underbrace{\left[\mathcal{K}(x, x) + \sigma^2 \mathbf{I}_q\right]^{-1}}_{\text{expensive for large } n} \mathcal{K}(x, x^*)$$

$$V(f^*|y) = \mathcal{K}(x^*, x^*) - \mathcal{K}(x^*, x) \underbrace{\left[\mathcal{K}(x, x) + \sigma^2 \mathbf{I}_q\right]^{-1}}_{\text{expensive for large } n} \mathcal{K}(x, x^*)$$

Calibration Estimation Introduction Motivation for CC

Calibration Models when dim(X) >> 1 Numerical Illustrations 00000000000

Computational challenges for GP

- When n is large the computation effort is prohibitive so we adopt a sparse GP approach.
- The information about f in the data is funnelled using a smaller sample of size $m \ll n$ of inducing (or latent) variables \tilde{x}_g , $1 \leq g \leq m$.
- Let $\tilde{\mathbf{f}} = (f(\tilde{x}_1), \dots, f(\tilde{x}_m))^T$ we assume $\tilde{\mathbf{f}} \sim N(0, K(\tilde{X}, \tilde{X}))$.
- The (Gaussian) conditional distribution of $\tilde{f}|X, \tilde{X}$ involves $K(X, \tilde{X})$ and the inverse of a $m \times m$ matrix.
- Integrating out \tilde{f} yields the (Gaussian) conditional distribution of $f^*|X^*, X$ with similar computational burden.

Calibration Models when dim(X) >> 1 Numerical Illustrations 00000000000

Gaussian Process Estimation

Suppose we know that $f : \mathbf{R} \to \mathbf{R}$ and

$$(-4, -3, -1, 0, 2) \xrightarrow{f} (-2, 0, 1, 2, -1)$$

• $y_i | f_i \sim N(f_i, \sigma^2), f_i = f(x_i), 1 \le i \le 5$

Samples from the posterior distribution of $f^*|y$, when $\sigma^2 = 0.1$.

Calibration Models when dim(X) >> 1 Numerical Illustrations 0000000000

Modelling η when d > 1

• Assume that
$$\theta(X_i) = g^{-1}(f(X_i))$$
 and

$$\mathbf{f} = (f(X_1), f(X_2), \dots, f(X_n))^T \sim \mathcal{N}(\mathbf{0}, K(X, X; \mathbf{w})),$$

• The (i, j)th element of matrix $K(X, X; \mathbf{w})$ is

$$k(x_i, x_j; \mathbf{w}) = e^{w_0} \exp \left[-\sum_{s=1}^d \frac{(x_{is} - x_{js})^2}{e^{w_s}} \right]$$

- The covariance between outputs is defined as a function of inputs.
- The parameters \mathbf{w} in the covariance function k determine distance between inputs with a significant difference in the outputs.

Modelling η when d > 1

- When $X_i \in \mathbf{R}^d$ a full GP model for the CC has 1 + dparameters.
- We consider instead the SIM model $f(X) = f(\beta^T X).$
- GP-SIM model is invariant to nonlinear one-to-one transformations $\tau(\theta)$.
- The parameter β is unidentifiable up to a constant so we assume $||\beta|| = 1$.
- Marginals are fitted also using GP-SIM models.

Introduction Motivation for CC Calibration Estimation Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

Proof of concept

Sc1
$$f_1(x) = 0.6 \sin(5x_1) - 0.9 \sin(2x_2),$$

 $f_2(x) = 0.6 \sin(3x_1 + 5x_2),$
 $\tau(x) = 0.7 + 0.15 \sin(15x^T\beta)$
 $\beta = (1,3)^T / \sqrt{10}, \ \sigma_1 = \sigma_2 = 0.2 \ n = 400$

	Clayton			Frank		Gaussian			Clayton SA			
Scenario	$\sqrt{IBias^2}$	\sqrt{IVar}	\sqrt{IMSE}									
Sc1	0.0223	0.0556	0.0599	0.0491	0.0714	0.0867	0.0664	0.0741	0.0995	0.1071	0.0133	0.1079

Integrated error for the estimator of $\tau(x)$.

Calibration Models when $\dim(X) >> 1$

Numerical Illustrations

Estimation of $\tau(x)$

X2=0.8

ion Calibration Models when $\dim(X) >> 1$

Numerical Illustrations

Prediction performance

• If
$$y_i | x \sim N(\mu_i(x), \sigma_i^2)$$
, $i = 1, 2$ then

$$E_{x}[Y_{1}|Y_{2} = y_{2}] = \mu_{1}(x) + \sigma_{1} \int_{0}^{1} \Phi^{-1}(z) c_{\theta(x)}\left(z, \Phi\left(\frac{y_{2} - \mu_{2}(x)}{\sigma_{2}}\right)\right) dz.$$

duction Motivation for CC Calibra

CC Calibration Estimation 0000 Calibration Models when $\dim(X) >> 1$

Numerical Illustrations

Model misspecification effects

Marginals:

- $f_1(x) = 0.6 \sin(5x_1) 0.9 \sin(2x_2)$
- $f_2(x) = 0.6 \sin(3x_1 + 5x_2)$
- $\sigma_1 = \sigma_2 = 0.2$
- Copula:
 - $\beta = (1,3)/\sqrt{10}$
 - $\tau(x) = 0.7 + 0.15 \sin(5x^T \beta)$
 - Frank copula
- Y1 and X test points:
 - $Y_1 = -1.5, X = (0.3, 0.3)$
 - $Y_1 = -1.0, X = (0.3, 0.7)$
 - $Y_1 = -0.5, X = (0.7, 0.3)$
 - $Y_1 = 0.0, X = (0.7, 0.7)$
 - $Y_1 = 0.5, X = (0.5, 0.5)$

Calibration Models when $\dim(X) >> 1$

Numerical Illustrations

Model misspecification effects

Black - true; Red - Correct model; Blue - Correct copula with SA Green - Wrong copula; Purple - Correct copula with missing covariate

Introduction 0 Motivation for CC Calibration Estimation

Calibration Models when dim(X) >> 1

Numerical Illustrations

Model misspecification effects

- Marginals
 - $f_1(x) = 0.6 \sin(5x_1) 0.9 \sin(2x_2)$
 - $f_2(x) = 0.6 \sin(3x_1 + 5x_2)$
 - $\sigma_1 = \sigma_2 = 0.2, X_1 \perp X_2.$
- ▶ Copula: \(\tau(x)) = 0.71\)
- Model:
 - A nonparametric model for marginals and CC based on only x_1 .

Introduction 0 Motivation for CC Calibration Estimation

Calibration Models when $\dim(X) >> 1$

Numerical Illustrations

Model misspecification effects

- Marginals
 - $f_1(x) = 0.6 \sin(5x_1) 0.9 \sin(2x_2)$
 - $f_2(x) = 0.6 \sin(3x_1 + 5x_2)$
 - $\sigma_1 = \sigma_2 = 0.2, X_1 \perp X_2.$
- ▶ Copula: \(\tau(x)) = 0.71\)
- Model:
 - A nonparametric model for marginals and CC based on only x_1 .

Motivation for CC Calibration Estimation Introduction

Calibration Models when $\dim(X) >> 1$

Numerical Illustrations

Model misspecification effects

- Suppose $E[Y_i|X_1, X_2] = f_i(\alpha_i X_1 + \beta_i X_2)$, i=1,2.
- Then

$$f_i(x_1, x_2) = \overbrace{f_i(x_1, 0)}^{\text{fit}} + f_i^{(0,1)}(x_1, 0)\beta_i x_2 + f_i^{(0,2)}(x_1, 0)\frac{\beta_i^2 x_2^2}{2} + \mathcal{O}(||x_2^3||),$$

 $i = 1, 2$

The marginal residuals still contain high-order information about x_1 which varies with the distribution of x_2 .

Introduction Motivation for CC

For CC Calibration Estimation

Calibration Models when $\dim(X) >> 1$

Numerical Illustrations

Model misspecification effects

- Suppose $E[Y_i|X_1, X_2] = f_i(\alpha_i X_1 + \beta_i X_2)$, i=1,2.
- Then

$$f_i(x_1, x_2) = \overbrace{f_i(x_1, 0)}^{\text{fit}} + f_i^{(0,1)}(x_1, 0)\beta_i x_2 + f_i^{(0,2)}(x_1, 0)\frac{\beta_i^2 x_2^2}{2} + \mathcal{O}(||x_2^3||),$$

 $i = 1, 2$

► The marginal residuals still contain high-order information about x₁ which varies with the distribution of x₂.

Introduction

Motivation for CC Calibration Estimation Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

Three Model Selection Problems

- Choice of copula family.
- Choice of calibration
 - Simplifying Assumption or not?
 - AM or GP-SIM?
- Covariate selection.

Motivation for CC Calibration Estimation Calibration Models when $\dim(X) >> 1$ Numerical Illustrations Introduction

CV Marginal Likelihood (CVML)

Calculates the average (over parameter values) prediction potential for model $\mathcal M$ via

$$\mathsf{CVML}(\mathcal{M}) = \sum_{i=1}^{n} \log \left(P(Y_{1i}, Y_{2i} | \mathcal{D}_{-i}, \mathcal{M}) \right),$$

- \mathcal{D}_{-i} is the data set from which the *i*th observation has been removed.
- Estimate CVML using

$$E_{\pi}\left[P(Y_{1i}, Y_{2i}|\omega, \mathcal{M})^{-1}\right] = P(Y_{1i}, Y_{2i}|\mathcal{D}_{-i}, \mathcal{M})^{-1}$$

where ω represents the vector of all the parameters and latent variables in the model.

Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

Watanabe-Akaike Information Criterion

- An alternative approach to estimating the log pointwise predictive density (Watanabe, JMLR '10; Vehtari, Gelman & Gabry, Stat. Comput, '16).
- WAIC is defined as

$$\mathsf{WAIC}(\mathcal{M}) = -2\mathsf{fit}(\mathcal{M}) + 2\mathsf{p}(\mathcal{M})$$

► fit(
$$\mathcal{M}$$
) = $\sum_{i=1}^{N} \log E_{\pi} [P(y_{1i}, y_{2i}|\omega, \mathcal{M})]$
► p(\mathcal{M}) = $\sum_{i=1}^{N} \operatorname{Var}_{\pi} [\log P(y_{1i}, y_{2i}|\omega, \mathcal{M})].$

• fit(\mathcal{M}) and the penalty $p(\mathcal{M})$ are computed using the posterior samples.

Introduction Motivation for CC Calibration Estimation Calibration Models when dim(X) >> 1 Numerical Illustrations

Another Two Scenarios

Sc3

$$\begin{array}{c} f_1(x) = 0.6 \sin(5x_1) - 0.9 \sin(2x_2) \\ f_2(x) = 0.6 \sin(3x_1 + 5x_2) \\ \tau(x) = 0.5 \\ \sigma_1 = \sigma_2 = 0.2 \end{array} \end{array} \right\}$$
 SA is true

Sc4

$$\left.\begin{array}{c} f_1(x) = 0.6\sin(5x_1) - 0.9\sin(2x_2) \\ f_2(x) = 0.6\sin(3x_1 + 5x_2) \\ \eta(x) = 1 + 0.7\sin(3x_1^3) - 0.5\cos(6x_2^2) \\ \sigma_1 = \sigma_2 = 0.2 \end{array}\right\}$$

AM model is true

Introduction Motivation for CC Calibration Estimation Calibration Models when dim(X) >> 1 Numerical Illustrations

Copula Selection - Results

	Fra	nk	Gaus	sian	Clayton SA		
Scenario	CVML	WAIC	CVML	WAIC	CVML	WAIC	
Sc1	100%	100%	100%	100%	98%	98%	
Sc4	100%	100%	100%	100%	100%	100%	

Introduction Motivation for CC Calibration Estimation Calibration Models when dim(X) >> 1 Numerical Illustrations

Calibration Selection - Results

	Clay	rton	Fra	ink	Gaussian	
Scenario	CVML	WAIC	CVML	WAIC	CVML	WAIC
Sc3	78%	78%	100%	100%	100%	100%

Scenario	CVML	WAIC		
Sc 1	96%	96%		
Sc4	94%	94%		

Motivation for CC Calibration Estimation Introduction

Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

Red Wine

- 11 Physiochemical properties of 1599 varieties of red "Vinho Verde" Portuguese wine.
- We consider the dependence between fixed acidity and density. The former is strongly associated with quality of wine, while the latter is used as a measure of grape quality.
- Covariates: volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, pH, sulphates, alcohol.

Introduction

Motivation for CC Calibration Estimation Calibration Models when dim(X) >> 1 Numerical Illustrations

Red Wine

Introduction

Motivation for CC Calibration Estimation Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

Red Wine

	2.5% quantile	mean	97.5% quantile
volatile acidity	0.142	0.274	0.406
citric acid	-0.406	-0.320	-0.159
residual sugar	-0.315	-0.089	0.244
chlorides	-0.303	0.024	0.264
free sulfur dioxide	0.123	0.308	0.514
total sulfur dioxide	0.219	0.396	0.584
pН	0.052	0.166	0.324
sulphates	0.335	0.478	0.611
alcohol	0.381	0.467	0.549

Red wine data: posterior estimates and credible regions for β .

Calibration Models when $\dim(X) >> 1$ Numerical Illustrations

Conclusions

- Flexible modelling for CC is necessary.
- CC models can be useful in prediction when the dependence is strong.
- The SA is difficult to detect without a properly calibrated penalty for model complexity.
- Impact of model misspecification can be significant. Robust CC's?
- How to extend these methods to more than two responses (e.g. vines).
- CC-based models in clustering, adaptive MCMC, spatial models, statistical genetics.