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Brief Review of Copulas
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Copulas
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Copulas present one possible approach to model dependence.

If X, Y are continuous random variables with distribution
functions (df) Fx and, respectively, Fy we specify the joint df
using the copula C : [0,1] x [0,1] — [0, 1] such that

Fxy (Fx*(u), Fy ' (v)) = Pr(X < Fl(u), Y < Fyl(v)) = C(u,v).
The copula C bridges the marginal distributions of X and Y.
Interesting: connection between dependence structures and

various families of copulas.
Popular class: Archimedean copulas

Cu,v) = ¢ (g(u) + 6(v)),
where ¢ is a continuous, strictly decreasing function
¢ :[0,1] — [0.00] and

ST = {¢ Hr) if 0<

t < ¢(0)
(0) if ¢(0)<t<oo
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Copulas (cont'd)

@ Examples:

Clayton's copula: C(u,v) = [max (v=% +v=¢ —1,0)]

Frank’s copula: C(u,v) = —%In [1 + %}

~1/0

@ For the purpose of inference, given a family of copulas has
been selected, of interest is the estimation of 8 as well as the
marginal distributions’ parameters, say Ax, Ay.

@ The effect of marginal models misspecification has been well
documented. Also important is the effect of copula
misspecification, especially when of interest are conditional
estimates such as E[X|Y = y], Var(X|Y = y).

@ Central to the performance of the model is the correct
specification of the copula family.
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Copulas (cont'd)

Contour plots of the bivariate cdf:
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Copula misspecification
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Copula Misspecification: A simulation study

)

We assume that the marginals are known.

(]

We generate data following the bivariate Clayton's density.

@ We fit a model using Frank's copula. We are interested in
evaluating the bias for conditional mean and variance
estimators.

@ Each simulation study has a sample size of n =500 and we
replicate each study K = 200 times.

@ The conditional means are computed via Monte Carlo using a
sample of size M = 5000.
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Simulation Results

Clayton's 8 = 3; Fx = Exp(2) , Fy = Exp(1)

Yo 0.5 1.0 15 25
B(py,) | -0.067 (0.009) -0.072 (0.014) -0.003 (0.022) 0.140 (0.037)
| B(o;,) | 0.142 (0.026)  0.364 (0.043)  0.646 (0.080)  1.041 (0.147) |
Clayton's § = 3; Fx = Fy = Weibull(1, 2)

Yo 0.5 1.0 15 25
B(uy,) | -0.052 (0.042) -0.285 (0.048) -0.357 (0.051) -0.170 (0.071)
B(c2) | -0.061(0.018) -0.647 (0.209) -1.036 (0.279) -1.030 (0.400)
Clayton's 0 = 12; Fx = Fy = Weibull(1,2)

Yo 0.5 1.0 15 25
B(uy,) | 0.011(0.012) -0.008(0.016) -0.035 (0.023) -0.118 (0.047)
B(o2) | 0.056 (0.006) 0.076 (0.014)  0.050 (0.043) -0.294 (0.095)




Choice of a Copula Family

Outline of the approach proposed

@ Problem: Given a sample {x;, yj}1<i<n choose the family of
copulas that best approximates the true unknown joint density
c*(x,y).

@ Assume marginals are known and (without loss of generality)
Uniform(0, 1).

o Compute a nonparametric estimate of the two-dimensional
density.

@ Among a set of possible families find the one who is closest
(wrt a certain distributional distance) to the nonparametric
estimate.

@ Compare two different discrepancies: Kullback-Leibler and
Hellinger.
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Nonparametric Estimate

@ A sample of size n from c*: {(u;,v;) €[0,1]>: 1 < i < n}.
@ The kernel density is defined by
&*(x; H) = n7 130 Ku(x — X;), where x = (xq,x) 7,
Xi = (uj,v;) and Ky(x) = |H|7Y2K(H1/?x).
@ H is non-diagonal since there is a large probability mass
oriented away from the coordinate directions

@ H is data-driven (least squares cross-validation).
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Distributional Distances

@ Kullback-Leibler discrepancy is defined as

KL(f.g) = / l0(F(x)/£(x)) f (x)dx.

@ The Hellinger distance is

_ Ve
HE2(f, g) = / £(x) [1 f(x)]
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Computing the distance

@ Two families of copula densities A= {¢, : @« € A} and
B= {c3 : B € B}, where o and (3 are copula parameters.

o Find the MLE’s & and J3.
@ Generate a sample {(&;, ;) : 1 < i < m} drawn from ¢

o Compute
— . 1 < o o e
KL(cz, &) = p Z c; (@i, Vi)log(cy(@i, V7)) — log(e* (@i, %)),

0=a,pQ.
@ Similarly for the Hellinger distance:

m ~ ~ ~ 2
= 1 *(oj, vi
SRR $ 9l [N GIU0]

=1
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Simulation Results

[ Method\n | 50 100 300 500 |

Clayton's § =3
KL 100 100 100 100
HE 99 99 100 100
Clayton's # = 8

KL 100 100 100 100

HE 100 100 100 100
Clayton's § = 12

KL 100 100 100 100

HE 100 100 100 100
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Further Comparison

Compare difference in distances measured by KL and HE (6 = 3).

Samplesize 0, theta=3 Sample size 100, thta=3

I
*M
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Further Comparison

Difference in distances measured by KL and HE (6 = 8,12).

Samplesize 0, thta=3 Sample size 50, theta=12
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