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Computation
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I Bayesian computation has freed to a large extent the
statistical modeller.

I Classical MCMC methods (MH, Gibbs, etc) are omnipresent.

I Universality a (foolish?) computational ideal.

I Tuning is perceived as engineering (and often is).
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BFF
♥→ Computation

I Monte Carlo as statistical model: A theory of statistical
integration for Monte Carlo models (’03, Kong et al) &
subsequent papers by Zhiqiang Tan

I Data Augmentaion - Hidden structures / statistical insight:
Ancillarity–Sufficiency Interweaving Strategy (ASIS) for
Boosting MCMC Efficiency (Meng & Yu, ’11)

I ”Rao-Blackwellization” for MCMC (Robert and Roberts, ’21)



BFF
♥→ Computation

I Antithetic variates ← Design of experiments.

I (Randomized) Quasi-Monte Carlo ← Stratified sampling

I Control variates ← Estimation



Double Happiness: Coupled MCMC
and Control Variates

joint with Xiao-Li Meng



Unbiased MCMC - Pierre Jacob et al. ’20

I Assume interest in approximating I = Eπ[h(X )] using

Î = 1
M

∑M+B
t=B h(Xt), where {Xt}t≥0 are MCMC samples from

some posterior π item Î vulnerable to potential biases due to:
I Insufficient burn-in B
I Chain Initialization

I These biases can accumulate when one is approximating the
expectation I repeatedly.

I For instance, with parallel computations

Î = E[Eπ[h(X )|Uj ]]

where the inner expectation is the estimate obtained from the
jth parallel process generated using random deviates Uj , and
the outer mean averages over all processes.



A Coupling-based Solution

I Consider two chains X = {Xt , t ≥ 0} and Y = {Yt , t ≥ 0}

I They have the same initial distribution and transition kernel

I With probability one there exists a finite stopping time τ such
that Xt = Yt−1 for all t ≥ τ .



A Coupling-based Solution

I Hk(X ,Y) = h(Xk) +
∑τ−1

j=k+1[h(Xj)− h(Yj−1)] has (under
mild conditions) the same mean as

I = h(Xk) +
∞∑

j=k+1

[h(Xj)− h(Yj−1)]

= h(Xk) +
∞∑

j=k+1

[h(Xj)− h(Xj−1)]

which is an unbiased estimator for Eπ[h(X )] for any k ≥ 0
(see Glynn and Rhee, 2014; Glynn, 2016; Jacob et al, 2020;
Biswas et al, 2019)



A Coupling-based Solution

I Generalize to a general “lag” L, i.e. find τ such that
Xt = Yt−L for all t ≥ τ

I Hk,L(X ,Y ) = h(Xk) +
∑Jk,L

j=1

[
h(Xk+jL)− h(Yk+(j−1)L)

]
is

unbiased for I , where Jk,L = max
{

0, d τL−L−kL e
}

.

I For our purpose it is useful to express Hk,L in the equivalent
form

Hk,L(X ,Y ) = h(Xk+LJk,L) +

Jk,L−1∑
j=0

[h(Xk+jL)− h(Yk+jL)] .



1st Happiness: Control Variates for Variance Reduction

I Let ∆k,j = h(Xk+jL)− h(Yk+jL) and note that E [∆k,j ] = 0 for
all k, j ≥ 0.

I Then Cη =
∑

j≥1 ηj∆k,j is a control variate for Hk,L(X ,Y ),
where ~η ≡ {ηj , j ≥ 1} is independent of {X ,Y}, and∑

j=1 E~η|ηj | <∞,

I Replace Hk,L(X ,Y) with

H
(~η)
k,L(X ,Y ) = Hk,L(X ,Y )−

∑
j≥1

ηj∆k,j .



A Remarkable Result

I From
E [h(Xπ)− h(Xk)] = E

{∑Jk,L
j=1

[
h(Xk+jL)− h(Yk+(j−1)L)

]}
⇒ dTV(πk , π) ≤ E[Jk,L]

I Instead of trying to minimize the variance of H
(~η)
k,L(X ,Y ) we

optimize ~η so that the resulting TV inequality is tighter!



2nd Happiness: A Refined Bound

I We show:

dTV(πk , π) ≤ 0.5

∑
j≥1

E|1{j≤Jk,L} − ηj |+
∑
j≥1

E|ηj − 1{j≤Jk,L−1}|


+ 0.5 Pr(Jk,L > 0)

=
∑
j≥1

E|1{j≤J̃k,L} − ηj |+ 0.5 Pr(Jk,L > 0),

where J̃k,L = Jk,L − ξ and ξ ∼ Bernoulli(0.5)

I Recall: for any given random variable V ,
minU⊥V E |V −U| = E |V −mV |, where mV is a median of V .



2nd Happiness: A Refined Bound

I Let m̃Jk,L be the smallest integer median of J̃k,L and let
ηj = 1{j<m̃k,L}, for any j .

I In order for ~η to be independent from X ,Y we will use R
pairs of coupled chains, independently run in parallel

I For each process use the estimate of m̃Jk,L obtained from the
“other” R − 1 processes.



2nd Happiness: A Refined Bound

I We can show that this choice of ~η yields the bound

Bk,L = E|Jk,L −mJk,L |+ Pr(Jk,L > 0)− Sk,L

where Sk,L = max{Pr(Jk,L > mJk,L),Pr(Jk,L < mJk,L)} ≤ 0.5
and mJk,L is the smallest integer median of Jk,L.

I Always Bk,L ≤ E [Jk,L] ∀k, L

I Whenever, mJk,L = 0, Bk,L = E [Jk,L].

I Note that Bk,L depends on the coupling time mean, its
variance and the symmetry of its distribution.



A Bayesian’s Best Friend: MCMC

I Data y0 ∈ Y, likelihood function L(θ|y) (or sampling
distribution f (y|θ)).

I The Metropolis-Hastings updating rule is an essential
ingredient in multiple MCMC samplers.

I A proposal ξ ∼ q(ξ|θ) is accepted with probability

min

{
1,
π(ξ|y0)q(θ|ξ)

π(θ|y0)q(ξ|θ)

}
.

I Note that π(θ|y0) ∝ p(θ)L(θ|y0) needs to be computed at
each iteration. (hence L(θ|y0) must also be computable)



Approximate Bayesian Computation
with Friendly Neighbours

joint with Evgeny Levi



A challenge: Intractable Likelihoods & Big Data

I Groundwater studies (Cui et al. 2018)
“A critical issue that limits the application of Bayesian
inference is the difficulty to define an explicit likelihood
function for complex and non-linear groundwater models”

I Hurrican surge (Plumlee et al., 2021)
“Storm surge is simulated by solving a set of partial dif-
ferential equations known as the shallow water equations
to yield water elevation and velocity in space and time
[...]. A mesh of nodes, which are points in geographic
space, is constructed to capture the shape of the seafloor
and overland topography. The partial differential equa-
tions are then solved on the mesh and integrated forward
in time over several days for a single storm simulation.”



Challenge no 2: Intractable Likelihood

I The likelihood L(θ|y) is not computable but one can sample
from f (y|θ) for all θ’s

I Approximate Bayesian Computation (ABC - Marin et al.,
Comp & Stat. 2012)

I Bayesian Synthetic Likelihood (BSL - Price et al, JCGS 2018)
methods can be used.

I Indirect inference (Smith Jr, 1993; Gourieroux et al. 1993;
Gallant and McCulloch, 2009)



Bayesian Synthetic Likelihood (BSL)

I Complex model: f (y|θ) with intractable f

I Simpler model: g(S(y)|θ) approximates f (S(y)|θ)

I g is Gaussian with parameters φ(θ) = (µθ,Σθ)

I The Synthetic Likelihood SL(θ|s0) = N (s0;µθ,Σθ), where
s0 = S(y0).

I µθ,Σθ are estimated from m statistics
(s1 := S(y1), . . . , sm := S(ym)) where yj ∼ f (y|θ) .

I The BSL posterior is π(θ|s0) ∝ p(θ)SL(θ|s0)



Bayesian Synthetic Likelihood (BSL)

I Generate yi ∼ f (y|θ) and set si = S(yi ), i = 1, · · · ,m

I Estimate µ̂θ and Σ̂θ

I The synthetic likelihood is

SL(θ|s0) = N (S(y0); µ̂θ, Σ̂θ). (1)

I A MH sampler requires SL(θ|s0)/SL(θt |s0)



BSL with precomputed proposals

I Precompute the proposals for the chain (parallelizable task)

I For 1 ≤ h ≤ H let ξh ∼ p(ξ) and m pseudo-data

w
(1)
h , . . . ,w

(m)
h

iid∼ f (w|ξh);

I Set s
(k)
h = S(w

(j)
h ), 1 ≤ j ≤ m, and

Z = {(ξh, sh = [s
(1)
h , . . . , s

(m)
h ]) : 1 ≤ h ≤ H}

I Use Z for running MCMC-BSL.

I The number m of pseudo-data sets generated for each ξ is
small so we do not have SL(ξ|s0).



BSL with precomputed proposals

I When proposal is θ∗.

µ̂θ∗ =

∑H
h=1[Wh(θ∗) 1

m

∑m
j=1 s

(j)
h ]∑H

h=1 Wh(θ∗)
,

Σ̂θ∗ =

∑H
h=1[Wh(θ∗) 1

m

∑m
j=1(s

(j)
h − µ̂θ∗)(s

(j)
h − µ̂θ∗)

T ]∑H
h=1 Wh(θ∗)

.

(2)

I Wh(θ∗) = 1 or Wh(θ∗) = 1− ‖ξh − θ∗‖/‖ξ∗ − θ∗‖ and
ξ∗ = maxξ∈Z ‖ξ − θ∗‖, i.e. is the point in Z that is furthest
away from θ∗.



ABC with precomputed proposals

I The target of ABC-MCMC is

πε(θ|s0) ∝ p(θ)Pr(d(S(y), s0) ≤ ε|θ)

I At each step one needs to estimate Pr(d(S(y), s0) ≤ ε|θ).

I An unbiased estimator requires generating pseudo-data for
each proposal θ∗

I Details in Levi & C (2022).



TV bound: Geometric case
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Figure: Comparison of bound (??) provided by [?] (dashed black line)
and the new bound given in (??) (solid red line ). Note that for small
values of p both bounds are vacuous.



Control Variates: German Credit Data

I Bayesian logistic regression model for the German Credit data.

I Data consist of n = 1000 binary responses and d = 49
covariates.

I β ∼ N(0, 10Id), Pr(Yi = 1|xi ) = [1 + exp(−xTi β)]−1

I The relative reduction in variance (RRV) computed as

RRV= varMCCV (β̂)

varMC (β̂)
where β̂ is the posterior mean of the

regression coefficients, β ∈ R49 and VarMC , VarMCCV denote
the estimated Monte Carlo variances of β̂ obtained without
and, respectively, with control variates.



Control Variates: German Credit Data
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Figure: German Credit Data. Relative (RRV) reduction in variance for
the 49 regression coefficients. Top panels: the lag is L = 5. Bottom
panels: the lag is L = 20. Left panels: RRV is obtained using k = 5.
Right panels: RRV is obtained from the average estimators with k = 5
and r = 30.
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Numerical Experiments: Ricker’s Model

I A particular instance of hidden Markov model:

x−49 = 1; zi
iid∼ N (0, exp(θ2)2); i = {−48, · · · , n},

xi = exp(exp(θ1))xi−1 exp(−xi−1 + zi ); i = {−48, · · · , n},
yi = Pois(exp(θ3)xi ); i = {−48, · · · , n},

where Pois(λ) is Poisson distribution

I Only y = (y1, · · · , yn) sequence is observed, because the first
50 values are ignored.



Numerical Experiments: Ricker’s Model

Define summary statistics S(y) as the 14-dimensional vector whose
components are:

(C1) #{i : yi = 0},
(C2) Average of y, ȳ ,

(C3:C7) Sample auto-correlations at lags 1 through 5,

(C8:C11) Coefficients β0, β1, β2, β3 of cubic regression
(yi − yi−1) = β0 + β1yi + β2y

2
i + β3y

3
i + εi , i = 2, . . . , n,

(C12-C14) Coefficients β0, β1, β2 of quadratic regression
y0.3
i = β0 + β1y

0.3
i−1 + β2y

0.6
i−1 + εi , i = 2, . . . , n.



Numerical Experiments: Ricker’s Model - ABC/RWM

Figure: Ricker’s model: ABC-RW Sampler. Each row corresponds to
parameters θ1 (top row), θ2 (middle row) and θ3 (bottom row) and
shows in order from left to right: Trace-plot, Histogram and
Auto-correlation function. Red lines represent true parameter values.
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Numerical Experiments: Ricker’s Model - BSL

Figure: Ricker’s model: ABSL-U Sampler.
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Numerical Experiments: Ricker’s Model - ABC

Figure: Ricker’s model: AABC-U Sampler.
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Numerical Experiments: Ricker’s Model - ABC

Diff with exact Diff with true parameter Efficiency

Sampler DIM DIC TV
√

Bias2
√

VAR
√

MSE ESS ESS/CPU
SMC 0.152 0.0177 0.378 0.086 0.201 0.219 472 0.521
ABC-RW 0.135 0.0201 0.389 0.059 0.180 0.189 87 0.199
ABC-IS 0.139 0.0215 0.485 0.063 0.195 0.205 47 0.099
AABC-U 0.147 0.0279 0.402 0.076 0.190 0.204 3563 4.390
AABC-L 0.141 0.0258 0.392 0.070 0.189 0.201 4206 5.193
BSL-RW 0.129 0.0080 0.382 0.038 0.206 0.209 131 0.030
BSL-IS 0.122 0.0082 0.455 0.022 0.197 0.198 33 0.007
ABSL-U 0.103 0.0054 0.377 0.023 0.170 0.171 284 0.180
ABSL-L 0.106 0.0051 0.382 0.012 0.173 0.173 207 0.135
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