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Motivation - part 0

▶ The smoking cessation study of Liu, Daniels and Marcus (JASA
’09):

Q = smoking cessation (0=No, 1=Yes)
W = weight change
X = time spent exercising

▶ Does exercise weaken the association between smoking status and
weight gain?

▶ We are interested in understanding the covariate effect on the
dependence pattern between responses.
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Motivation - part 1

▶ Joint models for multivariate data.

▶ If the joint distribution of Y1, Y2, Y3 (Yi ∼ fi , 1 ≤ i ≤ 3) then

f (y1, y2, y3) = c12(F1(y1), F2(y2))c23(F2(y2), F3(y3))
× c13|2(F1|2(y1|y2), F3|2(y3|y2); y2)f1(y1)f2(y2)f3(y3)

▶ As dimension increases, the bivariate conditional copulas depend on
increasing number of variables.

▶ Useful in prediction of one (expensive) response given the other
(cheaper) ones.

f (y1|y2, y3) = c12(F1(y1), F2(y2))c13|2(F1|2(y1|y2), F3|2(y3|y2); y2)f1(y1)
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Motivation - part 2
▶ Yi |x ∼ N(fi(x), σi) x ∈ R2

▶ True marginal means:
▶ f1(x) = 0.6 sin(5x1) − 0.9 sin(2x2)
▶ f2(x) = 0.6 sin(3x1 + 5x2)
▶ σ1 = σ2 = 0.2, X1 ⊥ X2.

▶ Copula: τ(x) = 0.71

▶ Suppose x2 is not observed so inference is based only on x1
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Motivation - part 2

▶ Simplified setting:

Yi |X1, X2 ∼ N(fi(X1, X2), 1) i = 1, 2

Cor(Y1, Y2|X1, X2) = ρ

▶ Set Wi = Yi − E [Yi |X1] for i = 1, 2

Cov(W1, W2|X1) = Cov(Y1, Y2|X1), (1)

and

Cov(Y1, Y2|X1) = EX2 [Cov(Y1, Y2|X1, X2)]+
+ CovX2(E [Y1|X1, X2], E [Y2|X1, X2])
= ρ + CovX2(f1(X1, X2), f2(X1, X2))︸ ︷︷ ︸

constant in X1 if fi (X1,X2)=fi1(X1)+fi2(X2), i=1,2

▶ Omission of covariates ⇒ Non-constant calibration.
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Conditional Copulas

▶ If X ∈ Rd is a covariate

H(t1, . . . , td |X) = CX(F1(t1|X), . . . , Fd(td |X)).

▶ The parametric CC model assumes there is a family {Cθ : θ ∈ Θ}
s.t.

CX(F1(t1|X), . . . , Fd(td |X)) = Cη(X)(F1(t1|X), . . . , Fd(td |X)).

▶ η is the unknown calibration function we are interested in.

▶ The simplifying assumption (SA):

CX(F1(t1|X), . . . , Fd(td |X)) = C(F1(t1|X), . . . , Fd(td |X))

or
η(X) = const.
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Semiparametric and Nonparametric
▶ Semiparametric and nonparametric methods (Acar, C. and Yao

2011; Veraverbeke, Omelka & Gijbels 2011)
▶ Estimate η(X ) after fitting the models for the marginals.

▶ When marginals are unknown → propagation of errors
▶ Testing for H0 : η(x) = const is cumbersome and lacks power.
▶ Scales poorly with dimension of X .
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Bayesian Cubic Splines

▶ Joint Bayesian modelling of marginals and calibration regression
models using cubic splines (C. & Sabeti 2012)
▶ Suitable for X ∈ R
▶ Model comparisons between M0 : η(x) = const and

M1 : η(x) ̸= const favours M1.
▶ Use additive models when X ∈ Rd (Sabeti, Wang & C. 2014;

Chavez-Demoulin & Vatter 2015)

η(x1, . . . , xd) = η0 +
d∑

i=1
ηi(xi).

▶ Results are sensitive to violations of additivity.
▶ Additivity is not preserved when changing dependence measure.
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Twin Data Example

DIC=10449 DIC=14810

DIC=6.97 × 107
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GP Prior with Single Index Models

▶ When X ∈ Rd we consider the SIM model (Levi & C 2018)

η(X ) = f (βT X ). with f : R → R smooth.

▶ f is estimated using a sparse Gaussian process prior

▶ This is invariant to nonlinear one-to-one transformations τ(θ).

▶ Marginals are fitted also using GP-SIM models, but other models are
possible.

▶ The parameter β is unidentifiable up to a constant so we assume
||β|| = 1.

▶ Allows for variable selection.
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Red Wine

▶ 11 Physiochemical properties of 1599 varieties of red “Vinho Verde”
Portuguese wine.

▶ We consider the dependence between fixed acidity and density. The
former is strongly associated with quality of wine, while the latter is
used as a measure of grape quality.

▶ Covariates: volatile acidity, citric acid, residual sugar, chlorides, free
sulfur dioxide, total sulfur dioxide, pH, sulphates, alcohol.
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Red Wine
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Part II: Copulas in Statistical Models
Based on ”Copula Modelling of Serially Correlated Multivariate Data

with Hidden Structures”

Co-authors: Robert Zimmerman and Vianey Leos-Barajas
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Hidden Markov Models: A Primer
▶ A hidden Markov model (HMM) pairs an observed time series

{Yt}t≥1 ⊆ Rd with a Markov chain {Xt}t≥1 on some state space X ,
such that the distribution of Ys | Xs is independent of Yt | Xt for
s ̸= t:

· · · Xt−2 Xt−1 Xt Xt+1 Xt+2 · · ·

Yt−2 Yt−1 Yt Yt+1 Yt+2

▶ Yt,h|{Xt = k} ∼ fk,h(·|λk,h) ∀h = 1, . . . , d
▶ {Xt} is a Markov process (finite state space X ) with initial

probability mass distribution {πi}i∈X and transition probabilities
{γi,j}i,j∈X
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Inferential aims for HMMs

▶ Typically, the chain {Xt}t≥1 is partially or completely unobserved.

▶ The hidden states can correspond to a precise variable (occupancy
data) or might be postulated (psychology, ecology, etc)

▶ Aim 1: Model the data generating mechanism Nasri et al. (2020)

▶ Aim 2: Decode (i.e., classify) or predict the Xt ’s from the observed
data.
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Examples

▶ A tri-axial accelerometer captures a shark’s acceleration with respect
to three positional axes depending on the shark’s activity (resting,
hunting, attacking). For short periods some of the sharks are filmed.

▶ Stock exchanges keep track of real-time prices for hundreds of
stocks within an industry, depending on market conditions/states
(stagnant, growing, shrinking).

▶ In-game team statistics like shots on goal and ball touches in a
soccer football match are changing with the “momentum” of the
team (defensive, offensive, passive) Ötting et al. (2021)
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Fusion of Multiple Data Sources
▶ In the real-world applications above, various sensors capture multiple

streams of data, which are “fused” into a multivariate time series
{Yt}t≥1

▶ In such situations, the components of any Yt = (Yt,1, . . . , Yt,d)
cannot be assumed independent (even conditional on Xt)

▶ The corresponding assumption for HMMs – that of contemporaneous
conditional independence Zucchini et al. (2017) – is often violated

▶ Instead, it is common to assume that Yt follows a multivariate
Gaussian distribution, but this places limits on marginals and
dependence structures

▶ What if the strength of dependence – or even the “kind” of
dependence – between the components of Yt could be informative
about the underlying state Xt?
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Copulas Within HMMs

▶ Our model consists of an HMM {(Yt , Xt)}t≥1 ⊆ Rd × X in which
the state-dependent distributions are copulas:

Yt | (Xt = k) ∼ Hk(·) = Ck

(
Fk,1(· ; λk,1), . . . , Fk,d(· ; λk,d)

∣∣∣ θk︸ ︷︷ ︸
depends on the hidden state value k

)
.

▶ Ck(·, . . . , · | θk) is a d-dimensional parametric copula

▶ {Xt}t≥1 is a Markov process on finite state space X = {1, 2, . . . , K}
and K is known

▶ In this model, virtually all aspects of the state-dependent
distributions are allowed to vary between states

Radu Craiu Statistical modelling for and with copulas 18



Part I - Conditional Copulas Part II - Copulas in Statistical Models Applications References

Information in the dependence
▶ For a range of θ ∈ [0, 100), we simulated a bivariate time series of

length T = 100 from the 2-state HMM
Yt | (Xt = k) ∼ CFrank

(
N (0, 1), N (0, 1) | (−1)k · |θ|

)
, k = 1, 2

and then separately assessed the accuracy of a standard decoding
algorithm, first assuming independent margins and then the true
model:

Figure: Zero-one losses for independent margins (red dots) and true model
(blue dots)
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Stronger Dependence Leads to Better Accuracy

▶ In fact, ℓ01(θ) = 1
2 − 2

θ log
(
cosh θ

4
)

→ 0 as θ → ∞
▶ Similar formulas hold for other radially symmetric copulas
▶ Much more generally, we have the following:

Theorem
Let νt,k = P (Xt = k). The expected zero-one loss of the classifications
made by local decoding is given by

ℓ01(η) = 1 − 1
T

T∑
t=1

K∑
k=1

νt,k

∫
Rd
1

{
νt,k · hk(y)

maxj ̸=k νt,j · hj(y) > 1
}

dHk(y).

where hk(Y) is the joint density of Y|X = k.

▶ Corollary: as the copula in any particular state approaches either of
the Fréchet-Hoeffding bounds, the observations produced by that
state will be detected with complete accuracy
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Estimation with missing data

▶ Data consist in observed Y1:T and missing X1:T

▶ Parameters are η = {λh,k}h=1:d
k=1:T

∪ {θk}k=1:T ∪ {γi,j}i=1:K
j=1:K

∪{πj}j=1:K .
▶ The complete-data log-likelihood for one trajectory of the copula

HMM is given by

ℓcom (η | y1:T , X1:T ) = πX1 +
T∑

t=2
log γXt−1,Xt +

d∑
h=1

log fXt ,h(yt,h; λXt ,h)

+
T∑

t=1
log cXt (FXt ,1(yt,1; λXt ,1), . . . , FXt ,1(yt,d ; λXt ,d) | θXt ) .

(2)
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Inference for HMMs Via the EM Algorithm

▶ Without copula, the estimation is done via the EM algorithm (aka
Baum-Welch)

E-step Compute Q(η|η(s)) = E [lcom(η|Y1:T , X1:T )|η(s), Y1:T ]

M-step Set η(s+1) = arg maxη Q(η|η(s))

▶ The complete-data log-likelihood is written in terms of the state
membership indicators Uk,t = 1Xt =k and Vj,k,t = 1Xt−1=j,Xt =k

▶ In the E-Step, these indicators are estimated by the conditional
probabilities ûk,t = P (Xt = k | Y1:T = y1:T ) and
v̂j,k,t = P (Xt−1 = j , Xt = k | Y1:T = y1:T ), which are computed
based on current parameter estimates

▶ This only requires evaluating the state-dependent densities at each
of the observations y1, . . . , yT (this is “OK”)
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The M-Step Is Hard

▶ In the M-Step, the resulting complete-data log-likelihood is
maximized with respect to all parameters in the model
simultaneously
▶ Only for the simplest univariate models do the state-dependent

MLEs exist in closed form; otherwise, one must resort to numerical
methods (this is hard!)

▶ Evaluating a copula density ck(·, . . . , · | θk) in high dimensions is slow
▶ When the state-dependent distributions in an HMM are copulas,

performing the M-Step directly requires the evaluation of

argmax
{θk },{λk,h}

{ K∑
k=1

T∑
t=1

ûk,t

[
log ck

(
Fk,1(yt,1; λk,1), . . . , Fk,d(yt,d ; λk,d)

∣∣∣ θk

)
+

d∑
h=1

log fk,h(yt,h; λk,h)
]}

▶ This is very unstable (and slow)
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Inference Functions for Margins

▶ Likelihood-based inference for copulas is easier when the goal is to
estimate θ alone in the presence of known margins

▶ Why not perform inference on the marginal distributions first, and
then on the copula itself?

▶ In the context of iid data, this is exactly the inference functions for
margins (IFM) approach of Joe and Xu (1996):
▶ First estimate each λh by its “marginal MLE” λ̂h given {Yt,h}t≥1, for

h ∈ {1, . . . , d}
▶ Then estimate θ assuming fixed marginals F1(·; λ̂1), . . . , Fd(·; λ̂d)

▶ One can show that the IFM estimator is consistent and
asymptotically normal (although relatively less efficient than the
MLE)
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A Better Approach

▶ Replace the M-Step in the EM algorithm with an IFM iteration to
create an “EFM algorithm”

▶ For T ∈ {100, 1000, 5000} and d ∈ {2, 5, 10}, we simulated a
d-dimensional time series of length T from the 2-state HMM

Yt | (Xt = 1) ∼ CFrank
(
(N (µ1,h = −h, 1))d

h=1 | θ1 = 3
)

Yt | (Xt = 2) ∼ CClayton
(
(N (µ2,h = h, 1))d

h=1 | θ2 = 3
)

and estimated η = (µ1,1, . . . , µ2,d , θ1, θ2) using both approaches

▶ Applied to the basic EM algorithm, R’s optim with L-BFGS-B (i.e.,
quasi-Newton with box constraints) typically fails as soon as d ≥ 3
▶ The procedure is extremely sensitive to initial values and requires

η̂(0) ≈ η just to avoid overflow
▶ This kind of tuning is very tedious or impossible in high dimensions
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Does This Work?
▶ We keep track of the time (in seconds) until the algorithm

converges, and the L2 error of the resulting estimate, ϵ = ∥η − η̂∥2
▶ We used the lbfgsb3c package, which is more stable than optim

d = 2 d = 5 d = 10
T = 100 111.9 s, ϵ = 0.14 123.4 s, ϵ = 299.98 111.8 s, ϵ > 109

T = 1000 166.6 s, ϵ = 0.63 169.5 s, ϵ > 1011 418.23 s, ϵ = 725.06
T = 5000 ? ? ?

Table: EM Algorithm

d = 2 d = 5 d = 10
T = 100 5.1 s, ϵ = 2.9 3.0 s, ϵ = 0.94 4.2 s, ϵ = 0.58
T = 1000 34.4 s, ϵ = 0.57 22.9 s, ϵ = 0.60 34.4 s, ϵ = 0.80
T = 5000 172.6 s, ϵ = 0.13 106.2 s, ϵ = 0.12 168.7 s, ϵ = 0.19

Table: EFM Algorithm
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This Works

▶ R has no problem with the EFM algorithm

▶ The algorithm is considerably less sensitive to starting values than
the vanilla EM algorithm, and terminates much faster

▶ It is also theoretically justified
▶ We show that the sequence of estimates produced by our algorithm

will converge, and the resulting estimator is consistent and
asymptotically normal (under mild regularity conditions)

▶ Accomplished by viewing our method as an adaptation of the ES
algorithm of Elashoff and Ryan (2004) and using established
asymptotic theory of M-estimators for HMMs Jensen (2011)
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Occupancy Data

▶ The ability to detect whether a room is occupied using sensor data
(such as temperature and CO2 levels) can potentially reduce
unnecessary energy consumption by automatically controlling HVAC
and lighting systems, without the need for motion detectors

▶ Consider three publicly-available labelled datasets presented by
Candanedo and Feldheim (2016) which contain multivariate time
series of four environmental measurements (light, temperature,
humidity, CO2) and one derived metric (the humidity ratio)

▶ Data contain binary indicators for whether the room was occupied or
not at the time of measurement
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Occupancy Data
▶ Several common families of parametric copulas (the Frank, Clayton,

Gumbel, Joe, and Gauss families), and for each we carried out a
goodness-of-fit test based on the pseudo-observations using the
multiplier bootstrap method (Kojadinovic et al., 2011)

▶ The parametric family based on the lowest corresponding
Cramér-von Mises test statistic is selected.

▶ This process yielded a Clayton copula for State 1 and a Frank copula
for State 2

State Frank Clayton Gumbel Joe Gauss
1 0.356 0.255 0.423 0.770 0.345
2 0.018 0.433 0.038 0.206 0.045

Table: Cramér-von Mises test statistics based on pseudo-observations
computed from unoccupied (Row 1) and occupied (Row 2) subsets.
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Occupancy Data
▶ Denote the unoccupied state as ‘1’ and the occupied state as ‘2’

Yt | (Xt = 1) ∼ CClayton
(
N (µ1,1, σ2

1,1), N (µ1,2, σ2
1,2) | θ1

)
Yt | (Xt = 2) ∼ CFrank

(
N (µ2,1, σ2

2,1), N (µ2,2, σ2
2,2) | θ2

)
.

Figure: Pseudo-observations computed from unoccupied (Panel 1) and
occupied (Panel 2) subsets.
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Occupancy Data

Copula Model Train Test 1 Test 2
Independence 0.895 0.846 0.680

Clayton/Frank 0.899 0.852 0.696

Table: Overall state classification accuracy for the training dataset and the two
test datasets using either the independence or Clayton/Frank copula.
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Discussion

▶ Copulas are interesting objects that can play useful roles in
statistical models

▶ Allow data fusion in many contexts

▶ Customized computation is often required

▶ Future: computation and model selection for/with vine copulas
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