Copula modelling of serially correlated multivariate data with hidden structures

Radu Craiu

Department of Statistical Sciences University of Toronto

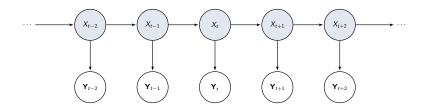
Joint with Robert Zimmerman and Vianey Leos-Barajas (Toronto)

Ca'Foscari, March 24, 2023

References

Hidden Markov Models: A Primer

• A hidden Markov model (HMM) pairs an observed time series $\{\mathbf{Y}_t\}_{t\geq 1} \subseteq \mathbb{R}^d$ with a Markov chain $\{X_t\}_{t\geq 1}$ on some state space \mathcal{X} , such that the distribution of $\mathbf{Y}_s \mid X_s$ is independent of $\mathbf{Y}_t \mid X_t$ for $s \neq t$:



 $\blacktriangleright \mathbf{Y}_{t,h}|\{X_t=k\} \sim f_{k,h}(\cdot|\lambda_{k,h}) \ \forall h=1,\ldots,d$

{X_t} is a Markov process (finite state space X) with initial
 probability mass distribution {π_i}_{i∈X} and transition probabilities
 {γ_{i,j}}_{i,j∈X}

Inferential aims for HMMs

- Typically, the chain $\{X_t\}_{t \ge 1}$ is partially or completely unobserved.
- The hidden states can correspond to a precise variable (occupancy data) or might be postulated (psychology, ecology, etc)
- ► Aim 1: Model the data generating mechanism Nasri et al. (2020)
- Aim 2: Decode (i.e., classify) or predict the X_t's from the observed data.

Examples

- A tri-axial accelerometer captures a shark's acceleration with respect to three positional axes depending on the shark's activity (resting, hunting, attacking). For short periods some of the sharks are filmed.
- Stock exchanges keep track of real-time prices for hundreds of stocks within an industry, depending on market conditions/states (stagnant, growing, shrinking).
- In-game team statistics like shots on goal and ball touches in a soccer football match are changing with the "momentum" of the team (defensive, offensive, passive) Ötting et al. (2021)

Fusion of Multiple Data Sources

- In the real-world applications above, various sensors capture multiple streams of data, which are "fused" into a multivariate time series {Y_t}_{t≥1}
- ▶ In such situations, the components of any $\mathbf{Y}_t = (Y_{t,1}, \dots, Y_{t,d})$ cannot be assumed independent (even conditional on X_t)
- The corresponding assumption for HMMs that of contemporaneous conditional independence Zucchini et al. (2017) – is often violated
- Instead, it is common to assume that Y_t follows a multivariate Gaussian distribution, but this places limits on marginals and dependence structures
- What if the strength of dependence between the components of Y_t could be informative about the underlying state X_t?

Copulas

- Copula functions are used to model dependence between continuous random variables.
- ▶ If Y_1, Y_2, \ldots, Y_d are continuous r.v.'s with distribution functions (df) F_1, \ldots, F_d , there exists an unique copula function $C : [0, 1]^d \rightarrow [0, 1]$ such that

$$H(t_1,\ldots,t_d) = \mathbb{P}(Y_1 \leq t_1,\ldots,Y_d \leq t_d) = C(F_1(t),\ldots,F_d(t_d)).$$

- The copula bridges the marginal distributions of Y₁,..., Y_d with the joint distribution. It corresponds to a distribution on [0, 1]^d with uniform margins.
- This can be extended to conditional distributions and copulas:

$$\mathbb{P}(Y_1 \leq t_1, \ldots, Y_d \leq t_d | X) = C(F_1(t|X), \ldots, F_d(t_d|X) | X).$$

Copulas Within HMMs

• Our model consists of an HMM $\{(\mathbf{Y}_t, X_t)\}_{t \ge 1} \subseteq \mathbb{R}^d \times \mathcal{X}$ in which the state-dependent distributions are copulas:

$$\mathbf{Y}_{t} \mid (X_{t} = k) \sim H_{k}(\cdot) = \underbrace{C_{k}\Big(F_{k,1}(\cdot;\lambda_{k,1}), \dots, F_{k,d}(\cdot;\lambda_{k,d}) \mid \theta_{k}\Big)}_{\text{depends on the hidden state value }k} \Big).$$

- $C_k(\cdot, \ldots, \cdot \mid \theta_k)$ is a *d*-dimensional parametric copula
- {X_t}_{t≥1} is a Markov process on finite state space X = {1,2,...,K} and K is known.
- In this model, virtually all aspects of the state-dependent distributions are allowed to vary between states

Information in the dependence

For a range of θ ∈ [0, 100), we simulated a bivariate time series of length T = 100 from the 2-state HMM

$$\mathbf{Y}_t \mid (X_t = k) \sim C_{\mathsf{Frank}} \left(\mathcal{N}(0,1), \mathcal{N}(0,1) \mid (-1)^k \cdot |\theta|
ight), \quad k = 1, 2$$

and then separately assessed the accuracy of a standard decoding algorithm, first assuming independent margins and then the true model:

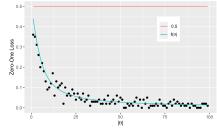


Figure: Zero-one losses for independent margins (red dots) and true model (blue dots)

Radu Craiu

7

Stronger Dependence Leads to Better Accuracy

- ▶ In fact, $\ell_{01}(\theta) = \frac{1}{2} \frac{2}{\theta} \log \left(\cosh \frac{\theta}{4} \right) \rightarrow 0$ as $\theta \rightarrow \infty$
- Similar formulas hold for other radially symmetric copulas
- Much more generally, we have the following:

Theorem

Let $\nu_{t,k} = \mathbb{P}(X_t = k)$. The expected zero-one loss of the classifications made by local decoding is given by

$$\ell_{01}(\boldsymbol{\eta}) = 1 - rac{1}{\mathcal{T}} \sum_{t=1}^{\mathcal{T}} \sum_{k=1}^{\mathcal{K}}
u_{t,k} \int_{\mathbb{R}^d} \mathbb{1} \left\{ rac{
u_{t,k} \cdot h_k(\mathbf{y})}{\max_{j
eq k}
u_{t,j} \cdot h_j(\mathbf{y})} > 1
ight\} \mathrm{d} H_k(\mathbf{y}).$$

where $h_k(\mathbf{Y})$ is the joint density of $\mathbf{Y}|X = k$.

 Corollary: as the copula in any particular state approaches either of the Fréchet-Hoeffding bounds, the observations produced by that state will be detected with complete accuracy

Estimation with missing data

▶ Data consist in observed $\mathbf{Y}_{1:T}$ and missing $X_{1:T}$

Parameters are
$$\eta = \{\lambda_{h,k}\}_{\substack{h=1:d\\k=1:T}} \cup \{\theta_k\}_{k=1:T} \cup \{\gamma_{i,j}\}_{\substack{j=1:K\\j=1:K}} \cup \{\pi_j\}_{j=1:K}$$
.

 The complete-data log-likelihood for one trajectory of the copula HMM is given by

$$\ell_{\text{com}}\left(\boldsymbol{\eta} \mid \mathbf{y}_{1:T}, X_{1:T}\right) = \pi_{X_{1}} + \sum_{t=2}^{T} \log \gamma_{X_{t-1}, X_{t}} + \sum_{h=1}^{d} \log f_{X_{t}, h}(y_{t,h}; \lambda_{X_{t}, h}) + \sum_{t=1}^{T} \log c_{X_{t}}\left(F_{X_{t}, 1}(y_{t,1}; \lambda_{X_{t}, 1}), \dots, F_{X_{t}, 1}(y_{t,d}; \lambda_{X_{t}, d}) \mid \theta_{X_{t}}\right).$$
(1)

References

Inference for HMMs Via the EM Algorithm

 Without copula, the estimation is done via the EM algorithm (aka Baum-Welch)

 $\text{E-step Compute } Q(\eta | \eta^{(s)}) = E[I_{com}(\eta | \mathbf{Y}_{1:\mathcal{T}}, X_{1:\mathcal{T}}) | \eta^{(s)}, \mathbf{Y}_{1:\mathcal{T}}]$

 $\mathsf{M}\text{-}\mathsf{step} \;\; \mathsf{Set} \; \boldsymbol{\eta}^{(s+1)} = \mathsf{arg} \max_{\boldsymbol{\eta}} Q(\boldsymbol{\eta} | \boldsymbol{\eta}^{(s)})$

- ► The complete-data log-likelihood is written in terms of the state membership indicators U_{k,t} = 1_{Xt=k} and V_{j,k,t} = 1_{Xt-1=j,Xt=k}
- ▶ In the **E-Step**, these indicators are estimated by the conditional probabilities $\hat{u}_{k,t} = \mathbb{P}(X_t = k | \mathbf{Y}_{1:T} = \mathbf{y}_{1:T})$ and $\hat{v}_{j,k,t} = \mathbb{P}(X_{t-1} = j, X_t = k | \mathbf{Y}_{1:T} = \mathbf{y}_{1:T})$, which are computed based on current parameter estimates
- ► This only requires evaluating the state-dependent densities at each of the observations y₁,..., y_T (this is "OK")

The M-Step Is Hard

- In the M-Step, the resulting complete-data log-likelihood is maximized with respect to all parameters in the model simultaneously
 - Only for the simplest univariate models do the state-dependent MLEs exist in closed form; otherwise, one must resort to numerical methods (this is hard and unstable!)
 - Evaluating a copula density $c_k(\cdot, \ldots, \cdot \mid \theta_k)$ in high dimensions is slow
 - When the state-dependent distributions in an HMM are copulas, performing the M-Step directly requires the evaluation of

$$\arg\max_{\{\theta_k\},\{\lambda_{k,h}\}} \left\{ \sum_{k=1}^{K} \sum_{t=1}^{T} \hat{u}_{k,t} \left[\log c_k \left(F_{k,1}(y_{t,1};\lambda_{k,1}), \dots, F_{k,d}(y_{t,d};\lambda_{k,d}) \middle| \theta_k \right) + \sum_{h=1}^{d} \log f_{k,h}(y_{t,h};\lambda_{k,h}) \right] \right\}$$

This is very unstable (and slow)

Inference Functions for Margins

- Likelihood-based inference for copulas is easier when the goal is to estimate θ alone in the presence of known margins
- Why not perform inference on the marginal distributions first, and then on the copula itself?
- In the context of iid data, this is exactly the inference functions for margins (IFM) approach of Joe and Xu (1996):
 - First estimate each λ_h by its "marginal MLE" $\hat{\lambda}_h$ given $\{Y_{t,h}\}_{t\geq 1}$, for $h \in \{1, \ldots, d\}$
 - Then estimate θ assuming fixed marginals $F_1(\cdot; \hat{\lambda}_1), \ldots, F_d(\cdot; \hat{\lambda}_d)$
- One can show that the IFM estimator is consistent and asymptotically normal (although relatively less efficient than the MLE)

IFM Step

For each *j* ∈ *X*, estimate the initial distribution and transition probabilities:

$$\boldsymbol{\delta}^{(s+1)} = (\hat{u}_{1,1}^{(s)}, \dots, \hat{u}_{K,1}^{(s)})$$

and

$$\gamma_{j,\cdot}^{(s+1)} = \left(\frac{\sum_{t=2}^{T} \hat{v}_{j,1,t}^{(s)}}{\sum_{k=1}^{K} \sum_{t=2}^{T} \hat{v}_{j,k,t}^{(s)}}, \dots, \frac{\sum_{t=2}^{T} \hat{v}_{j,K,t}^{(s)}}{\sum_{k=1}^{K} \sum_{t=2}^{T} \hat{v}_{j,k,t}^{(s)}}\right).$$

▶ For each $k \in \{1, ..., K\}$ and $h \in \{1, ..., d\}$, estimate the marginal parameters

$$\lambda_{k,h}^{(s+1)} = \arg \sup_{\lambda} \sum_{t=1}^{T} \hat{u}_{k,t}^{(s+1)} \cdot \log \left(f_{k,h}(y_{t,h};\lambda) \right).$$

▶ For each $k \in \{1, ..., K\}$, estimate the copula parameters

$$\tilde{\theta}_{k}^{(s+1)} = \arg \sup_{\theta} \sum_{t=1}^{T} \hat{u}_{k,t}^{(s+1)} \cdot \log \left(c_{k} \left(F_{k,1}(y_{t,1}; \lambda_{k,1}^{(s+1)}), \dots, F_{k,d}(y_{t,d}; \lambda_{k,d}^{(s+1)}) \, \middle| \, \theta \right) \right) \cdot$$

New problems

The EIFM algorithm is not an GEM algorithm

$$\sum_{t=1}^{T} \hat{u}_t \cdot \log\left(f_h(y_{t,h};\lambda_h^{(s)})\right) \le \sum_{t=1}^{T} \hat{u}_t \cdot \log\left(f_h(y_{t,h};\lambda_h^{(s+1)})\right), \qquad h \in \{1,\ldots,d\}$$
(2)

does not imply

$$\sum_{t=1}^{T} \hat{u}_t \cdot \log\left(c\left(F_1(y_{t,1};\lambda_1^{(s)}), \dots, F_d(y_{t,d};\lambda_d^{(s)}) \middle| \theta^{(s)}\right)\right)$$
$$\leq \sum_{t=1}^{T} \hat{u}_t \cdot \log\left(c\left(F_1(y_{t,1};\lambda_1^{(s+1)}), \dots, F_d(y_{t,d};\lambda_d^{(s+1)}) \middle| \theta^{(s)}\right)\right).$$

- The EIFM algorithm will converge (to a local or global maximum).
- The estimator is consistent and asymptotically normal (under mild regularity conditions).
- EIFM as a version of the ES algorithm of Elashoff and Ryan (2004).
- Use asymptotic theory of M-estimators for HMMs Jensen (2011).

Implementation of EIFM

- K is assumed known
- An initial clustering algorithm may be used in which the observed multivariate data follow vine copulas (Sahin and Czado, 2022)
- ▶ We consider the *k*-means algorithm for clustering.
- Initial parameter values for the copula(s) are obtained using a Gaussian copula
- If marginals are Gaussian this means fitting a multivariate normal for each cluster.

Does This Work?

▶ For $T \in \{100, 1000, 5000\}$ and $d \in \{2, 5, 10\}$, we simulated a *d*-dimensional time series of length *T* from the 2-state HMM

$$\begin{split} \mathbf{Y}_t \mid (X_t = 1) &\sim C_{\mathsf{Frank}} \left((\mathcal{N}(\mu_{1,h} = -h, 1))_{h=1}^d \mid \theta_1 = 3 \right) \\ \mathbf{Y}_t \mid (X_t = 2) &\sim C_{\mathsf{Clayton}} \left((\mathcal{N}(\mu_{2,h} = h, 1))_{h=1}^d \mid \theta_2 = 3 \right) \end{split}$$

and estimated $oldsymbol{\eta} = (\mu_{1,1}, \dots, \mu_{2,d}, heta_1, heta_2)$ using both approaches

- ▶ Applied to the basic EM algorithm, R's optim with L-BFGS-B (i.e., quasi-Newton with box constraints) typically fails as soon as d ≥ 3
 - The procedure is extremely sensitive to initial values and requires $\hat{\eta}^{(0)} \approx \eta$ just to avoid overflow
 - This kind of tuning is very tedious or impossible in high dimensions

Does This Work?

- We keep track of the time (in seconds) until the algorithm converges, and the L_2 error of the resulting estimate, $\epsilon = \|\eta \hat{\eta}\|_2$
 - We used the lbfgsb3c package, which is more stable than optim

	d = 2	<i>d</i> = 5	<i>d</i> = 10
T = 100	111.9 s, $\epsilon = 0.14$	123.4 s, $\epsilon = 299.98$	111.8 s, $\epsilon > 10^9$
T = 1000	166.6 s, $\epsilon = 0.63$	169.5 s, $\epsilon > 10^{11}$	418.23 s, $\epsilon = 725.06$
<i>T</i> = 5000	?	?	?

Table: EM Algorithm

	d = 2	d = 5	d = 10
T = 100	5.1 s, $\epsilon = 2.9$	3.0 s, $\epsilon = 0.94$	4.2 s, $\epsilon = 0.58$
T = 1000	34.4 s, $\epsilon = 0.57$	22.9 s, $\epsilon = 0.60$	34.4 s, $\epsilon = 0.80$
T = 5000	172.6 s, $\epsilon = 0.13$	106.2 s, $\epsilon = 0.12$	168.7 s, $\epsilon=0.19$

Table: EFM Algorithm

Numerical Experiment I

Generative model:

$$\mathbf{Y}_i \mid (X_i = k) \sim C_k \left(SN(\cdot; \xi_{k,1}, \omega_{k,1}, \alpha_{k,1}), SN(\cdot; \xi_{k,2}, \omega_{k,2}, \alpha_{k,2}) \mid \tau_k \right),$$

for $k \in \{1, \dots, 4\}.$

State	Copula family	$ au_k$	$\xi_{k,1}$	$\omega_{k,1}$	$\alpha_{k,1}$	$\xi_{k,2}$	$\omega_{k,2}$	$\alpha_{k,2}$
1	Clayton	0.2	-4	1	5	-1	1	-3
2	B4	0.4	-2	1	3	2	1	-3
3	Gaussian	0.6	0	1	5	3	1	-5
4	$t_{(\nu=5)}$	0.8	2	1	3	4	1	-5

Table: True parameters for the state-dependent distributions.

References

Numerical Experiment I

<i>T</i> :		500	1000	2500	5000
	0.01	14	24	23	15
Stanning Dula Talayanaa	0.001	17	26	25	17
Stopping Rule Tolerance:	0.0001	36	59	62	39
	0.00001	230	115	460	269
Classifier:	k-means	0.9020	0.9090	0.9200	0.9196
Classifier:	Local state decoding	0.9640	0.9640	0.9696	0.9732

Table: For each $T \in \{500, 1000, 2500, 5000\}$: (Top rows) Number of iterations taken by the EIFM algorithm applied to $\mathbf{Y}_{1:T}$ before stopping using L_1 -norm tolerances in $\{0.01, 0.001, 0.0001\}$. (Bottom rows) Classification accuracy of initial *k*-means clustering and local decoding with parameter estimates provided by the EIFM algorithm.

Numerical Experiment II

The state-dependent distributions are <u>Markov trees</u> in which all conditional relationships are independent.

Figure: Markov trees for state 1 (left) and state 2 (right)

► The state-dependent distributions have densities supported on R⁵ given by

$$\begin{split} \psi_1(\mathbf{y}) &= c_{1,12}(\Phi(y_1 - \mu_{1,1}), \Phi(y_2 - \mu_{1,2}) \mid \tau_{1,12}) \cdot c_{1,23}(\Phi(y_2 - \mu_{1,2}), \Phi(y_3 - \mu_{1,3}) \mid \tau_{1,23}) \\ &+ c_{1,34}(\Phi(y_3 - \mu_{1,3}), \Phi(y_4 - \mu_{1,4}) \mid \tau_{1,34}) \cdot c_{1,45}(\Phi(y_4 - \mu_{1,4}), \Phi(y_5 - \mu_{1,5}) \mid \tau_{1,45}) \cdot \prod_{h=1}^5 \varphi(y_h - \mu_{1,h}) \end{split}$$

and

$$\begin{split} h_2(\mathbf{y}) &= c_{2,14}(\Phi(y_1 - \mu_{2,1}), \Phi(y_4 - \mu_{2,4}) \mid \tau_{2,14}) \cdot c_{2,43}(\Phi(y_4 - \mu_{2,4}), \Phi(y_3 - \mu_{2,3}) \mid \tau_{2,43}) \\ &\quad \cdot c_{2,35}(\Phi(y_3 - \mu_{2,3}), \Phi(y_5 - \mu_{2,5}) \mid \tau_{2,35}) \cdot c_{2,52}(\Phi(y_5 - \mu_{2,5}), \Phi(y_2 - \mu_{2,2}) \mid \tau_{2,52}) \cdot \prod_{h=1}^5 \varphi(y_h - \mu_{2,h}) \end{split}$$

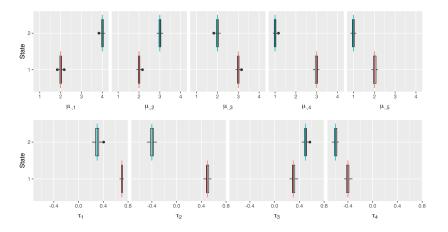


Figure: Parameter estimates based on 100 independent simulations and EIFM algorithm runs for the 5-dimensional 2-state HMMs

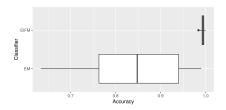


Figure: Accuracy across repetitions using initial independence model (bottom) and copula model (top)

Summary

- When using HMMs to model multivariate time series, ignoring the dependence between observed components can lead to...
 - Inaccurate state classifications
 - Failure to understand the true data-generating process
- The "copula-within-HMM" model integrates state-dependent copulas in order to capture joint information from the observed data, thereby addressing both problems
- The complexity of this model prohibits an application of the standard EM algorithm
- Our IFM-based refinement is faster and much more stable, but still produces estimators with desirable properties that perform as well or better in our experiments

- The ability to detect whether a room is occupied using sensor data (such as temperature and CO₂ levels) can potentially reduce unnecessary energy consumption by automatically controlling HVAC and lighting systems, without the need for motion detectors
- Consider three publicly-available labelled datasets presented by Candanedo and Feldheim (2016) which contain multivariate time series of four environmental measurements (light, temperature, humidity, CO₂) and one derived metric (the humidity ratio)
- Data contain binary indicators for whether the room was occupied or not at the time of measurement

Family	AIC (State 1)	AIC (State 2)
Gauss	-370.786	-59.281
t	-437.542	-71.291
Clayton	-474.836	-66.087
Gumbel	-484.252	-72.437
Frank	-273.613	-66.497
Joe	-490.103	-64.995
Galambos	-295.549	-71.031
Hüsler-Reiss	-282.452	-61.547
BB1	-497.013	-70.509
BB6	-495.401	-70.435
BB7	-518.923	-68.207
BB8	-490.223	-66.738
Tawn (type 1)	-411.847	-76.976
Tawn (type 2)	-422.268	-55.382

Several families of parametric copulas were tried

Table: AICs for unoccupied (state 1) and occupied (state 2) classifications of the occupancy data.

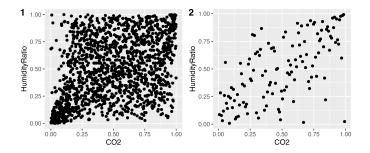


Figure: Pseudo-observations computed from unoccupied (Panel 1) and occupied (Panel 2) subsets.

Classifier	Train	Test 1
<i>k</i> -means clustering	0.865	0.818
Independence copulas within HMM	0.895	0.846
BB7/Tawn copulas within HMM	0.900	0.852

Table: Overall state classification accuracy for the training dataset and the test dataset, using k-means clustering and local decoding via the HMM with independent margins and the copula-within-HMM model.

Extensions and Future Work

- Can our algorithm be applied to models with continuous-time processes, and/or more general state spaces?
- How do we select the state-dependent copulas and/or the number of states in a fully unsupervised context?

References

- CANDANEDO, L. M. and FELDHEIM, V. (2016). Accurate occupancy detection of an office room from light, temperature, humidity and co2 measurements using statistical learning models. *Energy and Buildings* **112** 28–39.
- ELASHOFF, M. and RYAN, L. (2004). An EM algorithm for estimating equations. J. Comput. Graph. Stat. 13 48–65.
- JENSEN, J. L. (2011). Asymptotic normality of m-estimators in nonhomogeneous hidden Markov models. J. App. Probab. 48 295–306.
- JOE, H. and XU, J. J. (1996). The estimation method of inference functions for margins for multivariate models. Tech. Rep. 166, Department of Statistics, University of British Columbia.
- KOJADINOVIC, I., YAN, J. and HOLMES, M. (2011). Fast large-sample goodness-of-fit tests for copulas. *Statistica Sinica* 841–871.
- NASRI, B. R., REMILLARD, B. N. and THIOUB, M. Y. (2020). Goodness-of-fit for regime-switching copula models with application to option pricing. *Can. J. Stat.* 48 79–96.
- ÖTTING, M., LANGROCK, R. and MARUOTTI, A. (2021). A copula-based multivariate hidden Markov model for modelling momentum in football. AStA Advances in Statistical Analysis 1–19.
- SAHIN, Ö. and CZADO, C. (2022). Vine copula mixture models and clustering for non-gaussian data. Econometrics and Statistics 22 136–158.
- ZUCCHINI, W., MACDONALD, I. L. and LANGROCK, R. (2017). Hidden Markov models for time series: an introduction using R. CRC press.

Paper available on my homepage: http://www.utstat.toronto.edu/craiu/