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Hidden Markov Models: A Primer
▶ A hidden Markov model (HMM) pairs an observed time series

{Yt}t≥1 ⊆ Rd with a Markov chain {Xt}t≥1 on some state space X ,
such that the distribution of Ys | Xs is independent of Yt | Xt for
s ̸= t:

· · · Xt−2 Xt−1 Xt Xt+1 Xt+2 · · ·

Yt−2 Yt−1 Yt Yt+1 Yt+2

▶ Yt,h|{Xt = k} ∼ fk,h(·|λk,h) ∀h = 1, . . . , d
▶ {Xt} is a Markov process (finite state space X ) with initial

probability mass distribution {πi}i∈X and transition probabilities
{γi,j}i,j∈X
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Inferential aims for HMMs

▶ Typically, the chain {Xt}t≥1 is partially or completely unobserved.

▶ The hidden states can correspond to a precise variable (occupancy
data) or might be postulated (psychology, ecology, etc)

▶ Aim 1: Model the data generating mechanism Nasri et al. (2020)

▶ Aim 2: Decode (i.e., classify) or predict the Xt ’s from the observed
data.
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Examples

▶ A tri-axial accelerometer captures a shark’s acceleration with respect
to three positional axes depending on the shark’s activity (resting,
hunting, attacking). For short periods some of the sharks are filmed.

▶ Stock exchanges keep track of real-time prices for hundreds of
stocks within an industry, depending on market conditions/states
(stagnant, growing, shrinking).

▶ In-game team statistics like shots on goal and ball touches in a
soccer football match are changing with the “momentum” of the
team (defensive, offensive, passive) Ötting et al. (2021)
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Fusion of Multiple Data Sources

▶ In the real-world applications above, various sensors capture multiple
streams of data, which are “fused” into a multivariate time series
{Yt}t≥1

▶ In such situations, the components of any Yt = (Yt,1, . . . , Yt,d)
cannot be assumed independent (even conditional on Xt)

▶ The corresponding assumption for HMMs – that of contemporaneous
conditional independence Zucchini et al. (2017) – is often violated

▶ Instead, it is common to assume that Yt follows a multivariate
Gaussian distribution, but this places limits on marginals and
dependence structures

▶ What if the strength of dependence between the components of Yt
could be informative about the underlying state Xt?
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Copulas

▶ Copula functions are used to model dependence between continuous
random variables.

▶ If Y1, Y2, . . . Yd are continuous r.v.’s with distribution functions (df)
F1, . . . , Fd , there exists an unique copula function C : [0, 1]d → [0, 1]
such that

H(t1, . . . , td) = P(Y1 ≤ t1, . . . , Yd ≤ td) = C(F1(t), . . . , Fd(td)).

▶ The copula bridges the marginal distributions of Y1, . . . , Yd with the
joint distribution. It corresponds to a distribution on [0, 1]d with
uniform margins.

▶ This can be extended to conditional distributions and copulas:

P(Y1 ≤ t1, . . . , Yd ≤ td |X ) = C(F1(t|X ), . . . , Fd(td |X )|X ).
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Copulas Within HMMs

▶ Our model consists of an HMM {(Yt , Xt)}t≥1 ⊆ Rd × X in which
the state-dependent distributions are copulas:

Yt | (Xt = k) ∼ Hk(·) = Ck

(
Fk,1(· ; λk,1), . . . , Fk,d(· ; λk,d)

∣∣∣ θk︸ ︷︷ ︸
depends on the hidden state value k

)
.

▶ Ck(·, . . . , · | θk) is a d-dimensional parametric copula

▶ {Xt}t≥1 is a Markov process on finite state space X = {1, 2, . . . , K}
and K is known

▶ In this model, virtually all aspects of the state-dependent
distributions are allowed to vary between states
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Information in the dependence
▶ For a range of θ ∈ [0, 100), we simulated a bivariate time series of

length T = 100 from the 2-state HMM
Yt | (Xt = k) ∼ CFrank

(
N (0, 1), N (0, 1) | (−1)k · |θ|

)
, k = 1, 2

and then separately assessed the accuracy of a standard decoding
algorithm, first assuming independent margins and then the true
model:

Figure: Zero-one losses for independent margins (red dots) and true model
(blue dots)
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Stronger Dependence Leads to Better Accuracy

▶ In fact, ℓ01(θ) = 1
2 − 2

θ log
(
cosh θ

4
)

→ 0 as θ → ∞
▶ Similar formulas hold for other radially symmetric copulas
▶ Much more generally, we have the following:

Theorem
Let νt,k = P (Xt = k). The expected zero-one loss of the classifications
made by local decoding is given by

ℓ01(η) = 1 − 1
T

T∑
t=1

K∑
k=1

νt,k

∫
Rd
1

{
νt,k · hk(y)

maxj ̸=k νt,j · hj(y) > 1
}

dHk(y).

where hk(Y) is the joint density of Y|X = k.

▶ Corollary: as the copula in any particular state approaches either of
the Fréchet-Hoeffding bounds, the observations produced by that
state will be detected with complete accuracy
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Estimation with missing data

▶ Data consist in observed Y1:T and missing X1:T

▶ Parameters are η = {λh,k}h=1:d
k=1:K

∪ {θk}k=1:K ∪ {γi,j}i=1:K
j=1:K

∪{πj}j=1:K .
▶ The complete-data log-likelihood for one trajectory of the copula

HMM is given by

ℓcom (η | y1:T , X1:T ) = πX1 +
T∑

t=2
log γXt−1,Xt +

d∑
h=1

log fXt ,h(yt,h; λXt ,h)

+
T∑

t=1
log cXt (FXt ,1(yt,1; λXt ,1), . . . , FXt ,1(yt,d ; λXt ,d) | θXt ) .

(1)
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Inference for HMMs Via the EM Algorithm

▶ Without copula, the estimation is done via the EM algorithm (aka
Baum-Welch)

E-step Compute Q(η|η(s)) = E [lcom(η|Y1:T , X1:T )|η(s), Y1:T ]

M-step Set η(s+1) = arg maxη Q(η|η(s))

▶ The complete-data log-likelihood is written in terms of the state
membership indicators Uk,t = 1Xt =k and Vj,k,t = 1Xt−1=j,Xt =k

▶ In the E-Step, these indicators are estimated by the conditional
probabilities ûk,t = P (Xt = k | Y1:T = y1:T ) and
v̂j,k,t = P (Xt−1 = j , Xt = k | Y1:T = y1:T ), which are computed
based on current parameter estimates

▶ This only requires evaluating the state-dependent densities at each
of the observations y1, . . . , yT (this is “OK”)
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The M-Step stalls

▶ In the M-Step, the resulting complete-data log-likelihood is
maximized with respect to all parameters in the model
simultaneously
▶ Only for the simplest univariate models do the state-dependent

MLEs exist in closed form; otherwise, one must resort to numerical
methods (this is hard!)

▶ Evaluating a copula density ck(·, . . . , · | θk) in high dimensions is slow
▶ When the state-dependent distributions in an HMM are copulas,

performing the M-Step directly requires the evaluation of

argmax
{θk },{λk,h}

{ K∑
k=1

T∑
t=1

ûk,t

[
log ck

(
Fk,1(yt,1; λk,1), . . . , Fk,d(yt,d ; λk,d)

∣∣∣ θk

)
+

d∑
h=1

log fk,h(yt,h; λk,h)
]}

▶ This is very unstable (and slow)
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Divide and conquer

▶ Likelihood-based inference for copulas is easier when the goal is to
estimate θ alone in the presence of known margins

▶ Why not perform inference on the marginal distributions first, and
then on the copula itself?

▶ In the context of iid data, this is exactly the inference functions for
margins (IFM) approach of Joe and Xu (1996):
▶ First estimate each λh by its “marginal MLE” λ̂h given {Yt,h}t≥1, for

h ∈ {1, . . . , d}
▶ Then estimate θ assuming fixed marginals F1(·; λ̂1), . . . , Fd(·; λ̂d)

▶ The IFM estimator is consistent and asymptotically normal.
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EM + IFM → EFM

▶ Replace the M-Step in the EM algorithm with an IFM iteration to
create an “EFM algorithm”

▶ For T ∈ {100, 1000, 5000} and d ∈ {2, 5, 10}, we simulated a
d-dimensional time series of length T from the 2-state HMM

Yt | (Xt = 1) ∼ CFrank
(
(N (µ1,h = −h, 1))d

h=1 | θ1 = 3
)

Yt | (Xt = 2) ∼ CClayton
(
(N (µ2,h = h, 1))d

h=1 | θ2 = 3
)

and estimated η = (µ1,1, . . . , µ2,d , θ1, θ2) using both approaches

▶ Applied to the basic EM algorithm, R’s optim with L-BFGS-B (i.e.,
quasi-Newton with box constraints) typically fails as soon as d ≥ 3
▶ The procedure is extremely sensitive to initial values and requires

η̂(0) ≈ η just to avoid overflow
▶ This kind of tuning is very tedious or impossible in high dimensions
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Does This Work?
▶ We keep track of the time (in seconds) until the algorithm

converges, and the L2 error of the resulting estimate, ϵ = ∥η − η̂∥2
▶ We used the lbfgsb3c package, which is more stable than optim

d = 2 d = 5 d = 10
T = 100 111.9 s, ϵ = 0.14 123.4 s, ϵ = 299.98 111.8 s, ϵ > 109

T = 1000 166.6 s, ϵ = 0.63 169.5 s, ϵ > 1011 418.23 s, ϵ = 725.06
T = 5000 ? ? ?

Table: EM Algorithm

d = 2 d = 5 d = 10
T = 100 5.1 s, ϵ = 2.9 3.0 s, ϵ = 0.94 4.2 s, ϵ = 0.58
T = 1000 34.4 s, ϵ = 0.57 22.9 s, ϵ = 0.60 34.4 s, ϵ = 0.80
T = 5000 172.6 s, ϵ = 0.13 106.2 s, ϵ = 0.12 168.7 s, ϵ = 0.19

Table: EFM Algorithm
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Numerical stability

▶ R has no problem with the EFM algorithm

▶ The algorithm is considerably less sensitive to starting values than
the vanilla EM algorithm, and terminates much faster

▶ It is theoretically justified based on adapting theory for ES (Elashoff
and Ryan, 2004) and M-estimation for HMMs (Jensen, 2011)
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Occupancy Data

▶ The ability to detect whether a room is occupied using sensor data
(such as temperature and CO2 levels) can potentially reduce
unnecessary energy consumption by automatically controlling HVAC
and lighting systems, without the need for motion detectors

▶ Consider three publicly-available labelled datasets presented by
Candanedo and Feldheim (2016) which contain multivariate time
series of four environmental measurements (light, temperature,
humidity, CO2) and one derived metric (the humidity ratio)

▶ Data contain binary indicators for whether the room was occupied or
not at the time of measurement

Radu Craiu Copula modelling of serially correlated multivariate data with hidden structures 16



Introduction Copulas for HMM Computation Numerical Example References

Occupancy Data
▶ Several common families of parametric copulas (the Frank, Clayton,

Gumbel, Joe, and Gauss families), and for each we carried out a
goodness-of-fit test based on the pseudo-observations using the
multiplier bootstrap method (Kojadinovic et al., 2011)

▶ The parametric family based on the lowest corresponding
Cramér-von Mises test statistic is selected.

▶ This process yielded a Clayton copula for State 1 and a Frank copula
for State 2

State Frank Clayton Gumbel Joe Gauss
1 0.356 0.255 0.423 0.770 0.345
2 0.018 0.433 0.038 0.206 0.045

Table: Cramér-von Mises test statistics based on pseudo-observations
computed from unoccupied (Row 1) and occupied (Row 2) subsets.
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Occupancy Data
▶ Denote the unoccupied state as ‘1’ and the occupied state as ‘2’

Yt | (Xt = 1) ∼ CClayton
(
N (µ1,1, σ2

1,1), N (µ1,2, σ2
1,2) | θ1

)
Yt | (Xt = 2) ∼ CFrank

(
N (µ2,1, σ2

2,1), N (µ2,2, σ2
2,2) | θ2

)
.

Figure: Pseudo-observations computed from unoccupied (Panel 1) and
occupied (Panel 2) subsets.
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Occupancy Data

Copula Model Train Test 1 Test 2
Independence 0.895 0.846 0.680

Clayton/Frank 0.899 0.852 0.696

Table: Overall state classification accuracy for the training dataset and the two
test datasets using either the independence or Clayton/Frank copula.
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Summary

▶ When using HMMs to model multivariate time series, ignoring the
dependence between observed components can lead to...
▶ Inaccurate state classifications
▶ Failure to understand the true data-generating process

▶ The “copula-within-HMM” model integrates state-dependent
copulas in order to capture joint information from the observed data,
thereby addressing both problems

▶ The complexity of this model prohibits an application of the
standard EM algorithm

▶ Our IFM-based refinement is faster and much more stable.
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