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ABSTRACT
Establishing a low-dimensional representation of the data leads to
efficient data learning strategies. In many cases, the reduced dimen-
sion needs to be explicitly stated and estimated from the data. We
explore the estimation of dimension in finite samples as a con-
strained optimization problem, where the estimated dimension is a
maximizer of a penalizedprofile likelihood criterionwithin the frame-
work of a probabilistic principal components analysis. Unlike other
penalized maximization problems that require an ‘optimal’ penalty
tuning parameter, we propose a data-averaging procedure whereby
the estimated dimension emerges as the most favourable choice
over a range of plausible penalty parameters. The proposed heuristic
is compared to a large number of alternative criteria in simulations
and an application to gene expression data. Extensive simulation
studies reveal that none of the methods uniformly dominate the
other and highlight the importance of subject-specific knowledge in
choosing statistical methods for dimension learning. Our application
results also suggest that gene expression data have a higher intrinsic
dimension than previously thought. Overall, our proposed heuris-
tic strikes a good balance and is the method of choice when model
assumptions deviated moderately.
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1. Introduction

Consider a data matrix X ∈ R
n×m that has been column and row centred such that

n∑
i=1

xij =
m∑
j=1

xij = 0; for i = 1, . . . , n; and j = 1, . . . ,m,

we are interested in a linear decomposition of X to a signal component, driven by variance
in the top singular values, and a noise component of the form:

X = WL + F, (1)
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where W ∈ R
n×k is a constant matrix with rank k < n, L ∈ R

k×m is an arbitrary matrix
with orthonormal columns, and F is a matrix whose rows are uncorrelated and have equal
variance. The dimension of interest depends on W as it is the minimal rank k such that
rows of X−WL are uncorrelated and have isotropic covariance. Henceforth, we refer to k
as the effective rank of the data because, intuitively, correlation structure in the rows of X
reduces data dimension attributed to the signal component (WL) from min(n,m) to k.

Estimation of k has been studied in various contexts as the linear model (1) has many
alternative forms and names, such as a principal component analysis (PCA; [1–3]), a
truncated singular value decomposition (SVD), a factor analysis model [4], and a spiked
populationmodel [5], where the effective rank coincides with the definition of the number
of spikes.

The approaches to determine k as the number of principal components (PCs), can be
summarized under roughly three categories according to Jolliffe [6]. The first type is a vari-
ety of ad-hoc rules that have an empirical basis, such as the scree test [7] or Kaiser rule.
To automate the decision, Zhu and Ghodsi proposed a profile likelihood criterion that
detects a ‘gap’ in the sample eigenvalues [8]. A second class of methods rely on asymp-
totic tests, such as the likelihood ratio test for equality of eigenvalues [9–13], which differ
according to asymptotic conditions on the data dimensions. Instead of an asymptotic test,
Choi et al. [14] recently proposed an exact method for hypothesis testing of signals in a
noisy matrix to estimate the number of PCs that showed promising results in simulations.
Finally, for small datasets, computational methods such as bootstrap, permutation and
cross-validation can be implemented in a timely manner. Among them, cross-validation is
frequently used [15] with a general cross-validation (GCV) criterion [16] that also works
well with large datasets.

Using a truncated SVD, Gavish and Donoho [17] proposed to remove the underlying
noise in the singular values via a hard threshold-based approach. In this case, the stop-
ping rule based on a single threshold could be useful for recovering the original data in
the sense of asymptotic mean squared error, but does not directly inform the minimal
rank of the noise reduced data. Similarly in isotropic factor analysis, Bai and Ng [18] pro-
posed to estimate the number of factors by finding some threshold to separate large and
small eigenvalues of the data covariance matrix that leverages various penalty functions,
but the approach depends on the correct estimation of error variance. Using a different
strategy, Passemier et al. [19] tackled the estimation of the noise variance, which led to a
bias-corrected criterion for estimating k when n> >m.

Here we focus on reviewing model-based methods where the solution arises from
variousmodel selection criteria. Probabilistic principal component analysis (PPCA), intro-
duced in the seminal paper of Tipping and Bishop [20], allows the estimation of k as a
likelihood optimization problem. An alternative Bayesian approach was proposed in [21],
with the caveat that the full Bayesian estimation using Markov Chain Monte Carlo can
be computationally prohibitive for large datasets [22] and approximations are needed.
Indeed, Minka implemented Laplace’s method to approximate the posterior likelihood
[23] and showed it to be often superior to cross-validation and variational inference [24,25]
with the added benefit of fast computation. An exact marginal likelihood criterion based
on a normal-gamma prior distribution has been developed that is competitive with both
Bayesian and frequentist methods in low dimensional settings [26]. For high-dimensional
datawith a small number of observations,Hoyle [27] noted the unsatisfactory performance
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of Laplace’s approximation and proposed to modify the Bayesian model using a Gaussian
parametrization that showed improved performance. Observing the symmetry in the data
structure, Sobczyk et al. [28] approximated the Bayesian models for both X and XT , and
thus proposed two separate criteria that work well under divergence of either the number
of observations (m) or samples (n), while the other one is constant.

Penalized maximum likelihood approaches are widely used to induce sparsity in the
number of parameters used to characterize statistical models and have proven suitable
for model selection. Here we explore using penalized probabilistic PCA models to esti-
mate the effective rank and propose an accompanying data-driven heuristic to estimate
the dimension. This heuristic has theoretical basis, was examined in extensive simulations
and applied to a microarray gene expression dataset to inform the data dimension. We
find that the penalized approach is competitive when compared to Bayesian and empir-
ical alternatives in both simulated and application data, especially under departure from
independence and normality assumptions. None of the methods uniformly dominate the
others across the wide range of conditions, highlighting the importance of verifying the
assumptions underlying each method.

This paper is structured as follows. We first revisit the probabilistic principal compo-
nent model in Section 2. In Section 3, we explore using the penalized probabilistic PCA to
model the data dimension as part of the optimization problem and present a data-driven
algorithm for dimension learning. Results from an extensive simulation study compar-
ing different classes of methods are presented in Section 4 and an application to gene
expression data is presented in Section 5. In the last section, we conclude the paper with
general remarks on the proposed penalized approach and our practical recommendation
to dimension learning in data applications.

2. Probabilistic principal components analysis

Given dataX ∈ R
n×m, we seek a low-dimensional representation in the columns ofX,Xj ∈

R
n, j = 1, . . . ,m. Suppose there exists a fixed dimension k ∈ Z+(1 ≤ k ≤ n − 1) such that:

Xj = μ + Wlj + fj, j = 1, . . . ,m (2)

where μ is the mean vector,W ∈ R
n×k is a constant matrix, lj ∈ R

k is a latent vector, and
fj ∈ R

n is noise in the data. In order to identify the data decomposition to signal (WL) and
noise (F) components, we make the assumption that both the latent vector and the noise
component are spherical Gaussian. This decomposition implies that the n-dimensional
vectorXj is obtained as a linear transformation of a k-dimensional latent vector. Therefore,
the spanned subspace of X1, . . . ,Xm has effective dimension k. The value of k is unknown
in realistic examples and needs to be estimated from the data X. The usual PCA decompo-
sition is obtained when the dimension is k = n, and in this case, F in Equation (1) reduces
to 0.

In this paper, we assume fj ∼ N (0, ζ 2In) and lj ∼ N (0, Ik), which imply that for any
1 ≤ j ≤ m, Xj follows the Gaussian distribution:

Xj ∼ N (μ,WWT + ζ 2In). (3)

Denote the covariance matrix of Xj by � = WWT + ζ 2In and under model (3) it has a
maximum of k+ 1 unique eigenvalues: λ1, . . . , λk and ζ 2. This model forces the samples,
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represented by the rows of X, to be conditionally independent given the random vectors,
{l1, . . . , lk}, and thus the covariancematrixWWT + ζ 2In can take on amore parsimonious
representation. In general, the latent vectors may not have a Gaussian distribution and
can be used to specify non-Gaussian signal components, such as those in a linear noisy
independent component analysis model.

The log-likelihood function with respect to the unknown parametersW and ζ 2, given
independent observations X = (x1, . . . , xm), is denoted by

l(μ,W, ζ 2;X) = −m
2

[n log(2π) + log |WWT + ζ 2I| + tr{(WWT + ζ 2I)−1�̂}], (4)

where �̂ = m−1∑m
j=1(Xj − μ̂)(Xj − μ̂)T is the sample covariance matrix. Assuming

m>n and �̂ is full rank, the maximum likelihood estimator (MLE) for μ is simply the
sample mean μ̂ = 1

m
∑m

j=1 Xj. Without loss of generality, μ̂ can be replaced by zero pro-
vided that the data X had been row centred. For convenience, we also assume the data had
also been row standardized such that the diagonal elements of �̂ equal to 1.

This intrinsic data dimension, rank(W) = rank(WTW) = k, is only implicitly involved
in the log-likelihood. It has been shown in [20] that for any integer q ∈ {1, . . . , n − 1}, (4)
is maximized by:

Ŵq = UqD̂qBq, and ζ̂ 2
q =

∑n
i=q+1 λ̂i

n − q
, (5)

where {λ̂i}i’s are the sample eigenvalues of �̂, Uq is an n × q matrix with columns corre-
sponding to the first q eigenvectors of �̂, Ĥ(q) is a diagonal matrix with the first q non-zero
entries each given by η̂i =

√
λ̂i − ζ̂ 2

q , and Bq ∈ R
q×q is an arbitrary orthogonal matrix.

The integer q needs not be specified, but the form of (5) suggests that the division between
the first q and the last n−q eigenvalues/eigenvector is the key to maximizing (4). In other
words, for every value of q, we can identify the corresponding MLEs given in (5), but the
different choices of q cannot be distinguished under the current likelihood model.

Let lp denote the profile log-likelihood. If we considered the parameters W, ζ 2 to be
nuisance parameters, a profile log-likelihood in q is obtained by substituting the solutions
in (4):

lp(q; λ̂i) = −m
2

{
n log(2π) +

q∑
i=1

log λ̂i + (n − q) log ζ̂ 2
q + n

}
. (6)

The formulation (6) clarifies that data dimension is implicitly involved in defining the
parameters of themodel, and onemight be tempted to find themaximizer (in q) of the pro-
file log-likelihood as the estimate of effective rank. However, the following result suggests
that the profile log-likelihood alone is not sufficient to identify the intrinsic data dimension.

Proposition 2.1: Consider a sample X ∈ R
n×m with each column following a multivariate

Gaussian distributionN(0,WWT + ζ 2I). If the sample row covariancematrix of X is positive
semi-definite and k = rank(WWT), then the profile log-likelihood lp(q) is non-decreasing in
q ∈ Z+(1 ≤ q ≤ n − 1).

Proof is included in Supplementary Materials.
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This result shows that the profile log-likelihood is monotonically non-decreasing in q,
suggesting that it can not be used as a criterion to select k, the data dimension, in finite
samples. The choice of k thus becomes a model selection-type problem, with decreasing
values of q corresponding to more constraint models and q = n corresponds to a fully
non-parametric, conventional PCA.

Remark 2.1: Proposition 2.1 demonstrates that the saturated model with q = n−1 is
always preferred. If one permits q = 0, then Ŵ = 0 and the likelihood is minimized. The
same conclusion can be reached by observing the proportion of variance explained by the
PPCA model with true rank k:

tr(WWT) =
k∑

i=1
d2i = n(1 − ζ 2),

where {di}i=1,...,k are the singular values ofW. When ζ 2 is equal to 0 (or k = n), the model
corresponds to PCA with a full-rank loading matrix and is completely deterministic; and
when ζ 2 is equal to 1 (or k = 0), the model reduces to an isotropic Gaussian distribution
and W = 0. In order to avoid degenerate situations, in this paper we restrict the range of
k to {1, 2, . . . , n − 1}.

Remark 2.2: The generative model (2) has a specific dimension k, which is embedded in
the parameter W through the data generative process. At the same time, the data gener-
ated can support each possible q if we evaluate the model likelihood alone without any
constraint on the error variance or model complexity.

3. Effective rank selection heuristics based on a penalized probabilistic
principal components analysis

Penalized maximum likelihood approaches are widely used to induce sparsity in statistical
models. The level of penalty imposed on the model is regularized via a tuning parame-
ter, which controls the trade-off between goodness-of-fit and complexity [29–31]. In the
problem considered here, the model complexity, defined by the number of free parameters
nk + 1 − k(k − 1)/2, is directly related to the data dimension, while the fit corresponds
to the amount of variance explained, i.e. tr(�) − nζ 2. The natural guiding principle is
to favour a parsimonious representation for the covariance by simultaneously penalizing
small explained variance and large k.

The penalized log-likelihood has the form:

l(W, ζ 2; δ) = −m
2

{log |WWT + ζ 2I| + tr[(WWT + ζ 2I)−1�̂] − δpen(W, ζ 2)},

where the tuning parameter δ > 0 controls the amount of penalty due to a penalty function,
pen(W, ζ 2). Notice thatm is a scaling factor and does not directly affect the maximization
other than through the convergence of �̂ to the true covariance �.

The penalty function should depend on (W, ζ 2) and thus be able to capture the model
dimension embedded in W and the amount of error variance ζ 2. At the same time, the
two parameters combine in the case of standardized data because tr(WWT) + nζ 2 = n.
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Bymaximizing the penalized log-likelihood function, it will also be possible to express the
penalized MLEs indexed by q and thus to motivate the penalized profile log-likelihood as
a vehicle for intrinsic data dimension selection.

Unlike in other constrained optimization problems, the estimation of individual entries
ofW is not the primary objective. Rather, we are interested in penalty functions that diverge
when the estimated eigenvalues (i.e. the sum of ζ 2 and each squared singular value ofW)
are close to 1, or alternatively, when ζ 2 is close to 0. Here we explore the following penalty
functions that capture both the amount of variance explained and the complexity of the
model:

pen1(W, ζ 2) = rank(W) log ζ 2 = k log ζ 2 (7a)

pen2(W, ζ 2) = − rank(W)

ζ 2 = − k
ζ 2 (7b)

pen3(W, ζ 2) = βpen1(W, ζ 2) + (1 − β)pen2(W, ζ 2), β ∈ (0, 1). (7c)

In our experience, the penalties lead to equivalent analyses since the tuning parameters will
adjust to yield similar results. Ultimately, the choice to use (7a) over the others is driven by
convenience because it leads to simpler analytical derivations and intuitive heuristics.

3.1. Penalizedmaximum likelihood estimators

The penalized log-likelihood using the proposed penalty function (7a) becomes:

l(W, ζ 2; δ) = −m
2

{log |WWT + ζ 2I| + tr[(WWT + ζ 2I)−1�̂] − δ rank(W) log ζ 2}.

Similarly to (5), the penalized MLEs, W̃ and ζ̃ 2, are functions of q. Due to a non-zero
δ-value, the penalized MLE of ζ 2 is expressed in terms of δ and ζ̂ 2

q :

ζ̃ 2
q =

∑n
i=q+1 λ̂i

n − q − δq
= n − q

n − q − δq
ζ̂ 2
q . (8)

Taking derivative with respect to W yields the same relationship between the squared
singular values ofW and ζ 2:

λ̂i =
{

η̃2i (q) + ζ̃ 2
q , if i ≤ q;

ζ̃ 2
q , otherwise,

where η̃2i (q) denotes the ith estimated value when the estimated effective rank is q. For a
fixed q, ζ̃ 2

q is unbounded as n − q − δq can be very close to 0 or even negative for large
δ-values. This implies that the choice of q poses a restriction of the range of δ, and vice
versa. Thus, the theoretical range of δ has an upper bound at n/q − 1 so that ζ̃ 2

q is positive.
Henceforth, we reparametrized the tuning parameter to δ̃ = δ/n ∈ [0, 1/q − 1/n).

Interestingly, the penalized MLEs of ζ 2 under (7a) and (7b) are closely related to those
estimated under an approximated posterior likelihood assuming an inverse-gamma prior
[23], with δ̃ corresponding to linear functions of the hyperparameters, see Appendix 1 for
more details.
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Substituting the penalizedMLEs given q, we obtain the penalized profile log-likelihood,
denoted by lp(q; δ̃), as a function of q for a fixed δ̃:

lp(q; δ̃) = lp(q) − m
2

[
n
(
1 − q

n
− δ̃q

)
log

n − q
n − q − nqδ̃

− δ̃nq(log ζ̂ 2
q + 1)

]
. (9)

The penalized profile log-likelihood criterion favours a more parsimonious model by
penalizing large values of q as well as retaining as much explained variance as possible.
Given suitable choices of δ̃, the following results establish the conditions under which the
penalized criterion will find the correct dimension:

Proposition 3.1: Consider a sample X ∈ R
n×m with each column following a multivariate

Gaussian distributionN (0,WWT + ζ 2I). If �̂, the sample covariance matrix of XT, is pos-
itive semi-definite, then there exists δ̃o ∈ (0, 1 − 1/n) such that lp(q; δ̃o) is maximized at k
(1 < k < n), the rank of W or the effective rank of X.

Proof is included in Supplementary Materials.

3.2. A data-driven voting strategy to estimate the effective rank

The introduction of penalty changes the monotonicity property of the profile likeli-
hood (6), and thus makes it possible to select the correct dimension k for appropriate
choices of δ̃-value. The selection of appropriate tuning parameter values in other well-
known problems, such as the selection of shrinkage tuning parameter in lasso [29,32], uses
either a model selection criterion, e.g. Akaike or Bayesian information criterion, or cross-
validation.However, the use of a cross-validation approach is based on optimizing a certain
objective function that can be analytically expressed, a task that is difficult when of interest
is determining the dimension. Our attempts at using an off-the-shelf information criterion
produced modest results in simulations under the correct model specification, but failed
to identify a sensible estimate when the data generative model deviated from assumptions.

So far, a data-driven heuristic gave the best balance in performance. It entails a voting
strategy in which each value of δ̃ over a plausible range, determined from the data, will lead
to a vote for a particular value of q as the estimate. Since the same estimate of k can result
from multiple δ̃-values, ultimately the estimated dimension that has been obtained most
often is selected.

The search for the intrinsic dimension implies a grid search for δ̃ whose values
{δ̃1, . . . , δ̃T} are selected using a sequence of T equidistant points on log scale. The user-
specified integer T needs to be large enough to identify a mode, and in simulations we
used T = 5, 000 or roughly 50n, with values of the same order of magnitude leading to the
same results. Each δ̃t will result in (9) supporting a possible value for k (1 ≤ k ≤ n − 1),
which is the maximizer of lp(q; δ̃t) in q. Then, the number of times that a value of kmax-
imizes the penalized profile log-likelihood is counted and the one with the highest vote
count is selected. Define |A(j)| = #{t : argmaxq lp(q, δ̃t) = j} and the estimate is denoted
by k̃ = argmaxj |A(j)|. The data-driven procedure is described in Algorithm 1.

The penalized approach requires a proper calibration of δ̃ so that the true dimension, k,
identifies as the global maximizer of lp(q; δ̃) most often. In theory, δ̃ could take any value
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Algorithm 1 A data-driven voting strategy to estimate the effective rank

Require: integer T, {λ̂i}i=1,...,n−1, κ = 0.001
initialization; setting nmax = min{i : λ̂i < κ} − 1
if nmax > 1 then

while q = 1 do
find δ̃T = argminδ̃{u : lp(q = 1; u) > lp(q = 2; u)};

end while
while q = n − 2 do

find δ̃1 = argmaxδ̃{u : lp(q = n − 2; u) > lp(q = n − 1; u)};
end while
construct {δ̃1, . . . , δ̃T};
while j ≤ n − 1 do

|A(j)| = #{t : argmaxq lp(q, δ̃t) = j}
end while
k̃ = argmaxj |A(j)|

else
k̃ = 1

end if

in [0,∞), but for practical considerations, it has a finite range depending on the maxi-
mum and minimum q to avoid degenerate cases. The connection between q and δ̃, given
by δ̃ ∈ (0, (1/q − 1/n)[1 − ζ̂ 2

q ]), is derived in Appendix 2. A theoretical justification of the
voting method based on the log-scale is provided in Lemma A.5 in Appendix 2. A detailed
illustration of the method on simulated data can be found in Supplementary Materials.

To make the methods accessible, we implemented the voting procedure in a statistical
software R package, available at https://github.com/WeiAkaneDeng/SPAC2.

4. Simulation studies

4.1. Data simulation

Given the true dimension k, error variance ζ 2, and observed dimensions (n,m), we can
generate the data by specifying either (1) the signal components of the first k true eigen-
values (η21, . . . , η

2
k) directly or, (2) a trend in the first k signal components. The residual

noise was assumed to have a multivariate distribution with mean vector zero and covari-
ance ζ 2In. The maximum dimension (n, when n<m) is often directly associated with the
difficulty of recovering the true dimension and was kept fixed at n = 100.

We explored four data generation scenarios: the first scenario, denoted by S0, is a base-
line casewhere each observation is independent and identically distributed (i.i.d) following
a standard normal distribution; the second scenario encompassed the spiked covariance
model with either the first k true eigenvalues being equal, a homogeneous setting (sce-
nario S1.1), or decaying with a linear or an exponential trend, the heterogeneous settings
(scenario S1.2); the third scenario, S2, explored varying data dimensions whereby the row
covariance matrix could also be rank-deficient; and finally, scenario S3, examined the

https://github.com/WeiAkaneDeng/SPAC2
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Table 1. Simulation scenarios.

Scenario Description of scenarios Dimensions Error distribution

S0 i.i.d. n<m N (0, 1)

Homogeneity n<m N (0, ζ 2)

S1 Heterogeneity
(linear/exponential) n<m N (0, ζ 2)

S2 Heterogeneity n>m N (0, ζ 2)

(exponential) n<m

MV − lognormal(μ = 2, σ = 1,� = I)
Non-normality n<m MV − exponential(rate = 1,� = I)

t5(� = I)

S3 N (0,�)with
� specified by
AR1(ρ), ρ = {0.4, 0.7}

Correlated observations n<m AR2φ1 = 0.4, φ2 = 0.42,
Polynomial kernel with offset {0, 1}
Gaussian kernel (scale parameter of 0.1)
Laplacian kernel (scale parameter of 0.1)

MV − lognormal(μ = 2, σ = 1,�)

Both n<m MV − exponential(rate = 1,�)

t5(�)

impact of model violations, such as heavy tails and correlated observations. These scenar-
ios are summarized in Table 1. For each condition, the simulation was repeated 100 times
and the number of observations was fixed at m = 5000 except in scenario S2. Though
there is no explicit assumption requiringm>n, the choice for a largerm is to ensure some
consistency in the sample eigenvalues, which is essential to the majority of the methods.

We applied double standardization to each simulated dataset and then calculated the
sample eigenvalues. For data generated under S3, the sum of the sample eigenvalues could
potential exceed n as data deviated fromnormality, thus the sample eigenvalues were scaled
to sum to n prior to analysis. Meanwhile, when the row covariance is rank-deficient, the
trailing sample eigenvalues could be negative; in this case, we adjusted the search space to
{1, 2, . . . , nmax}, where nmax = maxi(λ̂i > 0.001).

4.2. Alternativemethods

The performance of the proposed approach, denoted by pPPCA for penalty (7a), is com-
pared with a list of alternative methods (mathematical constructions in Appendix 3). For
completeness, we also included pPPCA2 for penalty (7b), and pPPCA3 for penalty (7c)
with β = 1/2. Briefly, we focused on the class of model selection criteria, including
Akaike information criterion (AIC); a simplification to the Laplace’s method using BIC
approximation [33], denoted by BIC; an approximation to the posterior likelihood using
Laplace’s method proposed in [23], denoted by Laplace; the best performer from a class of
Bayesian criteria under different diverging assumptions, PEnalized Semi-integrated Like-
lihood (PESEL; [28]). There is another class of methods that focused on the estimation,
including a bias-corrected criterion for estimating k by Passemier et al. [19], denoted by
Passemier, and a list of Bai andNg’s criteria [18], denoted by BN. A hypothesis testing crite-
rion for the equality of the last n−k eigenvalues [10] was also selected, denoted by Lawley.
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The hard threshold-based approach [17] removes the underlying noise in the singular val-
ues, and is denoted byDonoho. Finally, the last class ofmethods attempt to detect an ‘elbow’
in the scree plot produced by the sample eigenvalues: a list of empirical approaches, as
well as a simple profile likelihood-based criterion (ProfileL) by Zhu and Ghodsi [8] were
included in the comparison.

Berthet and Rigollet [34] considered the minimal value of θ(> 0) in a more restrictive
spiked covariance model I + θvvT that can be theoretically distinguished from I, where
v = (v1, . . . , vk) is a set of n-dimensional unit vectors. This is equivalent to our problem
when the top k eigenvalues are equal. For each true k, a corresponding critical value is
given and shown to be of order k

√
log(n/k)/m [34], implying that as the true k increases,

the signal needs to increase relatively for detection. Results from this study, though not
directly applicable for method comparison, provide insight for the simulation study that
follows.

Some of the methods we do not consider in the comparison are automatic relevance
determination [21] and related methods that followed it [35,36] as they have been shown
to be outperformed by methods based on the Laplace approximation [23]. Variational
approximation methods [24,25,37] are also excluded, as [37] does not directly estimate
the number of PCs, while [25] has been shown to be suboptimal to [27]. We have also
excluded Bayesian methods that rely on MCMC sampling [22], as they become computa-
tionally prohibitive when either n orm is large (> 1000). The large number of observations
is why cross-validation is difficult to implement beyond the heavy computational burden
as data splitting can sometimes create biased signal in the data depending on how the
held-out datasets are obtained, i.e. when the covariance structure is local to a subset of
the observations. For this reason, we excluded cross-validation, but included the general
cross-validation (GCV ) criterion of [16] that has better scalability properties.

4.3. Scenario 0: independent identically distributed

As a baseline scenario, we compared methods when the data were drawn from a mul-
tivariate normal distribution with zero mean and an identity covariance. Depending on
what is considered independent signal and noise, the effective rank could be 0 or a value
close to the maximum possible rank n−1 (due to the standardization). Unsurprisingly,
most methods estimated either 1 or n−1 majority of the time (Figure 1), with pPPCA pre-
ferring n−1 and most other model selection methods choosing 1. In this case, Lawley,
profileL, and some ‘elbow’-based empirical approaches do not work very well, giving esti-
mates ranging between 60−80, capturing the fluctuation in sampling distribution of the
bottom eigenvalues.

4.4. Scenario 1.1: homogeneous eigenvalues

The first experiment consisted of k equal squared singular values, where we used ζ 2
k =

{0.8, 0.81, . . . , 0.99} and k = {5, 10, 20} to capture a range of signal to noise (SNR) values,
defined by the ratio of η2k and ζ 2

k rather than (1 − ζ 2
k )ζ−2

k . The theoretical lower bounds of
k
√
log(n/k)/m roughly correspond to ζ 2

k = 0.98 for k = 10 and ζ 2
k = 0.93 for k = 20.

The best performer from each class of methods is presented in Figure 2. The results of
all methods can be found in Supplementary Figure 1.Mostmethods exhibited a decreasing
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Figure 1. Distribution of the estimated k over 100 replicates when data are i.i.d.

Figure 2. Proportion of correctly estimated k over 100 replicates as a function of ζ 2 assuming the first
k squared singular values are equal. The coloured line corresponds to each method among the subset
with reasonably good performance.

relationship between correctly estimated dimension as a function of increasing SNR (i.e.
small ζ 2 and small k), with the exception of AIC and Passemier, where both methods have
good performance most of the time. Interestingly, though pPPCA showed a decreasing
trend as SNR increased for each true k, its performance did not deteriorate terribly across
the different true k. The other methods were clearly more sensitive to the SNR as they
approached the theoretical lower bounds for detection, with AIC, Laplace having the best
performance among model selection approaches and profileL and Eigen (adjR) having the
best performance among empirical approaches. The twoPESEL criteria were similar toBIC
and both had better performance than pPPCA.

We expectedmethods that take advantage of the homogeneity in the true eigenvalues to
have reasonably good performance, such as profileL and PESEL (homogeneity). But in fact,
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profileLwas better thanPESEL (homogeneity) as SNR approached the theoreticalminimum
at ζ 2

k = 0.98 for k = 10, and even better than Laplace when k = 20.
At this point, we can eliminate both Donoho and ML from the list of methods as they

were not designed to detect the effective rank, as the former aims to detect a theoretical
minimum in terms of mean squared error loss, while the latter is a flawed information
measure for model selection.

4.5. Scenario 1.2: heterogeneous eigenvalues

Amore interesting and realistic scenario is when the true eigenvalues decrease according to
a linear or exponential trend. In this case, the singular values can be determined by varying
the two parameters ζ 2

k and η2k for a given k. We chose ζ 2
k = {0.1, . . . , 0.8}, η2k = {0.1, 0.3},

and k = {5, 10}. The performance of methods could possibly be impacted by the following
factors, including (1) the trend in {η2i }i=1,...,k, the signal components, (2) true dimension
k, and (3) the error variance ζ 2.

Laplace had the best performance across the conditions, followed by the proposed
pPPCA, PESEL (heterogeneity), where both method would underestimate by 1. For most
methods, we observed little impact on the performance of methods due to the choice of a
linear and an exponential trends (Figures 3 and 4). However, performance of pPPCA was
superior for a linear trend when true k = 5 (Figures 3) or an exponential trend (Figure
4) for a larger k = 10, possibly related to the fact that the empirical range of the penalty
parameter influenced the sampling distribution of the first k sample eigenvalues.

Contrary to the homogeneous case, the decreasing trend in the signal component posed
difficulty most noticeably for methods that assumed homogeneity. For example, both pro-
fileL and PESEL (homogeneity) completely failed to recover the correct dimension and
underestimated. Again, we observed PESEL (heterogeneity) to be near identical to BIC
and that AIC and Passemier would estimated correctly most of the time, but both are
inconsistent.

4.6. Scenario 2: data dimensions

One of the data attributes encountered in real world applications is the varying ratios ofm,
the number of observations, and n, themaximum dimension. To evaluate the performance
with respect to different ratios, we assumed the first k (= {5, 10}) squared singular values
were equal (i.e. homogeneous) or decayed linearly or at an exponential rate with their val-
ues determined by fixing η2k = 0.3, ζ 2

k = 0.5. The choice of m was set to be 50, 500, 1000,
5000, 10,000, and 20,000.

Informed by results in Section 4.5, we compared only methods that correctly estimated
at least 5% for this slightly challenging scenario, including AIC, BIC, Eigen (ζ 2), Laplace,
Passemier, PESEL (heterogeneity), and pPPCA.

As m was increased, estimates from BIC, Laplace, PESEL (heterogeneity), and pPPCA
all approached the correct dimension 100% (Figure 5). Across differentm/n ratios, pPPCA
had the best performance when the signal was homogeneous; while there was no dominant
method when the signals were heterogeneous, Passemier,AIC or Laplacewere competitive
depending on values ofm/n. Among methods that are empirically consistent, Laplace had
superior performance than both PESEL (heterogeneity) and pPPCA. Between these two,
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Figure 3. Proportion of correctly estimated k over 100 replicates as a function of ζ 2 assuming a linear
decay in the first k squared singular values.

therewas no universally bettermethod across the combinations of k and linear/exponential
trends. Again, we observed that the type of trend has a bigger impact on the performance
of the proposed pPPCA than other methods, preferring a linear trend when k = 5 or an
exponential trend for a larger k = 10.

4.7. Scenario 3: departure frommodel assumptions

In many applications, noise in the data might not be independently nor normally dis-
tributed. We investigated cases where the observed error was drawn from a multivariate
lognormal, exponential or, student’s t-distribution and with covariance matrix� specified
by an identity matrix (not necessary independent), a first-order (AR1) or a second-order
(AR2) autoregressive structure, polynomial kernelswith no offset or an offset of 1,Gaussian
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Figure 4. Proportion of correctly estimated k over 100 replicates as a function of ζ 2 assuming an
exponential decay in the first k squared singular values.

radial basis function (RBF) kernel with scale parameter equals to 0.1, and a Laplacian ker-
nel with scale parameter equals to 0.1. Herewe considered twoAR1models with parameter
value equals to 0.4 or 0.7 and one AR2 model with parameter values equal to 0.4 and 0.42.
The true eigenvalues of the error covariance are shown in Supplementary Figure 2, with
the Gaussian RBF and Laplacian kernel being the most aggressive in terms of elevating the
leading eigenvalues and shrinking the trailing eigenvalues towards zero. For simplicity, we
set the remaining parameter values to ζ 2 = {0.1, 0.2, . . . , 0.8}, η2k = 0.3, and specified an
exponential decay for the signal component of the first k eigenvalues. The true dimension
was k = 10.

Both non-normal error distribution and correlated features are expected to induce a
change in the spectrum of the observed eigenvalues while the total amount of variance
in X (i.e. the sums of squared singular values) remains constant after standardization



280 W. Q. DENG AND R. V. CRAIU

Figure 5. Proportion of correctly estimated dimension over 100 replicates as a function ofm assuming
homogeneity, a linear or an exponential decay in the first k squared singular values.

(= n(m − 1)). Results from the multivariate normal error condition suggested that mod-
erately correlated observations had little to no impact on pPPCA nor Laplace, as long as
the decay was relatively smooth around the true dimension, as is the case for AR1 with
correlation coefficient of 0.4, AR2 with parameter values 0.4 and 0.42, and polynomial
kernels (Supplementary Figure 3). We observed similar results for multivariate lognor-
mal or exponential error terms when the covariance was an identity matrix, but slightly
deteriorated performance from pPPCA when the covariance deviated from identity (Sup-
plementary Figures 4 and 5). The most noticeable error distribution that created a shift in
the eigenvalue spectrumwas themultivariate t-distributed error (Supplementary Figure 6),
modifying the true SNR and thus making the estimation of effective rank more difficult
across all covariance structures for all methods (Figure 6).

All methods except GCV , PESEL (heterogeneity), Eigen (zeta2) and pPPCA, failed com-
pletely at identifying the true k for AR1with stronger correlation coefficient (0.7), Gaussian
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Figure 6. Proportion of correctly estimated dimension over 100 replicates as a function of ζ 2 assuming
an exponential decay in the first k squared singular values under non-normality.

and Laplacian kernels (Figure 6). PESEL (heterogeneity) is the most competitive when the
errors were sampled from a multivariate t-distribution while the proposed pPPCA is more
robust to correlation than distribution with fat tails for a range of SNRs, suggesting toler-
ance for moderated correlated data (Supplementary Figure 4 and 5). Though GCV was
not as strong compared to pPPCA nor PESEL (heterogeneity), but its performance was
consistent across most S3 conditions (Supplementary Figures 4, 5 and 6). Indeed,GCV
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approximates a cross-validation criterion and the underlying error distribution had less
influence on its performance.

The fat tails and correlation in the error distribution present a challenge to Laplace as
the criterion were derived based under the normal asympototic conditions (Figure 6). Nat-
urally, a poor estimation of the residual variance ζ 2 leads to an incorrect estimation of k,
which affects all methods under comparison. Indeed, the residual variance would impact
the estimated dimension through its relative size to the explained variance. A biased ζ 2

estimate has a direct impact on the estimated dimension provided that the signal remains
the same: a smaller k̂ is expected for an upward biased ζ 2 estimates, while a larger k̂ is
expected for a downward biased ζ 2 estimate. In the setting considered here, n<m, a data
rich case as our interest is in the samples rather than features, the MLE estimator of ζ 2 is
consistent and approximately unbiased. However, when n>m, there will be a downward
bias that requires the use of a biased corrected estimator [19,38].

4.8. Computational considerations

The computational complexity of each method largely depends on the computation of
covariance and its associated eigenvalues, which can be computed once for all methods.
Specific to pPPCA, given the grid size, the computational cost is linear in the true dimen-
sion (Supplementary Figure 7), as the algorithm first examines the possible penalty values
for each searchable dimension before aggregating them to support an estimated dimension.

5. Application tomicroarray gene expression data

Large-scale gene expression data over multiple tissues have made it possible for scientists
to study the global structure of expression profiles [39] and extract biologically relevant
information. It has been reported that linear projections of expression data have intrin-
sically low dimensions, but higher than previously thought [40–42]. Here we apply the
proposed method to a heterogeneous gene expression dataset to inform the effective rank.

5.1. NCI60 data

This data contained gene expression measured across 9 types of human cancer cell lines
[43], and has been recently profiled using microarray technology at m = 41, 000 gene
probes [44]. The pre-processed data were obtained from the European Bioinformatics
Institute database and a total of n = 60 sampleswere analysed after removing 65 duplicated
cell line samples (Table 2).

As only 30–40% of genes are expected to expressed in each tissue [45], a standard vari-
ance filter was applied to remove gene probes with variance lower than their 10% percentile
value. In many cases, the excessively large variance corresponds to expression with bi-
modal or even multi-modal distribution, and thus we removed gene probes with variance
above 95% percentile. The sizes of variance filters roughly correspond to 0.2 and 5.8 on
the log2 scale, which reduced the number of gene probes from m = 41, 000 to m = 34,
850. See Supplementary Figure 4 for a summary of the sample and gene variance, as well
as gene-based skewness and kurtosis prior to filtering. For each gene probe, the expression
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values were further standardized across samples to have a sample mean of zero and vari-
ance of 1. The sample eigenvalues were calculated based on the singular values of X after

standardization to be λ̂i = d̂2i
m .

5.2. Data analysis

Since correlation in both rows and columns is expected of gene expression data, we assessed
the burden of such correlation using the averaged squared Pearson’s correlation coefficient
for each gene or sample (Figure 7). In addition, gene expression distribution can be noto-
riously non-normal, with more than 50% of gene features exhibiting heavy tails, skewness,
and even multiple modes [46,47]. For a given dataset, we compared results on both the
standardized data and those undergoing a rank-based inverse normal transformation for
each gene feature. For alternative methods, only the most sensible estimate from a class
of methods was reported, i.e. the value closest to the reported number of cell lines. Note
that the reported results are exploratory in nature and had not been rigorously validated
in terms of their biological interpretation nor clinical relevance.

As a follow-up analysis, we first estimated the dimension for the melanoma cell line
alone since it had the highest number of samples (Table 2), and then increased the number

Table 2. NCI 60 cell line classes.

Tissue of origin Number of samples

Breast 6
Central nervous system 6
Colon 10
Leukaemia 7
Melanoma 11
Non-small cell lung 8
Ovarian 7
Prostate 2
Renal 9

Figure 7. Averaged squared Pearson’s correlation coefficient for each sample or feature.
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of samples by introducing additional cell line groups one by one, in the order of decreasing
sample sizes per cell line (colon, renal, etc.). We hope the trend in estimated dimension as
the data dimension increased can shed light on the structure of microarray data as they
become increasingly more heterogeneous.

The estimated data dimension can also be used for supervising learning. Thus, we evalu-
ated the clustering quality of samples using testing data consist of 17,425 gene probes while
the number of clusters was determined from the estimated dimension on training data con-
sist of the remaining gene probes. We applied the hierarchical clustering algorithm using
Ward’s method [48] and the clustering quality was assessed using the adjusted Rand index
[49], which compares the similarity between the assigned cluster and true cluster. The
adjusted Rand index takes into account the number of clusters and larger values indicate
better agreement. Each random data-splitting was repeated 1000 times.

5.3. Results

There was no visible difference in the sample eigenvalues for data irrespective of a rank-
based inverse normal transformation: in both cases we observed a smooth decay with no
clear elbow (Figure 8). The penalized approach estimated k̃ = 10 for both the standard-
ized and the transformed data, suggesting robustness to non-normal features of the data.
By design, empirical methods that are sensitive to the presence of a gap also gave similar
estimates, for example, profileL,GCV , Lawley, and elbow based approaches. Notably,GCV
, Lawley, and the best of the elbow approach are in agreement with our penalized approach
(Table 3), giving estimates roughly in line with the number of cancer cell lines (k = 9).
On the other hand, model-based methods, such as AIC, BIC, and Laplace were unable
to gave sensible estimates. In particular, many overwhelmingly identified the boundary
points at around k = n−1 or k = 1. This observation agrees with Minka’s comments in
[23] that Bayesian methods do not perform well when data deviated from a reasonable
level of normality and when the last n−k sample eigenvalues decay faster than expected
under the model, a result of either severe non-normality or the true eigenvalues of the last

Figure 8. Estimated effective rank by each method with respect to the sample eigenvalue scree plot.
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Table 3. Estimated dimension of the NCI60 dataset.

Methods No transformation
Inverse normal
transformation

pPPCA 10 10
AIC 58 58
BN 5 5
BIC 58 58
Best elbow approach 9 8
GCV 10 12
Laplace 46 44
Lawley 8 12
PESEL (heterogeneity) 17 13
PESEL (homogeneity) 54 54
Passemier 58 58
ProfileL 5 5

Figure 9. Estimated effective rank with respect to increasing numbers of cell lines by each method.

n−k principal directions not being constant. The performance of PESEL (homogeneity)
seemed to suggest the later is more likely as it had shown fairly good performance under
non-normality in simulations.

Since the expression data are heterogeneous coming frommultiple cell lines, we sought
to examine the data dimension as a function of increasing data complexity. Figure 9 reveals
that the dimension increased with with additional cell line being included in the data.
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Figure 10. The figure shows a boxplot of the adjusted Rand Index in testing data as a function of esti-
mated dimension in training data, and a histogram of estimated dimension from 1000 replications. The
solid line corresponds to the estimated dimension at k̃ = 10.

The dimension estimated from the overall dataset using pPPCA (k̃ = 10) was cho-
sen most frequently in the 1000 replications using the testing expression data (n = 60,
m = 17, 425). The clustering quality of samples to cancer cell line groups using the esti-
mated dimension of 10 gave the best performance as evaluated by the adjusted Rand index
(Figure 10).

6. Concluding remarks

Both Bayesian methods and penalized approaches are often linked to improved prediction
performance as a result of internally choosing the more parsimonious model. Here we
compared their performance on the non-supervised learning of data dimension. Rather
than an out-of-sample criterion, the estimation of dimension is very much ‘in sample’ as
we are primarily interested in the representation of this particular dataset and do not expect
it to generalize beyond very homogeneous populations.

The comprehensive simulation design covered a wide range of theoretical and realistic
data scenarios, focusing on the impact of SNR, patterns of eigenvalue spectrum, relative
sizes of m and n, and correlated and non-normal error. The proposed pPPCA strikes a
balance between capturing the ‘gap’ in the top sample eigenvalues via the voting strategy
as well as modelling the error variance via a likelihood penalization. Thus, its comple-
mentary performance to the approximated Bayesian posterior likelihood and ‘elbow’ based
approaches is unsurprising. This also explains its good performance when data deviated
from the independence assumption, an advantage in applications where one might be
uncertain of the characteristics of the data generating process.

Even though the proposed method was not the ‘best’ in every scenario, its overall
performance was competitive. Irrespective of other simulation conditions, it has good per-
formance for large k as the penalty on the estimated dimension ismostly driven by log (ζ 2),
which favours a model that is more flexible than preferred by Bayesian model selection.
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Supported by the application results, we recommend applying pPPCA to explore the
dimension of gene expression data when there is a good separation between signal and
noise, and proper data transformation applied. As a possible follow-up analysis, the data
could be bettermodelled assuming k̃ distinct error variance parameters using a generalized
factor analysis model. Though in an exploratory analysis, the assumption of isotropic error
covariance should suffice as a first step to identify the hidden dimension.
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Appendices

Appendix 1. Penalized PPCA andMinka’s criterion using Laplace’s method

Denote Lambda = diag(λ1, . . . , λn), where λi = η2i + ζ 2. Intriguingly, if we use the following priors
as suggested in Minka [23]:

p(U,�,V , ζ 2) = p(ζ 2)p(U)p(R)�k
i=1p(λi); (A1)

p(ζ 2) = 1
�(α(n − k)/2)ζ 2

(
β(n − k)

2ζ 2

)α(n−k)/2
exp

(
−β(n − k)

2ζ 2

)
; (A2)

p(U) = 2−k�k
i=1�((n − i + 1)/2)π−(n−i+1)/2; (A3)

p(λi) = 1
�(α/2)λi

(
β

2λi

)α/2
exp

(
− β

2λi

)
; (A4)

and maximize the posterior with respect to (λi, ζ 2) at the maximum likelihood of U, we have:

ζ̂ 2(α,β) = m
m − 1 + α

ζ̂ 2
k + β

m(n − k)
; (A5)

λ̂i(α,β) = m
m − 1 + α

λ̂i + β

m
. (A6)

The final approximated Laplace evidence removed any terms that do not depend strongly on k and
simplified assumingm is large and (α,β) are small.
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The penalized MLE from our proposed penalty function (7a) then corresponds to the hyperpa-
rameter values of:

α = 1 − k
n − k

δ, (A7)

β = 0; (A8)

while the second penalty function (7b) corresponds to:

α = 0, (A9)

β = k
n − k

δ, (A10)

that coincides with a prior using Levy distribution.

Appendix 2. Estimation of effective rank via penalized PPCA

A.1 Lemmas

Lemma A.1: Consider a sample X ∈ R
n×m with each column following a multivariate Gaussian dis-

tributionN (0,WWT + ζ 2I). Suppose W has rank k and further, the sample covariance matrix of XT

is positive semi-definite. Then, the penalized maximum log-likelihood at each fixed q ∈ {1, . . . , n − 1}
is a smooth function of δ̃ on the interval (0, 1/q − 1/n) and is monotonically decreasing on

(0, (1/q − 1/n)[1 − ζ̂ 2
q ]), (A11)

where ζ̂ 2
q = (

∑n
i=q+1 λ̂i)/(n − q).

Since the difference of two smooth functions is still a smooth function, themonotonicity of lp(q; δ̃) −
lp(q + 1; δ̃) and lp(q; δ̃) − lp(q − 1; δ̃) can be established with respect to δ̃.

Lemma A.2: Consider δ̃ ∈ G(q + 1), where

G(q + 1) =
(
0,

1
n

(n − q − 1)(λ̂q+1 − ζ̂ 2
q+1)

(q + 1)λ̂q+1 + (n − q − 1)ζ̂ 2
q+1

)
. (A12)

Then, for any fixed q ∈ {2, 3, . . . , n − 2}, lp(q; δ̃) − lp(q + 1; δ̃) is a monotonically increasing and con-
cave function of δ̃ ∈ G(q + 1) and lp(q; δ̃) − lp(q − 1; δ̃) is a monotonically decreasing and convex
function of δ̃ ∈ G(q + 1).

Since lp(q; δ̃o) is a discrete function of q, the maximum can be at either the boundary points or
interior points. Considering exclusively the interior points, for some q ∈ {2, . . . , n − 2} to be the
maximizer of lp(q; δ̃o) given δ̃o, lp(q; δ̃o) − lp(q − 1; δ̃o) > 0 and lp(q; δ̃o) − lp(q + 1; δ̃o) > 0 consti-
tute a necessary but not sufficient condition. With the additional condition that lp(q; δ̃o) monoton-
ically increases ∀q < k and monotonically decreases ∀q > k, the condition A13 becomes necessary
and sufficient. The following Lemma proves the sufficiency of the condition that guarantees the true
dimension k to be the maximizer for some δ̃o ∈ ∪qG(q + 1).

Lemma A.3: Assume the same notation from Lemma A.2. For k ∈ {2, . . . , n − 2}, there exists δ̃o ∈
∪qG(q + 1) such that k = argmaxq lp(q; δ̃o) if and only if{

lp(q; δ̃o) − lp(q − 1; δ̃o) > 0
lp(q; δ̃o) − lp(q + 1; δ̃o) > 0.

(A13)
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It is convenient to define the sets that satisfy A13 for 2 ≤ q ≤ n − 2:

�q = (aq, bq) ⊂ ∪qG(q + 1), (A14)

where
aq = min

{
δ̃ ∈ ∪qG(q + 1); lp(q; δ̃) − lp(q + 1; δ̃) > 0

}
(A15)

and
bq = max

{
δ̃ ∈ ∪qG(q + 1); lp(q; δ̃) − lp(q − 1; δ̃) > 0

}
. (A16)

Remark A.1: Note that an interesting result from Lemma A.3 showing λ̂q+1 = 1 to be a sufficient
condition for lp(q; δ̃) − lp(q + 1; δ̃) > 0 on δ̃ ∈ G(q + 1). This coincides with with Kaiser’s rule for
selecting k as the number of PCs to retain. Notice that asm → ∞,

λ̂k+1 → λk+1 = ζ 2,

while the observed ζ̂ 2
k < 1, then λ̂k > λ̂k+1 = 1 provides strong evidence that the true η2k = λk −

ζ 2 > 0.

Lemma A.4: Consider

�q =
{
δ̃ ∈ G(q + 1); conditions (A13) are satisfied

}
= (aq, bq),

whenever aq exists. Then �q can be approximated by (ua(q), ub(q)) ⊂ �q ⊂ G(q + 1), where ua(q)
represents an upper bound for ak, and ub(q) a lower bound for bq, such that bq/aq >

ub(q)
ua(q) .

Remark A.2: Clearly, bqaq >
ub(q)
ua(q) holds. If the ratio

ub(q)
ua(q) converges asm → ∞, the ratio asymptot-

ically reflects the amount of evidence for each possible dimension q. Thus, if ub(q)
ua(q) were the largest

for q = k, then a majority-voting strategy for estimating k is viable.

Lemma A.5: Suppose k is the true rank of W, then as m → ∞,

• ub(k)/ua(k) → ∞ in probability
• |ub(q) − ua(q)| → 0 in probability for q> k.

Remark A.3: In theory, ub(k)/ua(k) → ∞ in probability and the approximated ratio will be the
largest as compared to other choices. However, in finite samples, the ratio ub(q)/ua(q) for q> k
could also be quite large due to the numerical inaccuracy of the last n−q sample eigenvalues as they
approach the population values. In practice, the penalty tuning parameter δ̃ needs to be calibrated
such that ua(q) is not too close to 0.

Remark A.4: The proof of Proposition 3.1 implies that given any δ̃ = δ̃o, a non-boundary maxi-
mizer of (9), k, can be identified using the following conditions whenever 1 < q < kmax(δ̃o):{

lp(q; δ̃o) − lp(q + 1; δ̃o) > 0;
lp(q; δ̃o) − lp(q − 1; δ̃o) > 0,

(A17)

where kmax(δ̃o) is the maximum value for the search space that ensures ζ̃ 2
q is well-defined given δ̃ =

δ̃o. In other words, lp(q; δ̃o) first increases with q ≤ k and then decreases with q ≥ k, thus ensuring
kmaximizes lp(q; δ̃o) over q ∈ {2, . . . , kmax(δ̃o)}.
Remark A.5: It is clear that �q is an open interval for each q as the penalized likelihood in (9) is
a continuous function of δ̃ ∈ (0, 1/(q + 1) − 1/n) for any fixed q (Lemma A.1). Following Lem-
mas A.2 and A.3, for q �= q′, �q and �q′ are strictly non-overlapping sets. Therefore, the realized
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range for δ̃ is the union of all sets ∪n−2
q=2�q ⊂ [0, 1 − 1/n). But because of the restriction embedded

in (8) and (A13), wemust have δ̃ ∈ (0, 1/(q + 1) − 1/n) for each examined value of q. Consequently,
the restriction imposes a relationship whereby q is non-increasing in aq (or ua(q)) and bq (or ub(q)).
For example, when q = n−1, it must be that an−1 = 0 < bn−1 <

(n−1)−1−n−1

1−ζ̂ 2n−1
, while for q = 1,

b2 < a1 < b1 < (1 − n−1){1 − ζ̂ 2
1 }.

Remark A.6: For q = 1 or q = n−1, �q can be defined such that only one of (A13) is satisfied. It
is clear that �q is an open interval for each q as the penalized likelihood function in (9) is a contin-
uous function of δ ∈ G(q) for any fixed q. However, in this case, as an−1 = 0 and b1 is unbounded,
results fromLemmasA.4 andA.5 no longer apply. Instead, a practical solution is to construct suitable
probabilistic models for q = 0 and q = n such that the boundary points become interior points.

Remark A.7: Since aq and bq are not analytically available, whenever possible, I obtained con-
servative upper and lower bounds for �q using ua(q) and ub(q) such that (ua(q), ub(q)) ⊂
�q (Lemma A.4). The proof of Lemma A.5 also demonstrates that ub(k)/ua(k) > 1 so that
(ua(k), ub(k)) �= ∅. Essentially, the number of votes provides a form of evidence for division
between the first q and last n−q sample eigenvalues relative to the first q−1 and last n−q+ 1 or
the first q+ 1 and last n−q−1.

Lemmas A.1, A.2, A.3, A.4, and A.5 together imply: (1) there exists δ̃o ∈ �k such that (9) is
maximized at k; (2) �k = (ak, bk) can be approximated by (ua(k), ub(k)) ⊂ �k, satisfying

lim
m→∞

ub(k)
ua(k)

= ∞, (A18)

lim
m→∞ |ub(q) − ua(q)| → 0, for q > k, (A19)

lim
m→∞

ub(q)
ua(q)

< ∞, for q < k. (A20)

A.2 Establishing the range of plausible tuning parameter values

We first consider the search space for k. The smallest and the largest non-trivial choice for k is 1 and
n−1, respectively. Clearly, the largest possibly value that k can take depends on the actual rank of
the sample covariance. We define nmax = min{i : λ̂i < κ} − 1 where κ is a tolerance value that can
be set arbitrarily low to prevent digits over-floating in standard software (e.g. κ = 0.001). This, in
effect, removes numerical uncertainty in the inverse of sample eigenvalues.

The construction of search grid is characterized by its range and the distance between adjacent
grid values. Results from Lemma A.5 suggest a possible construction, δ̃1, . . . , δ̃T , using a sequence
of T equidistant points on log scale. To determine δ̃1 and δ̃T , we need to bound the minimum and
the maximum of δ̃ values such that 1 and nmax are the maximizer of the penalized profile log-
likelihood (9). Since the exact relationship between q and aq, bq is not analytically available, we
rely on conservative bounds obtained via Taylor series approximations to specify δ̃1 and δ̃T .

The maximum value δ̃T is defined as the average of the two largest penalties that ζ̃ 2
1 > ζ̃ 2

2 and
ζ̃ 2
2 > ζ̃ 2

3 hold, as above these values, themodel is overwhelmed by the penalty andwill always choose
k = 1. The minimum value δ̃1 is chosen to be the value given by ua(nmax).

In practice, the boundary points q = 1 and q = n−1 might be relevant, and have the inter-
pretations of n−1 independent error or signal components, respectively. To curb the definition of
a maximizer according to A13, we propose to construct artificial boundary points for which the
penalized profile log-likelihood is defined for q = n or q = nmax and q = 0.

Define λ̂0 = ∑n
i=1 λ̂i and the error variance is then ζ̂ 2

0 = 1. This model corresponds to W = 0
and thus q = 0. By design, lp(q = 0; δ̃) = lp(q = 0) as there is no dimension to penalize. On the
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other hand, since ζ̂n−1 = λ̂n and lp(q = n − 1) = lp(q = n), the construction must impose a small
probabilistic component to the q = n model (e.g. PCA) by introducing ζ̂ 2

n = 1
2 λ̂n = 1

2 ζ̂
2
n−1. This

model corresponds to a dimension that is between q = n−1 and q = n and forces lp(q = n; δ̃) =
lp(q = n) < lp(q = n − 1).

These artificially constructed boundary points makes it possible to select a maximum for the
penalized maximum likelihood by choosing q = 1 or q = n−1 such that lp(q; δ) − lp(q − 1; δ) > 0
and lp(q; δ) − lp(q + 1; δ) > 0.

Appendix 3. Alternativemethods

Details of the alternative methods considered in the simulation studies are included here and
organized in alphabetical order.

A.3 Akaike information criterion (AIC)

The number of free parameters in themodel is nq + 1 − q(q − 1)/2 and themodel with the smallest
AIC is selected:

AIC(q) = −2lp(q) + nq + 1 − q(q − 1),

where lp(q) is defined as in (6).

k̂ = argminq AIC(q).

A.4 Bayesian information criterion (BIC)

A simplification to the Laplace’s method assumingm → ∞ [33]:

log p(D|q) = −m
2

( q∑
i=1

log λ̂i

)
− m(n − q)

2
log

(∑n
i=q+1 λ̂i

n − q

)
− nq − (q + 1)q/2 + q

2
log (m),

(A21)
where any terms that do not depend on m are dropped. It can be shown that this simplifies to the
likelihood under a model subtracted by a multiple of the number of free parameters, which is the
usual BIC criterion BIC(q) = −2lp(q) + nq+1−q(q−1)

2 logm.

k̂ = argminq BIC(q).

A.5 Bai and Ng’s criteria (BN)

Bai and Ng [18] developed six different criteria via a selection of penalty functions involving bothm
and n to identify the number of factors, where the errors are allowed to be correlated. The inference
was performed jointly on (k, ζ 2).

The three criteria applicable to PPCA models are:

k̂ = argminq V(q, F̂q) + qζ̂ 2
BNgj(m, n), (A22)

where ζ̂ 2
BN = 1

nm
∑m

j=1
∑n

i=1 E(xij)2,V(q, F̂q) = 1
nm
∑m

j=1 E(XT
j Xj) and the three penalty functions:

g1(m, n) = m + n
nm

log
(

nm
n + m

)
, (A23)

g2(m, n) = m + n
nm

logmin(n,m), (A24)
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and

g3(m, n) = logmin(n,m)

min(n,m)
. (A25)

Following the PPCA model, the criterion reduces to

k̂ = argminq ζ̂ 2
q + qζ̂ 2

kogj(m, n), (A26)

where ko is the maximum number of PCs searched. Alternatively, the estimators ζ̂ 2
q can be replaced

by the bias corrected estimators introduced in [19]. Thus, giving a total of 6 criteria used for
comparison. For ko, I chose � n

2 � as it gave the best performance across scenarios.

A.6 Empirical elbow approaches (Elbow)

I have also included in the comparison a few empirical approaches designed to detect an ‘elbow’ or
a point of inflection in the scree plot produced by the sample eigenvalues:

(1) The difference between log cumulative mean of the sample eigenvalues and the mean of the
cumulative log sample eigenvalues (cumlog), defined by

k̂cumlog = argminq log
∑q

i=1 λ̂i

q
− 1

q

q∑
i=1

log λ̂i,

(2) the variance of sample eigenvalues (VarD), defined by

k̂VarD = argminq

∑q
i=1 λ̂2i
q

−
(∑q

i=1 λ̂i

q

)2

, (A27)

(3) the adjacent sample eigenvalues (adjD), defined by

k̂adjD = argminq
λ̂q

λ̂q+1
, (A28)

(4) and a criterion based on the log of estimated error variance (log-var), defined by

k̂log−var = argminq(n − q) log ζ̂ 2
q . (A29)

A.7 A general cross-validation criterion (GCV)

This criterion is similar to the general cross-validation in regression to approximate the leave-one-
out cross-validation, which is based on the relationship between prediction error and residual sum
of squared via a weight matrix resulted from a projecting matrix. This enables a smoothing approx-
imation to cross-validation criterion results in a general cross-validation (GCV) criterion that is
computationally advantageous:

k̂GCV = argminq
m2n

∑n
i=q+1 λ̂i

[(m − 1)n − mq − nq + q2 + q]2
. (A30)

To produce optional results, data would be transposed if the number of observations were smaller
than sample size.

A.8 An approximation to the posterior likelihood using Laplace’s method
(Laplace)

Laplace approximation [23,27] assumes the dimension of the parameter space is constant. Thus, Z
is integrated out [23] and the resulting posterior likelihood is approximated using Laplace’s method
[33], which requires the argmax of the parameters and the Hessian matrix at these values.
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The log of the evidence is:

log p(D|q) = log p(U) − m/2

( q∑
i=1

log λ̂i

)
− m(n − q)/2 log

(∑n
i=q+1 λ̂i

n − q

)

+ 2nq − q2 + q
4

log(2π) − q/2 log (m)

− 1/2
q∑

i=1

n∑
j=i+1

[
log

(
(λ̂i − λ̂j)

2

λ̂iλ̂j

)
+ log(m)

]

= −m/2

( q∑
i=1

log λ̂i

)
− m(n − q)

2
log

(∑n
i=q+1 λ̂i

n − q

)

− 1/2
q∑

i=1

n∑
j=i+1

[
log

(λ̂i − λ̂j)
2

λ̂iλ̂j

]

+ 2nq − 3q − q2

4
log (2) − q2 − 2nq + 3q

4
log (m) +

q∑
i=1

log�

(
n − i + 1

2

)
,

(A31)

where

log p(U) = −q log (2) +
q∑

i=1
log�

(
n − i + 1

2

)
− 2nq + q − q2

4
log (π) (A32)

A.9 A hypothesis testing criterion for the equality of the last n−k eigenvalues
(Lawley)

The null hypothesis isHo : λj = λj+1 = · · · ,= λn against the alternative hypothesis that at least one
is not equal to the remaining eigenvalues. The test statistic is given by Lawley [10]:

χ2 = (n − j)c log

(∑n
i=j λ̂i

n − j

)
−

n∑
i=j

log λ̂i (A33)

where

c = (n − j) − 2(n − j) + 1 + 2/(n − j)
6

+
(∑n

i=j λ̂i

n − j

)2 j∑
i=1

⎛⎝ j∑
i=1

λ̂i −
∑n

i=j λ̂i

n − j

⎞⎠−2

,

with (n−j)(n−j+1)
2 − 1 degrees of freedom.

A.10 A PEnalized semi-integrated likelihood (PESEL)

The criteria proposed here [28] are inspired by BIC, which assumes the number of free parameters
is independent of the number of observations, and clearly this is not always satisfied. The rationale
is to integrate out some parameters from (2), either elements in Z so the model does not depend on
m (i.e.m → ∞) or to integrate outW so the model selection does not depend on n (i.e. n → ∞). A
total of four criteria are given under different asymptotics with respect to n andmwhile considering
the first k eigenvalues are equal (homogeneous) or different (heterogeneous).

• Fixedm with n → ∞: PESELn
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• PESELn,heter is equivalent to the BIC approximation in [23].

PESELn,heter(q) = −mn
2

log (2π) − n
2

q∑
j=1

log (λ̂j) − n(m − q)
2

log (ζ̂ 2
q )

− mn
2

− log (n)
mq − q(q+1)

2 + q + m + 1
2

(A34)

• PESELn,homo assumes all PCs have the same variance (i.e. there is no dominant direction)

PESELn,homo(q) = −mn
2

log(2π) − nq
2

log

(∑q
j=1 λ̂j

q

)
− n(m − q)

2
log(ζ̂ 2

q )

− mn
2

− log(n)
mq − q(q+1)

2 + q + 1 + 1
2

(A35)

• Fixed n withm → ∞: PESELm
• PESELm,heter

PESELm,heter(q) = −mn
2

log(2π) − m
2

q∑
j=1

log(λ̂j) − m(n − q)
2

log(ζ̂ 2)

− mn
2

− log(m)
nq − q(q+1)

2 + q + n + 1
2

(A36)

• PESELm,homo

PESELm,homo(q) = −mn
2

log(2π) − mq
2

log

(∑q
j=1 λ̂j

q

)
− m(n − q)

2
log(ζ̂ 2

q )

− mn
2

− log(m)
nq − q(q+1)

2 + n + 1 + 1
2

(A37)

A.11 A bias-corrected criterion (Passemier)

With the main asymptotic assumptions as follows:

n → ∞ (A38)

m → ∞ (A39)

cn = m
n − 1

→ c > 0, (A40)

[19] proposed a plug-in estimator for ζ 2 using a bias correction that depends on q:

ζ̂ 2
∗ = ζ̂ 2 + b(ζ̂ 2)

n − q
ζ̂ 2√2cn. (A41)

where b(ζ 2) = √
c/2{q + ζ 2∑k

i=1(1/λi)}.
Without the correction, the noise variance is expected to have a downward bias as n increases

relative tom. A consistent estimator for the true number of PCs (k) underm> >n is given, where it
is assumed that k< <n. The proposed criterion to select k requires a tuning parameter to be chosen
and the default value is b = 0.05 for each q:

k̂Passemier = argminq ζ̂ 2
q∗ + qζ̂ 2

ko
(cn + 2

√
cn)(1 + m/n1+b)

n
, (A42)
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where ko is the maximum number of PCs searched. In preliminary simulation results, I observed
that b needs to be bigger than the default 0.05 to obtain the correct estimate in some cases, especially
for the more difficult cases with smaller SNR. Thus, besides the default value of 0.05, I also included
the 95% and 5% quantile values of {λ̂i}i=1,...,n, and the best results from these choices are reported.

A.12 A profile likelihood-based criterion (ProfileL)

[8] proposed a simple profile likelihood-based criterion to detect the ‘elbow’ by separating the first
q and last n−q sample eigenvalues under the following models:

λ̂j ∼ N (μ1, γ ); j ≤ q (A43)

and
λ̂j ∼ N (μ2, γ ); j > q. (A44)

The profile likelihood evaluates the evidence for a change-point by maximizing:

pL(q) =
q∑

j=1
logN (λ̂j|μ1(k), γ (q)) +

n∑
j=k+1

logN (λ̂j|μ2(k), γ (q)), (A45)

whereμ1(q) andμ2(q) are estimated by the mean sample eigenvalues in each partition separated by
q, while γ (q) is given by a pooled estimate using all sample eigenvalues.
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