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The multiplicity problem has become increasingly important in genetic studies as the capacity for high-throughput
genotyping has increased. The control of False Discovery Rate (FDR) (Benjamini and Hochberg. [1995] J. R. Stat. Soc. Ser. B
57:289–300) has been adopted to address the problems of false positive control and low power inherent in high-volume
genome-wide linkage and association studies. In many genetic studies, there is often a natural stratification of the m
hypotheses to be tested. Given the FDR framework and the presence of such stratification, we investigate the performance
of a stratified false discovery control approach (i.e. control or estimate FDR separately for each stratum) and compare it to
the aggregated method (i.e. consider all hypotheses in a single stratum). Under the fixed rejection region framework (i.e.
reject all hypotheses with unadjusted p-values less than a pre-specified level and then estimate FDR), we demonstrate that
the aggregated FDR is a weighted average of the stratum-specific FDRs. Under the fixed FDR framework (i.e. reject as many
hypotheses as possible and meanwhile control FDR at a pre-specified level), we specify a condition necessary for the
expected total number of true positives under the stratified FDR method to be equal to or greater than that obtained from
the aggregated FDR method. Application to a recent Genome-Wide Association (GWA) study by Maraganore et al. ([2005]
Am. J. Hum. Genet. 77:685–693) illustrates the potential advantages of control or estimation of FDR by stratum.
Our analyses also show that controlling FDR at a low rate, e.g. 5% or 10%, may not be feasible for some GWA studies.
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INTRODUCTION

When a large number of hypotheses are tested,
it is necessary to control the occurrence of type I
errors/false positives. The traditional approach
is to control the Family-Wise Error Rate (FWER),
which is the probability of making even one type I
error. For example, the well-known genome-wide
significance level of 2.2� 10�5 (LOD score of 3.6)
for linkage mapping of complex diseases using
an ASP design [Lander and Kruglyak, 1995] was
proposed to control FWER at 0.05. That is,
statistically significant evidence is expected to
occur 1 in 20 times at random in a genome scan.

Although the FWER method strictly guards
against false positives, the corresponding power
is typically extremely low especially for a large
number of tests, resulting in few or no discoveries.
The seminal work of Benjamini and Hochberg
[1995] provides an alternative framework by
controlling the False Discovery Rate (FDR), which
is the expected proportion of false discoveries
among all positives. If all the hypotheses are truly
null, it can be shown that FDR and FWER are
identical. However, if this (unlikely) equality does
not hold, then controlling FDR imposes a less
stringent condition than controlling FWER so an
increase in power is expected. However, one must
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be aware that a direct comparison of power is not
appropriate because the two procedures control
different levels of type I error rate. Note that the
value of FWER corresponding to a rejection
procedure that controls FDR at level g is typically
considerably higher than g. For example, in a
simulation study of QTL linkage analyses per-
formed by Benjamini and Yekutieli [2005], the
actual FWER is about 0.63 while FDR was
controlled at 0.05. Improvements and extensions
of the method of Benjamini and Hochberg [1995]
have been proposed by Benjamini and Hochberg
[2000], Benjamini and Yekutieli [2001], Storey
[2002, 2003] and Genovese and Wasserman
[2001, 2002].

In many applications, the notion of FDR is more
relevant than FWER. For example, in an explora-
tory analysis of a dataset in which m tests are to be
performed and a portion of them is suspected to
be statistically significant, one is ready to accept
that some of the rejections are in fact false as long
as some or most of the true signals have been
discovered. In this respect, controlling FDR seems
to be more appropriate than FWER. The use of
FDR has become common in analyses of micro-
array gene expression data, where m is typically
large, and one is often less concerned about
making a type I error. Recently, statistical analyses
of genetic data have begun to adopt the FDR
framework, in part due to (a) the traditional
genome-wide significance criterion often leads to
no findings, (b) the number of SNPs and micro-
satellites being genotyped has increased drasti-
cally because of reduced cost and new study
designs such as Genome-Wide Association (GWA)
studies, (c) multiple phenotypes, covariates and
models are being tested. In addition, in the context
of multi-stage analyses, the idea of using FDR as a
screening tool is appealing.

In many studies, particularly in GWA studies,
there is an inherent stratification of the m tests to
be performed. For example, each marker might be
tested for association with each of K phenotypes
of interest; tests might be conducted assuming K
different genetic models (e.g. additive, dominant
or recessive); a group of markers might be
considered high-priority candidates because they
were selected from candidate genes or linkage
regions, while the remaining markers are included
to cover the genome and treated as a secondary
group; SNPs and microsatellites could be ana-
lyzed separately; or markers could be stratified
based on their allele frequencies. Given the FDR
framework and the presence of such stratification,

the main question we address in this report is
whether it is advantageous to control or estimate
FDR separately for each stratum.

MOTIVATING EXAMPLES

To motivate the subsequent methods develop-
ment, we first consider a proposed genetic study
of long-term complications of type 1 diabetes, the
DCCT/EDIC (Diabetes Control and Complica-
tions Trial/Epidemiology of Diabetes Interven-
tions and Complications) study [Boright et al.,
2005]. The research plan incorporates a multi-
stage approach, and the goal of stage one analysis
is to screen about 1500 SNPs in candidate genes
and identify as many truly associated SNPs as
possible for follow-up studies. There are five
phenotypes of interest including three retinal
and two renal diabetic complications. In a project
of this nature, we are faced with a multiple testing
problem (here, 5� 1500 for a total of 7,500 tests)
and the FDR facilitates the choice and interpreta-
tion of significant results as well as the design and
allocation of available genotyping resources.

Given the natural stratification of the data, i.e.
each of the 1,500 SNPs will be tested for associa-
tion with each of the five phenotypes, a relevant
FDR question is whether one should control or
estimate FDR separately for each phenotype
(call it the stratified FDR approach) or for all
phenotypes together (call it the aggregated FDR
approach). Intuitively, if the underlying associa-
tion structure is the same for all phenotypes, i.e.
power to detect association is similar and the
number of truly associated SNPs is similar among
phenotypes, then the stratified FDR approach
offers similar information as the aggregated
FDR approach. However, if there are differences
among phenotypes, then it is possible that the
stratified FDR approach is superior to the aggre-
gated one because the former incorporates aux-
iliary information via the phenotype indicator. For
example, assume that power to detect each truly
associated SNP is 90% at the 0.01 level, but the
number of such SNPs varies among the pheno-
types as shown in Table I(a). Then, if one is to
reject all SNPs with p-values less than 0.01,
assuming all tests are independent, some simple
calculations provide the following results in
Table I(a). That is, if FDR is estimated for all
7,500 tests, roughly half of the 152 significant
results are expected to be false. However, if FDR is
estimated separately for each phenotype, then one
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expects 45 of the 59 rejections from phenotype 1 to
be truly associated SNPs, while one is now almost
certain that all 16 significant SNPs from pheno-
type 5 are likely to be false. The gain of
information through this simple stratified FDR
estimation approach is evident.

The second example arises in the context of
GWA studies. Suppose one performs a GWA
study with 105,000 SNPs, among which 5,000
(stratum 1) are from candidate genes or regions of
linkage and the rest of the 100,000 (stratum 2) are
included to systematically scan the genome for the
purpose of identifying novel associations. Assume
that the power to detect each truly associated
SNP is 70% at the 0.001 level, and the number of
associated SNPs is 100 for each of the two strata.
Then, if one is to reject all SNPs with p-values less
than 0.001, assuming all tests are independent, we
have the results shown in Table II(a). In this case,
we expect 43% of the 245 positives to be false
under the aggregated approach. Among the 245
positives, 75 belong to stratum 1 with stratum-
specific FDR 7%, and the remaining 170 belong to
stratum 2 with stratum-specific FDR 59%.

The above two illustrations use the fixed
rejection region method of Storey [2002, 2003].
That is, one rejects all tests with (unadjusted)
p-values less than a pre-specified a level then
estimates FDR among all positive results. In this
case, the total number of rejections with stratifica-
tion is the same as with aggregation. However, the
stratum-specific FDR could be substantially closer
to 0 (all positives are true) or 1 (all positives are
false), depending on the proportion of null

hypotheses and the power to detect true signals
in that stratum.

Alternatively, one may wish to control FDR at a
tolerable level and meanwhile reject as many
hypotheses as possible. This can be achieved with
the method of Benjamini and Hochberg [1995]
and its extensions. In this case, the FDR level g
is pre-specified, but the a level used for each
stratum and overall may vary to ensure the
nominal FDR level. As a result, the total number

TABLE I. The EDIC study example

Aggregated Phen. 1 Phen. 2 Phen. 3 Phen. 4 Phen. 5

]SNPs 7,500 1,500 1,500 1,500 1,500 1,500

]associated SNPs 86 50 20 10 5 1

(a) Under the fixed rejection region framework with a5 0.01 and 1�b(a) 5 90%
E[]false positives] 74 14 15 15 15 15
E[]true positives] 78 45 18 9 5 1
E[]positives] 152 59 33 24 20 16
FDR 49% 24% 45% 63% 75% 94%
(b) Under the fixed FDR framework with nominal FDR level at 10%
a used 0.0008 0.003 0.001 0.00045 0.00019 0.000023
1�b(a) 67% 80% 70% 61% 52% 32%
E[]false positives] 6 4 1.5 0.6 0.3 0.03
E[]true positives] 58 40 14 6 2.7 0.32
E[]positives] 64 44 15.5 6.6 3 0.35

E[]false positives] 5 (]SNPs�]associated SNPs) �a, E[]true positives] 5 ]associated SNPs� (1�b(a)), where in (a), a is pre-specified at
0.01 level and 1�b(a) (power) is assumed to be 90% for a5 0.01, and in (b), a is the largest value that satisfies equation (5) given in the text,
and we assume 1�b(a) 5F(F�1(a)13.6), where F is the cumulative probability function for the standard normal distribution.

TABLE II. The GWA study example

Aggregated Stratum 1 Stratum 2

]SNPs 105,000 5,000 100,000

]associated SNP 200 100 100

(a) Under the fixed rejection region framework with a5 0.001 and
1�b(a) 5 70%

E[]false positives] 105 5 100
E[]true positives] 140 70 70
E[]positives] 245 75 170
FDR 43% 7% 59%
(b) Under the fixed FDR framework with nominal FDR level at 10%
a used 0.00009 0.0016 0.00004
1�b(a) 44% 74% 37%
E[]false positives] 9 8 4
E[]true positives] 88 74 37
E[]positives] 97 83 41

E[]false positives] 5 (]SNPs�]associated SNPs)�a, E[]true posi-
tives] 5 ]associated SNPs� (1�b(a)), where in (a), a is pre-
specified at 0.001 level and l�b(a) (power) is assumed to be 70%
for a5 0.001, and in (b), a is the largest value that satisfies
equation (5) given in the text, and we assume 1�b(a) 5F(F�1(a)1
3.6), where F is the cumulative probability function for the
standard normal distribution.
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of rejections may differ between the stratified
and the aggregated approaches. Consider the
above EDIC and GWA studies and assume power
to detect each truly associated SNP follows a
normal model as described in the following
METHODS section. Then if FDR is chosen at
10%, we have the results shown in Table I(b) and
Table II(b). It is clear from this example that the
stratified FDR approach is advantageous in that
the expected total number of true positives is
greater than for the aggregated approach while
FDR is controlled at 10% in each stratum and
overall: 63 versus 58 for the EDIC example, and
111 versus 88 for the GWA example.

In the following section, we derive analytical
expressions for the aggregated and stratum-
specific FDR as functions of the proportion of
true null hypotheses, p0, the level used to declare
significance for each test a, and the power to
detect a true alternative at level a, under the
assumption that all tests are independent. The
independence assumption allows for analytical
derivation and clear understanding of the pro-
blem but it is not crucial to the conclusion. Under
the fixed rejection region framework, we demon-
strate that the aggregated FDR is a weighted
average of the stratum-specific FDRs, with
weights proportional to the expected number of
rejections. Under the fixed FDR framework, we
specify the condition necessary for the expected
total number of true positives under the stratified
FDR method to be equal to or greater than that
obtained from the aggregated FDR method. We
argue that the inequality often holds for genetic
studies. We also briefly describe available meth-
ods for estimation of p0 necessary for both
frameworks and of FDR for the fixed rejection
region framework.

METHODS

NOTATION

Table III summarizes the underlying events
when a large number of hypotheses are examined.
Note that m is the total number of tests, fixed in
advance; m0 is the number of true null hypotheses
and m1 is the number of true alternative hypoth-
eses, and both m0 and m1 are unknown para-
meters. R is the observed number of positives for a
given rejection procedure; U, V, T and S are all
unobserved random variables and are, respec-
tively, the number of true negatives, false posi-
tives, false negatives and true positives. Without

loss of generality, we assume that the first m0

hypotheses are true nulls and the rest are true
alternatives, and let pi, i 5 1,y,m be the unad-
justed p-values for the m tests. In addition, let
p0 5 m0/m and p1 5 m1/m, and a be the level to
declare significance for a single test based on
pi and 1�bi(a) be the corresponding power. Note
that power for each of the m1 alternatives may
differ at the given a level, while power 5a for
the m0 true nulls. If there are K strata among the
m tests, we then use superscript ðkÞ to denote the
corresponding m, m0, m1, p0, p1, a and bi(a) for
each stratum k, k 5 1,y,K.

FRAMEWORK I: FIXED REJECTION REGION

We first investigate the stratified approach
under the fixed rejection region framework. This
framework rejects all tests with p-values less than
a chosen a level, then estimates FDR among all
the positives. Given the above notation and the
independence assumption, some simple calcula-
tions show that

E½V� ¼
Xm0

i¼1

Prðpi � aÞ ¼ m0 a ¼ m p0 a

E½S� ¼
Xm

i¼m0þ1

Prðpi � aÞ ¼
Xm

i¼m0þ1

ð1� biðaÞÞ

¼ m1ð1� bðaÞÞ ¼ mð1� p0Þð1� bðaÞÞ

where 1� bðaÞ ¼ 1�
Pm

i¼m0þ1 biðaÞ=m1, the aver-
age power to detect m1 alternatives, each at level
a. Storey [2003] has shown that E[V/R] 5 E[V]/
E[R] for independent tests, thus the aggregated
FDR is

FDR ¼ E
V

R

� �
¼

E½V�

E½R�
¼

m p0 a

m p0 aþm ð1� p0Þ ð1� bðaÞÞ

¼
p0 a

p0 aþ ð1� p0Þð1� bðaÞÞ

¼
1

1þ ð1=p0 � 1Þð1� bðaÞÞ=a
:

ð1Þ

From the above expression, it is apparent that FDR
increases as p0 increases. FDR also increases if

TABLE III. Summary of events for multiple hypothesis
testing

Declared
non-significant

Declared
significant Total counts

Truth: H0 U V m0

Truth: H1 T S m1

Total m�R R m
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power decreases for a given a level. However,
FDR does not necessarily increase as a increases,
unless the rate of change in power is slower
than that in a as measured by fa1ð1� bða2ÞÞg=
fa2ð1� bða1ÞÞg. Assume for example p0 5 0.9, if
power is 10% and 50%, respectively, at a levels of
0.001 and 0.005 for each of the m1 alternatives,
then the two corresponding FDRs are both 8.25%
if one rejects all tests with p-values less than 0.001
or 0.005. If power is 10% and 80% instead, then
using 0.005 leads to a smaller FDR of 5.33%.
However if power is 20% and 50%, then using
0.001 leads to a smaller FDR of 4.32%. This non-
monotonicity was also observed in the following
application to Maraganore et al. [2005].

Suppose the m tests can be naturally stratified
into K groups, among the R ¼

P
k RðkÞ rejections,

the stratified FDR approach would estimate FDR
separately for each RðkÞ. The true FDR for the kth
stratum is

FDRðkÞ ¼ E
VðkÞ

RðkÞ

� �
¼

E½VðkÞ�

E½RðkÞ�

¼
mðkÞ pðkÞ0 a

mðkÞ pðkÞ0 aþmðkÞ � ð1� pðkÞ0 Þð1� bðaÞ
ðkÞ
Þ
:

ð2Þ

The aggregated FDR can be re-expressed in the
following way:

FDR ¼ E

P
k VðkÞP
j RðjÞ

" #
¼

P
k E½VðkÞ�P
j E½RðjÞ�

¼
X

k

wðkÞFDRðkÞ

ð3Þ

where wðkÞ ¼ E½RðkÞ�=
P

j E½RðjÞ�, the weighting fac-
tor for each stratum.

From equations (2) and (3), we see that the
aggregated FDR is a weighted average of the K
stratum-specific FDRs, with weights proportional
to the expected number of rejections in each
stratum. If strata are homogeneous in that the
proportion of the null hypotheses is the same,
pðkÞ0 � p0, and the average power to detect the
alternatives is the same, bðaÞ

ðkÞ
� bðaÞ, then

FDRðkÞ ¼ FDR ¼ p0a=ðp0aþ ð1� p0Þð1� bðaÞÞÞ re-
gardless of the number of tests in each stratum.
However, if pðkÞ0 or bðaÞ

ðkÞ
vary among strata, the

stratum-specific FDR would differ from the
aggregated FDR. In particular, the stratum-specific
FDR is bigger than the aggregated FDR if a stratum
has a larger proportion of null hypotheses or lower
power to detect alternatives. Similarly, smaller pðkÞ0

or higher 1� bðaÞ
ðkÞ

leads to smaller FDR. Note

that, in the above EDIC and GWA examples, we
assumed that bðaÞ

ðkÞ
� bðaÞ but pðkÞ0 varied among

strata. Indeed, the stratum with the smallest
pðkÞ0 has the smallest FDR. In the GWA example, if
the power to detect associated SNPs from candidate
genes or linkage regions is in fact higher than the
others, e.g. 90% in stratum 1 and 40% in stratum 2
both at the 0.001 level, then the advantage of the
stratified FDR approach is even more clear: the
expected number of total rejections is 235 with FDR
45%, among which 95 are from stratum 1 with FDR
5% and 140 from stratum 2 with FDR 71%.

FRAMEWORK II: FIXED FDR

We now consider the stratified FDR approach
under the fixed FDR framework. This framework
pre-specifies FDR at level g then finds a rejection
procedure that rejects as many tests as possible
but controls the proportion of false discoveries at
g. (We use g to denote the FDR level in distinction
from a.) There have been a number of improve-
ments and extensions of the original procedure
of Benjamini and Hochberg [1995], including the
FDR-adjusted p-value approach [Yekutieli and
Benjamini, 1999] and the q-value method [Storey,
2002, 2003]. Here we use the q-value approach
since it has been shown to be equivalent to the
adaptive FDR-adjusted p-value approach [Craiu
and Sun, 2006]. Roughly speaking, the q-value
of an observed test statistic associated with a
hypothesis Hi is the minimum possible FDR for
calling Hi significant. Consequently, controlling
FDR at level g is equivalent to calling all tests
with q-values rg significant. The estimates of the
q-values can be obtained by the use of the
following recursive formula:

q̂
ðiÞ ¼ min

p̂0 m pðiÞ
i

; q̂
ðiþ1Þ

� �
ð4Þ

where pð1Þ � � � � � pðmÞ is the ordered sequence
of the m available p-values, q̂

ðmÞ ¼ p̂0 pðmÞ, and p̂0 is
an estimate of p0.

Under the fixed FDR framework, the question of
interest is whether the stratified FDR approach
rejects in total more hypotheses while it still
controls FDR at the nominal level g for each
stratum, therefore identifying more true positives.
To obtain the expected number of true positives,
E[S], we investigate the connection between the
fixed FDR framework and the fixed rejection
region framework and use it to derive E[S]. We
try to find the largest a and aðkÞ, k 5 1,y,K, such
that the corresponding FDR is controlled at g.
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(Note that a is the level used to call a single test
significant based on its unadjusted p-value.) Once
a and aðkÞ are obtained, we can then use the results
from the fixed rejection region approach above.
However, we note that in this case FDR is
pre-specified at a given level, but the a level used
may vary among strata and differ from the over
all value. To control FDR at level g for a set of
tests, based on equation (1), a has the following
expression:

a ¼
ð1� p0Þ g ð1� bðaÞÞ

p0 ð1� gÞ
: ð5Þ

The expression for aðkÞ is identical to equation (5)
with the addition of superscript ðkÞ for p0 and bðaÞ.
The determination of a however depends on the
average power function 1� bðaÞ, in addition to the
values of p0 and g.

The specific form of the power function
depends on the test statistic used as well as
the ‘‘distance’’ between the null and alternative
models. For example, assume one uses the
sample average of size n to test if the mean of
a normally distributed population (with known
variance s2) equals zero or greater, then
1� bða; mÞ ¼ FðF�1ðaÞ þ

ffiffiffi
n
p

m=sÞ, where m40 is
the true mean and F is the cumulative probability
function for the standard normal distribution. In
the EDIC and GWA examples, the pairs of values
for a and 1�b(a) given in Table I(b) and
Table II(b) were determined assuming the above
normal model with n 5 100, m5 1.8 and s5 5.
In that case, g5 0.1 and the a used is the largest
value subject to equation (5) for the respective
p0 value. It is clear from equation (5) that a
decreases as p0 increases, given g and a power
function. That is, when the proportion of the
null hypotheses increases, a more stringent
significance criterion is required to control FDR
at the nominal level. This can be also seen from
equation (4) where the q-value increases as p0

increases.
Let a be the level obtained for the aggregated

data, and aðkÞ for the kth stratum as described,
all controlling FDR at level g. Then the expected
total number of true positives is

E½S� ¼ m1ð1� bðaÞÞ

and

E½
X

k

SðkÞ� ¼
X

k

mðkÞ1 ð1� bðaðkÞÞ
ðkÞ
Þ

respectively, for aggregated and stratified
approaches, and

E½
X

k

SðkÞ� � E½S�()
X

k

mðkÞ1

m1
ð1� bðaðkÞÞ

ðkÞ
Þ � ð1� bðaÞÞ:

Therefore, E½
P

k SðkÞ� � E½S� if the weighted aver-
age of power across strata is equal to or greater
than the aggregated one, with weights propor-
tional to the number of true alternatives in each
stratum. Due to the complex interplay between a,
p0 and g and the unknown average power
function f1� bðaÞg, it is difficult to show that
this inequality always holds. However, by the use

of equation (5), we have f1� bðaÞg ¼ fa p0ð1� gÞg=

fð1� p0Þgg and f1� bðaðkÞÞ
ðkÞ
g ¼ faðkÞpðkÞ0 ð1� gÞg

=fð1� pðkÞ0 Þgg. Thus, if we replace f1� bðaÞg and

f1� bðaðkÞÞ
ðkÞ
g above, we have the following:

E½
X

k

SðkÞ� � E½S�()
X

k

mðkÞ0

m0
aðkÞ � a: ð6Þ

Similar to the fixed rejection region framework,
if the strata are homogeneous, pðkÞ0 � p0 and

bðaÞ
ðkÞ
� bðaÞ, then aðkÞ used for each stratum is

the same as a and
P

kðm
ðkÞ
0 =m0ÞaðkÞ ¼ a. Therefore,

E½
P

k SðkÞ� ¼ E½S�. However, if pðkÞ0 or the power
functions differ, the above inequality may or may
not hold, depending on the specification of the
strata and the underlying power function. If for

example we assume the pðkÞ0 vary but the power
function is the same, as in the EDIC and GWA

examples, then aðk
�Þ4a if pðk

�Þ

0 op0 for stratum
k�. Since the rate of change in a is typically
much faster than that in p0, we expectP

kðm
ðkÞ
0 =m0ÞaðkÞ4a. If we assume that the power

functions vary but pðkÞ0 is the same, then aðk
�Þ4a if

power for stratum k� is stochastically greater than
the overall power. Thus, in this case we also

expect
P

kðm
ðkÞ
0 =m0ÞaðkÞ4a.

Under some extreme situations, it is possible
that stratification may lead to fewer rejections, For
instance, in the case when pðk

�Þ

0 og for stratum k�

(i.e. the proportion of the null hypotheses in a
stratum is smaller than the pre-specified FDR
level), rejecting all tests controls FDR at a level
ðpðk

�Þ

0 Þ smaller than the pre-specified one (g). This
‘‘un-used’’ portion of FDR (i.e. g� pðk

�Þ

0 ) however
could be fully utilized under aggregation resulting
in more rejections. For example, assume that
m1 5 5,000, mð1Þ1 ¼ 4; 750 and mð2Þ1 ¼ 250, m0 5
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5,000, mð1Þ0 ¼ 250 and mð2Þ0 ¼ 4750 (p0 5 0.5, pð1Þ0 ¼

0:05 and pð2Þ0 ¼ 0:95), power to detect each alter-
native is FðF�1ðaÞ þ 3:6Þ, and FDR is fixed at
g5 20%. In that case, a5 0.25, að1Þ ¼ 1 and að2Þ ¼
0:012 (corresponding power is 99.8%, 100% and
91%), and the expected true positives are respec-
tively 4,990, 4,750 and 227. Indeed, stratification
results in 13 fewer true positives. However, it
could be argued that this is not a fair comparison
in that FDR is controlled at 5% for stratum 1,
much lower than the given 20%. In addition,
such an extreme case, where the proportion of
null hypotheses is lower than the pre-specified
FDR level, is neither practically plausible (for
p040.5 is expected for most if not all cases of
large-scale hypothesis testing, with p040.9 for
GWA studies), nor meaningful (for one would
reject all hypotheses in that case, while the usual
goal in large-scale hypothesis testing is to narrow
down all the hypotheses to a smaller set of
interesting ones).

ESTIMATION OF p0 AND FDR

The above analytical derivation demonstrates
the expected performance of FDR control and
estimation procedures. For a given set of hypoth-
eses, p0 needs to be estimated if the fixed FDR
framework is used, and both p0 and FDR must be
estimated if the fixed rejection framework is
adopted.

Several estimators of p0 have been proposed,
among which

p̂0ðlÞ ¼ ]fpi4lg=ðm ð1� lÞÞ

with l5 0.5 is most commonly used. It has been
noted that p̂0ðlÞ is biased upward. Although the
bias decreases as l increases, the variance of p̂0ðlÞ
increases which makes the estimate less reliable.
To balance between bias and variance, Storey and
Tibshirani [2003] proposed a more sophisticated
estimation method: first calculate the above p̂0ðlÞ
for a range of l, l5 0,0.01,0.02,y,0.95, then fit
the natural cubic spline f̂ðlÞ of p̂0ðlÞ on l with
3 d.f., and finally set the estimate of p0 to be
p̂0 ¼ f̂ðl ¼ 1Þ.

Under the fixed rejection region framework, the
following estimator could be used to estimate FDR
among the R positives [Storey and Tibshirani,
2003]:

dFDRðaÞ ¼ ðm p̂0 aÞ=]fpi � ag

where R ¼ f]pi � ag, and m0 p̂0 a is an estimate of
the number of false positives using the fact that

the null (independent) p-values follow the Unif
(0,1) distribution. To bound the FDR estimate
below 1, one can use

dFDRðaÞ ¼ minfðm p̂0 aÞ=] fpi � ag; 1g: ð7Þ

APPLICATION

Maraganore et al. [2005] recently reported a two-
stage GWA study of Parkinson’s disease. 198,345
SNPs, uniformly spaced across the genome, were
analyzed in stage 1 using a discordant sib-pair
design. A total of 443 case-unaffected sibling pairs
were analyzed using the sibling transmission/
disequilibrium test (sTDT) method [Schaid and
Rowland, 1998], adjusting the analyses for age and
sex. After exclusion of SNPs with fewer than
nine discordant pairs, Maraganore et al. [2005]
identified 1,862 SNPs with p-values r0.01. These
positive SNPs were then followed up in stage 2
using a different study design with 332 matched
case-unrelated control pairs and an additional 300
SNPs for genomic control. For the purpose of this
paper, we focused on their stage 1 and obtained
detailed information about the stage 1 SNPs,
including allele frequencies in controls and
p-values, from their text file 1 (online only, the
American Journal of Human Genetics). Note that
Maraganore et al. [2005] essentially used a fixed
rejection region approach with a5 0.01 although
they did not estimate the corresponding FDR.

Figure 1(a) shows the histogram of 197,222
p-values that were available. The minimum p-value
is 1.3� 10�5 and the maximum is 1. The estimate
of p0 is 0.9764 using the method of Storey and
Tibshirani [2003] as described above. There were
1,906 SNPs with p-values r0.01. The number is
slightly larger than the 1,862 of Maraganore et al.
[2005] because they excluded SNPs with fewer
than nine discordant pairs, using information that
was not available to us. The estimate of the
aggregated FDR based on equation (7) turns out
to be 100%. Although it is unlikely that all the
1,906 positives are false (sampling variation and
inaccuracy in the estimate of p0 could lead to an
upward biased estimate of FDR), the message
is clear: we expect only a few, if any, of the 1,906
positives to be true discoveries. This is not
surprising because of the large proportion of null
hypotheses (i.e. p0 5 0.9764) and the possible
underlying low power to detect any associated
SNP. In fact, the smallest estimated q-value is
0.7684, and even with a much more stringent
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criterion of a5 0.0001, FDR is estimated to be
80% among the 24 positives detected without
stratification.

There has been some discussion concerning
whether common or rare variants are responsible
for susceptibility to complex diseases [e.g. Pritch-
ard, 2001]. In addition, it is known that allele
frequency plays an important role in power
determination of an associated SNP. Therefore,
we stratified all SNPs into two strata based on the

allele frequency distribution in controls. Stratum 1
contains 20,431 SNPs with minor allele frequency
r0.05 and stratum 2 includes the remaining
176,791 SNPs. Figures 1(b) and (c) show the
histograms of the corresponding p-values. The
minimum and maximum p-values are 4.97� 10�5

and 0.99981 for stratum 1, and 1.3� 10�5 and 1 for
stratum 2. The estimates of pðkÞ0 are 0.8640 and
0.9894, respectively, for strata 1 and 2. It is clear
that the two strata are not homogeneous in that

all 197,222 SNPs
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Fig. 1. Histogram of p-values for SNPs tested by Maraganore et al. [2005]: (a) all 197,222 SNPs; (b) 20,431 SNPs with minor allele

frequency r0.05; and (c) 176,791 SNPs with minor allele frequency 40.05.
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the proportion of truly associated SNPs in strata 1
appears to be substantially larger than that in
strata 2. This seems to contradict the ‘‘common
disease, common variant’’ hypothesis, although
we note that the SNPs of Maraganore et al. [2005]
were selected based on their physical locations
(uniformly spaced across the genome) rather than
on linkage disequilibrium (LD) patterns.

We now estimate FDR for each stratum under
the fixed rejection region approach. Among the
total 1,906 positives, 195 were from stratum 1 and
1,711 from stratum 2. The estimated FDR for
stratum 1 is 91% while the estimated FDR for
strata 2 is 100% (Table IV). An astute reader may
notice the discrepancy between the stratified and
aggregated approaches in that the estimated total
number of true positives is 195� (1–91%)10E18
for the former and 0 for the latter. However, the 18
possible true positives leads to 1–18/1906 5 99%
aggregated FDR for which an estimate of 100%
is not unlikely considering sampling variation.
Nevertheless, there is a need for more accurate
estimation of p0 and FDR. The advantage of
stratification is not clearly demonstrated by this
example because the FDR estimate E1. In that
case, stratification does not change the fact that
all R rejections are expected to be false. Results
for a5 0.0001 (Table IV) however illustrate the
benefit of stratification: among the 24 rejections
with aggregated FDR of 80%, 3 belong to
stratum 1 with a much lower stratum-specific
FDR of 59%. In addition, the minimal attainable
FDR is 76% under aggregation (minimal q-value is
0.76), while it is at a much lower level of 50% for
stratum 1 but at only slightly higher level of 79%
for stratum 2.

DISCUSSION

We have proposed a stratified false discovery
control approach for genetic studies in which a
large number of hypotheses have some inherent
stratification among them. The proposed method
is a simple way to incorporate available auxiliary
information where the auxiliary variable is the
stratum indicator I. In an ideal situation, if I 5 1
for a true null hypothesis and I 5 2 for a true
alternative hypothesis, then for a given rejection

procedure that rejects R (¼ Rð1Þ þ Rð2Þ) hypotheses,

FDR would be 1 for stratum 1 (i.e. all Rð1Þ are false

positives) and 0 for stratum 2 (i.e. all Rð2Þ are true
positives), while the aggregated FDR could be 50%
(i.e. we expect half of the R positives to be false but
cannot conclude which ones, a lack of specificity).
If we split the hypotheses randomly (equivalent to
an uninformative stratification variable), then we
will gain nothing and possibly lose some effi-
ciency because the smaller number of hypotheses
in each stratum may reduce the precision in the
estimation of p0. Using the p̂0ðl ¼ 0:5Þ estimator
above, and under the independence assumption,
one can show that the bias (¼ 2 ð1� p0Þ e � 2e,
where e ¼ Prðp � 0:5jH1Þ, the probability that an
alternative p-value is greater than 0.5) is not
affected by the stratification, but the variance of
the estimator is in the order of oð1=mðkÞÞ. In the
context of large-scale hypothesis testing, the
increase in the variance is negligible as long as
there are at least hundreds of tests in each stratum.

The accuracy of the auxiliary information is
central to the improvements of the stratified false
discovery control method. However, as demon-
strated by both analytical results and application,
substantial gains can be achieved by the use
of stratification even if the stratification variable
is far from the ideal I above, as long as the
proportion of the null hypotheses and/or the
power to detect the alternatives differs among
strata. In practice, such variables are often
inherent in the study design and data analyses,
for instance the phenotype in the EDIC example
above, the SNPs in candidate genes/linkage
regions versus the remaining ones in the GWA
study example above, or cis versus trans regulators
(SNPs close to the gene of interest versus not) in
the association analyses of SNP-to-gene expression
data. Although these variables will not perfectly
separate the noise from the signals, the resulting
strata are likely to have different proportions of
true signals and/or power to detect those signals.

TABLE IV. Application to Maraganore et al. [2005] under
the fixed rejection region framework with a 5 0.01, 0.001
and 0.0001

Aggregated Stratum 1 Stratum 2

]SNPs 197,222 20,431 176,791
p̂0 0.9764 0.8640 0.9894
minimal q-value 0.76 0.50 0.79

a5 0.01
]rejections 1,906 195 1,711dFDR 100% 91% 100%

a5 0.001
]rejections 216 15 201dFDR 89% 100% 87%

a5 0.0001
]rejections 24 3 21dFDR 80% 59% 83%
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In the application to Maraganore et al. [2005], we
recognize that SNPs were selected based on their
physical locations (uniformly spaced across the
genome), and allele frequency was not part of the
study design. Therefore, using allele frequency as
the stratifying variable is less than ideal and more
as means to demonstrate the proposed method.
However, the choice was also motivated by the
current discussions concerning whether common
or rare variants are responsible for susceptibility to
complex diseases and by the known effect of allele
frequency on power of the analyses [e.g. Pritchard,
2001]. The MAF of 5% was chosen because it
is commonly used as the cutoff point for rare
variants. Although it is possible to adopt another
threshold, yielding a different stratification, we
note that choosing the stratifying variable that
gives the ‘‘optimal’’ result creates another level of
multiple hypothesis testing and leads to bias. In
addition, we emphasize that the stratifying vari-
able must be a covariate that is independent of the
observed p-values.

The auxiliary information required for our
method is rather general. In situations where
previous genome-wide linkage results are avail-
able for GWA studies, Roeder et al. [2006] recently
proposed a weighted p-value approach that treats
the linkage results as prior or auxiliary informa-
tion. The method applies the traditional FDR
control procedure to weighted p-values of associa-
tion tests, pi/wi, where pi is the original p-value
of an association test at marker i, and wi is the
weighting factor proportional to the linkage result
at that marker. They showed that if linkage results
are informative, the weighted method improves
power considerably, and if linkage results are
uninformative, the loss in power is small. As
pointed out by Roeder et al. [2006], in addition to
having adequate sample size, one does need to
assume that detectable loci by linkage design are
the same as those by association. Nevertheless, the
weighted p-value approach is promising for GWA
studies, and it emphasizes the fact that ‘‘multiple
testing inherent in broad genomic searches
diminishes power to detect association, even for
genes falling in regions of the genome favored
a priori’’ [Roeder et al., 2006. The stratified FDR
approach and the weighted p-value method are
complementary formulations that incorporate
prior information to increase the power to detect
signals in a targeted set of hypotheses. In general,
one can combine the two methods by using the
weighted p-value approach within the stratified
FDR framework. For example, if linkage results

were available for the GWA study of Maraganore
et al. [2005], one could apply the weighted p-value
method within each of the two strata. It remains
an important research question to identify the
optimal method that effectively utilizes all avail-
able auxiliary information.

In the application to Maraganore et al. [2005],
we demonstrated the stratified method under the
fixed rejection region framework. For illustration,
we can also consider the fixed FDR framework.
Since an FDR less than 77% is not attainable for
aggregated data, with FDR 450% for stratum 1
and 479% for stratum 2, we choose g5 0.8,
although in practice FDR as high as 80% level is
probably undesirable. In this case, q-values were
first calculated based on equation (4) for all SNPs
under aggregation or stratification. SNPs with
q-values r0.8 were then rejected, a procedure
that controls FDR at the 80% level [Storey, 2002,
2003]. As a result, 27 tests were rejected in the
aggregated approach, while 13,151 tests were
rejected in stratum 1 and 24 were rejected in
stratum 2. Given limited resources, it might be
a concern that extra 13,151124�27 5 13,148 SNPs
must be further analyzed in stage 2. However,
the stratified FDR approach also identifies
13,148� (1–80%) 5 2,630 more potentially asso-
ciated SNPs in stage 1 which was designed as a
screening stage. Recently, Craiu and Sun [2006]
have proposed a quantity called non-discovery
rate (NDR), which is the proportion of false
negatives among true alternatives, as a measure
of type II error rate for multiple hypothesis testing
(hence 1 - NDR as power, which is the proportion
of true positives among true alternatives). They
emphasized the importance of controlling type II
error in addition to type I error and the advan-
tages of jointly analyzing FDR and NDR. This is of
particular interest for GWA studies in which the
appropriate FDR and NDR levels are unclear and
is the subject of on-going research. If resources are
limited, the stratified FDR approach also allows
the flexibility to choose different FDR levels for
different stratum. For example, in the application
to Maraganore et al. [2005], one could choose
FDR at 65% for stratum 1 which leads to eight
rejections.

The application to Maraganore et al. [2005]
also shows that (a) an FDR level of 5% or 10%
may not be reasonable or achievable for some
GWA studies, (b) under the fixed rejection region
framework, FDR level may decrease as a increases
for certain range of a values. The low power
associated with controlling FWER has been well
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acknowledged, and FDR was proposed as an
alternative for a less stringent control of type I
error rate. However, our analysis shows that when
(i) the underlying signals are weak, (ii) the
proportion of null hypotheses is close to 1 and
(iii) there are large number of hypotheses to be
tested, as is likely to be the case for GWA studies,
one might have to accept a large value of FDR so
that some of the true signals can be detected. This
is consistent with the statement of Roeder et al.
[2006] cited above. We have also observed that
under the fixed rejection region framework, FDR
does not necessarily have a monotone relationship
with a. This appears to be the case for the stratum
1 of Maraganore et al. [2005] in which a greater
density occurs around 0.25 in Figure 1(b) indicat-
ing a cluster of alternative hypotheses. (However,
we note that correlation among null hypotheses
could also cause such a cluster.) Figure 2 shows
the corresponding estimated FDR level for a in the
range of (0.0001, 0.99). Indeed, although the
estimated FDR decreases as a increases from
0.0001 to 0.001, for 0.001oao0.25 the estimated
FDR seems to have a decreasing trend as a
increases. A more in-depth investigation of such
phenomena is of interest.

Current FDR methods work well for indepen-
dent tests and tests with positive regression
dependency (PRD) [Benjamini and Yekutieli,
2001]. Li et al. [2005] have investigated the impact
of general dependency on FDR control. In their
simulations of a microarray gene expression
study, they demonstrated that the actual FDR
could be twice the nominal level when the

dependence structure among tests was generated
under realistic assumptions, and if the proportion
of null genes was greater than 90%. Unfortunately,
p040.9 is likely to be the case for genetic studies in
which the proportion of truly linked or associated
markers is small. However, Sabatti et al. [2003]
showed analytically that PRD holds for linkage
tests and their simulation studies demonstrated
that FDR control is at the nominal level for
association mapping from case-control data. In
practice, when the PRD assumption is in doubt
and p̂040:9, one may use a crude adjustment by
using half of the nominal FDR level as suggested
by Li et al. [2005]. However, further research to
refine this correction is necessary. The recent work
of Efron [2005] suggests that empirical null
distributions [Efron, 2004] could be used as a
more correlation-resistant FDR control technique.
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