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Abstract: The accuracy of a diagnostic test is typically characterized using the receiver operating character-
istic (ROC) curve. Summarizing indexes such as the area under the ROC curve (AUC) are used to compare
different tests as well as to measure the difference between two populations. Often additional information
is available on some of the covariates which are known to influence the accuracy of such measures. The
authors propose nonparametric methods for covariate adjustment of the AUC. Models with normal errors
and possibly non-normal errors are discussed and analyzed separately. Nonparametric regression is used
for estimating mean and variance functions in both scenarios. In the model that relaxes the assumption of
normality, the authors propose a covariate-adjusted Mann–Whitney estimator for AUC estimation which
effectively uses available data to construct working samples at any covariate value of interest and is
computationally efficient for implementation. This provides a generalization of theMann–Whitney approach
for comparing two populations by taking covariate effects into account. The authors derive asymptotic
properties for the AUC estimators in both settings, including asymptotic normality, optimal strong uniform
convergence rates and mean squared error (MSE) consistency. The MSE of the AUC estimators was also
assessed in smaller samples by simulation. Data from an agricultural studywere used to illustrate themethods
of analysis. The Canadian Journal of Statistics 38: 27–46; 2010 © 2010 Statistical Society of Canada

Résumé: La précision d’un test diagnostique est habituellement établie en utilisant les courbes caracté-
ristiques de fonctionnement du récepteur (« ROC »). Des statistiques telles que l’aire sous la courbe ROC
(« AUC ») sont utilisées afin de comparer différents tests et pour mesurer la différence entre deux popu-
lations. Souvent de l’information supplémentaire est disponible sur quelques covariables dont l’influence
sur de telles statistiques est connue. Les auteurs suggèrent des méthodes non paramétriques afin d’ajuster
la statistique AUC pour prendre en compte les covariables. Des modèles avec des erreurs gaussiennes et
même non gaussiennes sont présentés et analysés séparément. Une régression non paramétrique est utilisée
afin d’estimer les fonctions moyenne et variance dans les deux scénarios. Pour le modèle sans l’hypothèse
de normalité, les auteurs proposent un estimateur de Mann-Whithney tenant compte des covariables pour
l’AUC qui utilise l’information disponible dans les données afin de construire des échantillons d’analyse
pour n’importe quelle valeur des covariables. Cet estimateur est implanté, car il est calculable de façon
efficace. Il généralise l’approche de Mann-Whitney pour comparer deux populations en considérant
l’effet des covariables. Les auteurs obtiennent les propriétés asymptotiques des estimateurs AUC pour
les deux scénarios incluant la normalité asymptotique, les vitesses optimales de convergence uniforme
forte et la convergence en erreur quadratique moyenne (« MSE »). Le MSE de l’estimateur de l’AUC
est aussi étudié pour les petits échantillons à l’aide de simulations. Des données provenant d’une étude
dans le domaine agricole sont utilisées afin d’illustrer les méthodes d’analyse. La revue canadienne de
statistique 38: 27–46; 2010 © 2010 Société statistique du Canada
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1. INTRODUCTION

The receiver operating characteristic (ROC) curve is a commonly used tool for summarizing the
accuracy of a test with binary results. The sensitivity, or true positive rate, of a binary test is the
probability that a truly diseased subject is diagnosed as diseased. The specificity, which is also
equal to one minus false positive rate, is defined as the probability that a healthy subject produces
a negative test. Suppose that the result of a test is a random variable Y; depending on whether
Y < c or Y ≥ c the test result is considered negative or positive, respectively. If the distribution
of Y is continuous, each value of the threshold c will correspond to different sensitivity and
specificity values. The ROC curve is obtained when plotting sensitivity against 1−specificity as
c is increasing over its range of possible values (or, alternatively, as 1−specificity increases from
zero to one). In general the ROC curve summarizes how well two populations can be separated by
a specified variable. Frequently a number of tests (a.k.a. markers or classifiers) are performed on
each individual subject. A global univariate summary of the corresponding ROC curve is used to
determine which classifier is more accurate. A number of such summaries are available but the
most commonly used one is the area under the ROC curve (AUC). The AUC can be interpreted
as the probability that a randomly chosen diseased subject will have a marker value greater than
that of a randomly chosen nondiseased subject and can be used as an alternative measure of
difference between two populations (e.g., Zhou, Obuchowski & McClish, 2002). Its range of
application extends from medical applications to reliability theory (Reiser & Guttman, 1986).

The presence of ROC curves has become ubiquitous in medical studies (Metz, 1986; Hsiao,
Bartko & Potter, 1989; Aoki et al., 1997; Otto et al., 1998; Stover, Gorga & Neely, 1996; Zhou,
Obuchowski & McClish, 2002), its usage being spurred by the highly cited paper of Hanley
& McNeil (1982) and the classic text of Swets & Pickett (1982). Parametric and nonparametric
methods for estimating individual ROC curves are available as well as methods that do not assume
independent observations (Begg, 1991;Delong,Delong&Clarke-Pearson, 1988;Molodianovitch,
Faraggi & Reiser, 2006; Pepe, 2003).

In a large number of situations, additional information is available in the form of covariates
which are known to influence the accuracy of the test. Only recently, statistical methods have been
devised to incorporate such information in the ROC-based analysis. Some of the earlier methods
have been produced by Thompson & Zucchini (1989), Obuchowski (1995), Tosteson & Begg
(1988), and Toledano & Gatsonis (1995). Pepe (1997) formulated a general regression framework
to model the dependence of the ROC curve directly on the covariates. Pepe (2000) and Dodd
& Pepe (2003) propose semiparametric approaches to model the ROC and AUC directly using
generalized linear models. Cai & Pepe (2002) extend the parametric ROC regression model by
allowing an arbitrary nonparametric baseline function. Cai (2004) finds a more efficient estimator
in the semiparametric setting. Brumback, Pepe & Alonzo (2006) used an alternative procedure
by applying a generalized regression framework directly to the AUC in order to adjust the Mann–
Whitney test for covariates. However, this approach loses the connection with the threshold value,
does not allow the prediction of the sensitivity and specificity at a given threshold conditional on
covariates nor does it model covariate effects on the individual marker values. Consequently we
prefer to directly model the covariate effects on the marker values and through this modelling
process obtain the analyses of interest.

The methods proposed in this paper fall within the first category of methods described in
Pepe (1998). We propose a nonparametric approach to adjust for covariates the computation
of AUC and other ROC-related quantities of interest. The main motivation for our method is
the robustness to model mis-specification which may beset a parametric adjustment. We thus
generalize in two ways the approaches of Faraggi (2003) and Schisterman, Faraggi & Reiser
(2004) who use normal regression models to adjust the index AUC for covariates. We describe
the regression model, distinguishing between the model with normal random error and the model
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that relaxes the normality assumption. In a first extension of previous work, we estimate the
mean and variance functions using nonparametric regression techniques, more specifically, local
polynomial regression instead of parametric linear models. Our main contribution leading to the
second extension is to construct a covariate-adjusted Mann–Whitney estimator (CAMWE) in the
model that relaxes the normality assumption, which relies on working samples created at any
possible covariate value Z = z of interest for the estimation of AUC. Such working samples
have, for any Z = z, the same size as the original sample and can be used to estimate a number of
covariate-adjusted characteristics of the ROC curve. In practice the computation is kept minimal
by utilizing the estimated mean and variance functions for all Z = z of interest. We recommend
bootstrapping in order to obtain confidence intervals for the covariate-adjusted AUC. Although
we focus on covariate-adjusted AUC estimation, the proposed methods can be readily extended to
other measures related to ROC curves, for example, the covariate-adjusted specificity, sensitivity
and Youden Index (Youden, 1950).

A theoretical investigation provides asymptotic results for models which assume normal ran-
dom errors andmodels for which we relax the normal error assumption. The asymptotic normality
and optimal strong uniform convergence rates for the covariate-adjusted AUC estimators for the
normal error model are established. For the model without the normality assumption we first
derive asymptotic normality of the “hypothetical” CAMWE and then characterize the asymptotic
behaviour of the mean squared error (MSE) of the CAWME. We performed simulations under a
number of scenarios to demonstrate effectiveness and robustness of the proposed estimators as
well as the validity of the bootstrap scheme for confidence band construction.

2. MODEL AND ESTIMATION

2.1. Regression Model
To motivate our proposal, we first note that parametric methods are used mainly for simple inter-
pretation but may mis-specify the correct model forms, while nonparametric models provide an
alternative solution and are more robust and data-adaptive. We attempt to achieve the robustness
from two perspectives. First, we do not assume any parametric forms for the mean and variance
functions of the test response variables, X for nondiseased individuals and Y for diseased individ-
uals. Although we refer to “diseased” and “nondiseased” groups, the above framework applies to
any two populations of interest. We utilize nonparametric regression models

X|Z = µ1(Z) +
√
v1(Z)ε1, (1)

Y |Z = µ2(Z) +
√
v2(Z)ε2, (2)

where Z denotes the covariate, the standardized errors ε1 and ε2 are independent of each other
with zero mean and unit variance, and the variance functions 0 < v1(z) < ∞ and 0 < v2(z) < ∞
for all z ∈ �. Note that the errors here can depend heteroscedastically on the covariate Z through
v1 and v2. Second, we do not assume specific distributions for the noises in order to guard against
mis-specification of error distributions. Denote the conditional cumulative distribution functions
(c.d.f.) of X and Y given Z by F (·|Z) and G(·|Z), and c.d.f.s of ε1 and ε2 by F∗(·) and G∗(·).
Here we assume F∗ and G∗ do not depend on Z, that is, the dependence of X and Y on Z are
expressed only through µ1, µ2, v1, and v2, which is equivalent to a location-scale model. It is
worth mentioning that, if the response variable is appropriately chosen at Z = z, then marker
values of the diseased sample should be greater than that of the nondiseased sample on average.
This is equivalent to P(Y > X|Z = z) > 0.5, an assumption implicitly made for the remaining of
the paper. If the baseline distributionsF∗ andG∗ are symmetric about 0, it implies the assumption
µ2(z) > µ1(z). In practice, we can simply constrain all the AUC estimators to be greater than
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0.5. This would not affect any subsequent development due to the consistency of the unrestricted
estimators as presented in Section 3. For notational convenience, we use the unrestricted forms
throughout the paper.

This extends the first type of models discussed by Pepe (1998), where linear forms were
assumed for µ1 and µ2 with variances not depending on the covariate Z, that is, µ2(z) = α0 +
α1 + (α2 + α3)z, µ1(z) = α0 + α2z, v1(z) = v1 and v2(z) = v2. It is also noticed that we do
not require the same baseline distributions of the standardized error ε1 and ε2 in contrast to Pepe
(1998).Moreover, when the noise is not normally distributed, we shall propose a new estimator for
the area under the ROC curve that extends the Mann–Whitney estimator for covariate-adjustment
by using standardized residuals via the so-called working samples.

2.2. Estimation for Model With Normal Error Assumption
Let A(z) be the area under the ROC curve with the covariate adjustment Z = z. From models (1)
and (2), when the errors ε1 and ε2 are normally distributed, that is, F∗ = G∗ = �, where �(·) is
the c.d.f. of the standard normal, it is straightforward to derive the following explicit expression:

AN(z) = P(Y > X|Z = z) = �

{
µ2(z) − µ1(z)√
v1(z) + v2(z)

}
, (3)

where the subscript N stands for the normal assumption. One can also obtain closed forms of the
sensitivity qN(z) and specificity pN(z) for Z = z,

qN(z) = �

{
µ2(z) − c√
v2(z)

}
, pN(z) = �

{
c − µ1(z)√
v1(z)

}
, (4)

for a given threshold c. The ROC curve for the covariate Z = z is the plot of q(z) versus 1 − p(z)
for all possible values of c, and this can be explicitly written as

qN(z) = �

[
µ2(z) − µ1(z) + √

v1(z)�−1{1 − pN(z)}√
v2(z)

]
. (5)

The unknown functions f, g, v1, v2, are estimated by using nonparametric regression methods as
addressed in Section 3.1, providing a “nonparametric adjustment” as discussed in Section 1.

2.3. Estimation for Model Without Normal Error Assumption
The assumption of normal error above simplifies the calculations of the AUC via (3) but is not
always supported by the data. In addition, the normality assumption hampers the full generality
one expects from a nonparametric model. We propose here a fully nonparametric yet simple
estimator of the AUCwith covariate adjustment,A(z) = P(Y > X|Z = z), for the model with the
normal error assumption.

The proposed estimator is motivated by the classical Mann–Whitney statistic, which is for-
mulated for two samples {x1, . . . , xm} and {y1, . . . , yn} as

Mm,n = 1
mn

m∑
i=1

n∑
j=1

1[0,∞)(yj − xi), (6)

where 1[0,∞)(x) = 1 if x ≥ 0 and 1[0,∞)(x) = 0 otherwise. The data obtained from nondiseased
and diseased samples consist of {(zi,x, xi) : i = 1, . . . , m} and {(zj,y, yj) : j = 1, . . . , n}, where
zi,x is the observed covariate value in the nondiseased sample and zj,y in the diseased sample.
It should be noticed that the markers X and Y are evaluated at possibly different values of the
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covariate Z, and we are often interested in estimating A(z) even for z-values which were not
measured in either group or both. To estimate A(z) at Z = z, one possibility is to include the
marker values xi and yj that fall into neighbourhoods of zwith appropriate weight functions. This
consideration naturally leads to a bivariate kernel estimator that is fully nonparametric,

ÂK(z) =
∑m
i=1
∑n
j=1 1[0,∞)(yj − xi)Khx (zi,x − z)Khy (zj,y − z)∑m
i=1
∑n
j=1Khx (zi,x − z)Khy (zj,y − z)

, (7)

where hx and hy are bandwidths,Kh(·) = (1/h)K(·/h) whenK(·) is a symmetric kernel density.
However, ÂK, does not efficiently use the available data due to the restriction on the localwindows,
nor do the regression models (1) and (2) play any role here. Note that ÂK is obtained by smoothing
the binary variables 1[0,∞)(yj − xi) corresponding to covariate observations (zi,x, zj,y) ∈ [z−
hx, z+ hx] × [z− hy, z+ hy] that are not necessarily located on the diagonal (in fact, {zi,x} and
{zj,y}may have no overlap). It is unclear how to choose the bandwidthshx andhy which are critical
to the kernel regression estimation, as the standard cross-validation procedure does not apply due
to the absence of the observed (zi,x, zj,y, 1[0,∞)(yj − xi)) on the diagonal of the bivariate covariate
surface. More discussion and comparisons concerning ÂK(z) will be presented in simulations in
Section 4.

Based on the above considerations, we propose a different nonparametric estimator of A(z)
which utilizes the entire collection of data available and the regression models (1) and (2). First,
suppose that we can observe all the standardized residuals, i = 1, . . . , m, j = 1, . . . , n,

εi,x = xi − µ1(zi,x)√
v1(zi,x)

, εj,y = yj − µ2(zj,y)√
v2(zj,y)

. (8)

Recall that the distributions of ε1 and ε2 do not depend on Z, implying that ε1,i are independently
and identically distributed (i.i.d.) with the c.d.f. F∗ for i = 1, . . . , m, and ε2,j are i.i.d. with the
c.d.f. G∗ for j = 1, . . . , n. In Pepe (1998) these standardized residuals can be used to obtain the
empirical distributions of ε1 and ε2. In a similar sprit, we propose a different way to utilize these
residuals to construct working samples {xi,z, . . . , xm,z} and {y1,z, . . . , yn,z} as if they were all
observed at Z = z,

xi,z = µ1(z) +
√
v1(z)εi,x, yj,z = µ2(z) +

√
v2(z)εj,y. (9)

Then it is intuitive to use the proposed Covariate-Adjusted Mann–Whitney Estimator (CAMWE)
for A(z),

AM(z) = 1
mn

m∑
i=1

n∑
j=1

1[0,∞)(yj,z − xi,z). (10)

This is a natural extension of the Mann–Whitney estimator since in the case of no covariate effect
µ1, µ2, v1, v2 are constant in z and (10) becomes the traditional Mann–Whitney statistic. For
practical implementation, after obtaining nonparametric estimates of µ1, µ2, v1, and v2, we do
not have to choose other tuning parameters for each covariate value Z = z, while (7) requires
retuning. Analogously we can calculate the sensitivity and specificity from the working samples
for Z = z,

qM(z) = 1
n

n∑
j=1

1[0,∞)(yj,z ≥ c), pM(z) = 1
m

m∑
i=1

1[0,∞)(xi,z ≤ c), (11)
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for a given threshold c. The ROC curves for Z = z can be obtained by plotting qM(z) versus
1 − pM(z) for all possible values of c.

Remark 1. Note that the central idea is to construct the working sample {xi,z, . . . , xm,z} and
{y1,z, . . . , yn,z} for eachZ = z. The entire conditional ROC curve, given the covariate valueZ =
z, can be obtained from (11). One can estimate any index of interest at Z = z using this working
sample. For instance, the Youden Index (YI) (Youden, 1950) can be calculated by YIM(z) =
pM(z) + qM(z) − 1, where pM(z) and qM(z) are defined by (11), and its optimal threshold given
Z = z can be found via a numerical search.

Remark 2. In principle, the proposed approach can be extended to the case of multiple covariates
using different strategies. A natural consideration is to use multivariate nonparametric smoothing
techniques that require extensive computation. An alternative is to use additive frameworks for
mean and variance structures, respectively, then construct the working sample in a similar spirit
for each set of covariate values of interest.

2.4. Implementation Via Nonparametric Regression
Weexploit the local polynomial regressionmodels for estimating the functionsµ1 andµ2. LetK(·)
be a compactly supported symmetric kernel density function with a finite variance, h1 = h1(m)
a sequence of bandwidths used to estimate µ1, and h2 = h2(n) a sequence of bandwidths for
µ2. Let p be the order of local polynomial fit, for example, p = 0 and p = 1 correspond to local
constant and local linear fits, respectively. An odd order fit is often suggested (Fan & Gijbels,
1996) for both theoretical and practical considerations. In particular, for estimating the regression
function itself, a common choice is the local linear fit with p = 1. Denote the resulting pth order
local polynomial estimators of µ1(z) and µ2(z) by µ̂1(z) and µ̂2(z). Next, the variance functions
v1(z) and v2(z) for heteroscedastic errors are estimated by fitting local polynomial regression to
the squared residuals, vi,x and vj,y, i = 1, . . . , m, j = 1, . . . , n,

vi,x = {xi − µ̂1(zi,x)}2, vj,y = {yj − µ̂2(zj,y)}2, (12)

with bandwidths b1 = b1(m) and b2 = b2(n). The detailed formulas of the aforementioned local
polynomial estimators are given in the Appendix. In the case of homoscedastic errors, v1(z) ≡ v1
and v2(z) ≡ v2, it is easy to obtain root-n consistent estimators (Hall &Marron, 1990; Hall, Kay&
Titterington, 1990). The theoretical properties in Section 4 are still valid with slight modifications.
In practice, the bandwidthsh1,h2, b1, and b2 are chosen by the standard technique of leave-one-out
cross-validation for estimating the mean and variance functions, while other existing techniques
can certainly be applied. Such bandwidths usually fulfill the assumptions needed for theoretical
developments in Section 3 for sufficiently large sample sizes. Substituting the local polynomial
estimators µ̂1(z), µ̂2(z), v̂1(z), and v̂2(z) for these unknown quantities in formulae (3)–(5), (10),
and (11) provides the point estimators ÂN(z), p̂N(z), q̂N(z), ÂM(z) p̂M(z), and q̂M(z) for covariate
Z = z.

To evaluate confidence limits and variances for AUC under normality assumption, the existing
formulation (Guttman et al., 1988; Faraggi, 2000, among others) is no longer valid due to non-
parametric regression. In principle we can derive the approximate variance for AUC under the
normality assumption, based on the asymptotic normality of the local polynomial estimators (Fan
& Gijbels, 1996) using the Cramér–Wold device. However, due to the complicated asymptotic
expressions with unknown functionals and their derivatives, the evaluation of such asymptotic
quantities will require extensive pilot smoothing and further approximations. This might deterio-
rate the accuracy and not be worth further pursuing. Thus we choose to obtain confidence limits
and variance estimates for AUC via “bootstrapping the original data” as proposed by Efron &
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Tibshirani (1993). We do not repeat the procedure here for conciseness. While this approach can
be justified in normal error model due to the limiting distributions in Theorem 1, it may not be the
case under the model without normal error assumption for which the asymptotic normality of the
CAMWE ÂM(z) is unknown at this moment. Nevertheless, the simulation performed in Section
4.1 offers empirical support to this bootstrap procedure for the non-normal error models.

Remark. Jointly choosing four bandwidths for aiming at the AUC estimator is prohibitively
expensive, even impossible with available computing resources. Even if the computation load
were not an issue, we would have no suitable criterion to perform the joint optimization for two
reasons. First, if one bases the criterion on asymptotic bias and variance, these quantities involve
unknown functionals and their derivatives and are too complicated for practical use. It should
also be noticed that such asymptotic expressions are established only for the normal error model.
Second, if one attempts cross-validation directly for A(z), there are no observed values of AUC
at Z = z available, which is a similar issue as the one discussed for ÂK in Section 2.3.

3. ASYMPTOTIC PROPERTIES OF AUC ESTIMATORS

In this section we present the asymptotic theory developed for the nonparametric
estimators of the AUC with covariate adjustment for Z = z under both normal and non-
normal error assumptions. We defer the regularity conditions and technical proofs to the
Appendix, and two auxiliary lemmas are provided in the Supplement file available at
http://fisher.utstat.toronto.edu/fyao/publication.html due to space limitations. One can easily
extend these arguments to obtain the corresponding asymptotic theory for the sensitivity q(z)
and specificity p(z) with a given threshold value c. These are not presented here for conciseness.

3.1. Asymptotic Properties for the Model With Normal Error Assumption
We begin with the asymptotic normality of the estimated AUC under the normal error assumption,
where the targetA(z) is exactlyAN(z), that is,A(z) ≡ AN(z). Let θ(z) be the density function of the
covariate Z that is treated as a random variable. Put η1(z) = E(ε31|Z = z), η2(z) = E(ε32|Z = z),
κ1(z) = Var(ε21|Z = z), and κ2(z) = Var(ε22|Z = z). Recall that h1 = h1(m), b1 = b1(m), h2 =
h2(n), and b2 = b2(n) are the sequences of bandwidths for estimating µ1(z), v1(z), µ2(z), and
v2(z). One can see that, if the bandwidths h1 and b1 are chosen optimally for estimatingµ1(z) and
v1(z), then h1 and b1 will be of the same order in terms of the sample size m. Here we consider
the odd order p of local polynomial estimators forµ1, v1,µ2, and v2 as argued in Section 2.4. The
same order p is used mainly for notational convenience, while we certainly can choose different
orders in practice.With slight modifications, the results can be easily adapted to possibly different
orders as well as the case of even p.

For the symmetric kernel densityK(·), we assume that the j-th momentmj(K) = ∫ ujK(u) du
exists for all integers j ≥ 0, moreover, R(K) = ∫ K2(u) < ∞, µ2(K) > 0. For convenience, we
introduce the notion of the order of a kernel function. We say K̃ is an �th order kernel function,
provided that m0(K̃) = 1, mj(K̃) = 0 for j = 1, . . . , �− 1 and m�(K̃) 	= 0. It is obvious that
K(·) is a 2nd order kernel. Let the (p+ 1) × (p+ 1) matrix Sp = {mj+l(K)}0≤j,l≤p, ek be the
(p+ 1) × 1 vector with the kth element equal to 1 and 0 elsewhere, and

K∗(u) = eT1S
−1
p (1, u, . . . , up)TK(u), (13)

which is often referred to as the equivalent kernel. One can verify that K∗(·) is a (p+ 1)th order
kernel when p is odd. Also denote R(K∗, ρ) = ∫ K∗(u)K∗(u/ρ) du for any 0 < ρ < ∞.

Theorem 1. Under the assumptions (A1)–(A5) for a given z,
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• if n/m → ∞,
√
mh1{ÂN(z) − AN(z)} D−→ N{B1(z), V1(z)}, where φ(u) = (2π)−1/2 e−u2/2,

δ(z) = {µ2(z) − µ1(z)}/
√
v1(z) + v2(z),

B1(z) = − φ{δ(z)}mp+1(K∗)d1
(p+ 1)!

√
v1(z) + v2(z)

[
µ
(p+1)
1 (z) + {µ2(z) − µ1(z)}v(p+1)

1 (z)ρp+1
1

2{v1(z) + v2(z)}

]
,

V1(z) = φ2{δ(z)}
θ(z){v1(z) + v2(z)}

[
R(K∗)v1(z) + {µ2(z) − µ1(z)}R(K∗, ρ1)η1(z)

{v1(z) + v2(z)}ρ1 (14)

+ {µ2(z) − µ1(z)}2R(K∗)κ1(z)
4{v1(z) + v2(z)}2ρ1

]
,

• if n/m → 0,
√
nh2{ÂN(z) − AN(z)} D−→ N{B2(z), V2(z)}, where

B2(z) = φ{δ(z)}mp+1(K∗)d2
(p+ 1)!

√
v1(z) + v2(z)

[
µ
(p+1)
2 (z) − {µ2(z) − µ1(z)}v(p+1)

2 (z)ρp+1
2

2{v1(z) + v2(z)}

]
,

V2(z) = φ2{δ(z)}
θ(z){v1(z) + v2(z)}

[
R(K∗)v2(z) − {µ2(z) − µ1(z)}R(K∗, ρ2)η2(z)

{v1(z) + v2(z)}ρ2 (15)

+ {µ2(z) − µ1(z)}2R(K∗)κ2(z)
4{v1(z) + v2(z)}2ρ2

]
,

• if n/m → λ for some 0 < λ < ∞,
√
mh1{ÂN(z) − AN(z)} D−→ N{B3(z), V3(z)}, where

B3(z) = B1(z) + λ−(p+1)/(2p+3)B2(z), V3(z) = V1(z) + λ−(2p+2)/(2p+3)V2(z) (16)

Besides the pointwise limiting distributions, we also establish the optimal rates for strong
uniform convergence of ÂN in Theorem 2, where a.s. is the abbreviation of “almost surely”.

Theorem 2. Under the assumptions (A1†)–(A5†) and (A6)–(A8), let τm = h
p+1
1 +√

log(1/h1)/(mh1) and ωn = h
p+1
2 + √

log(1/h2)/(nh2), then

sup
z∈Z

|ÂN(z) − AN(z)| = O(τm + ωn) a.s. (17)

3.2. Asymptotic Properties for the Model Without Normal Error Assumption
Now we turn to the asymptotic properties of the CAMWE ÂM(z) of A(z) for the model that
relaxes the normal error assumption. We first state the asymptotic normality of the “hypothetical”
estimatorAM(z) (10) that contains true values of the unknownmean and variance functions, while
our target isA(z) = P(Y > X|Z = z). Recall that F∗ andG∗ are the c.d.f.s of standardized errors
ε1 and ε2, and do not depend on the covariate Z. Define

h1,0(ε1; z) = G∗
{√

v1(z)
v2(z)

ε1 + µ1(z) − µ2(z)√
v2(z)

}
,

h0,1(ε2; z) = F∗
{√

v2(z)
v1(z)

ε2 + µ2(z) − µ1(z)√
v1(z)

}
.
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Set ξ21,0(z) = var{h1,0(ε1; z)} and ξ20,1(z) = var(h0,1{ε2; z)}.
Theorem 3. For the regression models (1) and (2) and a given z,

E{AM(z)} = A(z), var{AM(z)} = O

(
1

m+ n

)
. (18)

If n/m → λ for some 0 < λ < ∞, ξ21,0(z) > 0 and ξ20,1(z) > 0, then

√
m+ n{AM(z) − A(z)} D−→ N

{
0,
ξ21,0(z)

λ∗ + ξ20,1(z)

1 − λ∗

}
, (19)

where λ∗ = 1/(1 + λ).

In the next theoremweestablish theMSEconsistency of theCAMWE ÂM(z) for the “hypothet-
ical” estimatorAM(z) for a given covariate Z = z, based on uniform consistency of the estimated
mean and variance functions. It is noticed in the proof that we actually do not need the optimal
strong uniform convergence rates stated in Lemma 2, as these rates cannot be passed to Â(z),
while uniform consistency in probability is sufficient. Thus the assumptions (A3†) and (A5†) can
be relaxed as (A3∗) and (A5∗), see Appendix for details.

Theorem 4. Under (A9) and the assumptions for Theorem 2 with (A3†) and (A5†) replaced by
(A3∗) and (A5∗), for a given z,

E[{ÂM(z) − AM(z)}2] −→ 0. (20)

We conclude this section with the following corollary that is a direct consequence of Theorems
3 and 4. Note that the MSE discrepancy between estimated and true AUC at Z = z is dominated
by the nonparametric rate in (20) that is usually slower the parametric rate (m+ n)−1/2, although
its order of magnitude is not obtainable, at least to our knowledge.

Corollary 1. Under (A9) and the assumptions for Theorem 2 with (A3†) and (A5†) replaced
by (A3∗) and (A5∗), for a given z,

E[{ÂM(z) − A(z)}2] −→ 0. (21)

4. SIMULATION AND DATA EXAMPLE

4.1. Simulations
The purpose of the simulations is to assess the performance of the methods for estimating AUC
in nonparametric regression settings. We have not compared our method with parametric models
since the two approaches address different situations. If a parametric model is correctly specified,
its performancewill be superior to a nonparametric procedure; however, if there is no known para-
metric model suitable for the data considered, onewill have no choice but to use the nonparametric
tools available.

We consider three situations for illustration. In the first situation the underlying models are,
for nondiseased and diseased individuals, respectively,

xi = 6 + 1.5zi,x + 1.5 sin(zi,x) +√v1(zi,x)εi,x
yj = 6 + 1.5zj,y + 1.5 sin(zj,y) +√zj,y − 0.5 +√v1(zi,x)εj,y, (22)
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where the errors εi,x and εj,y are standard normal, the conditional variance functions are v1(z) =
0.3 +�(2z− 6) and v2(z) = 1.5 +�(2z− 6), i = 1, . . . , m, j = 1, . . . , n. The covariates zi,x
and zj,y are independently generated from U[1, 5], and moderate sample sizes n = m = 40 are
used. The identical setting is used in the second situation, except that the errors εi,x and εj,y are
generated from a Student-t distribution with 3 degrees of freedom and rescaled to have zero mean
and unit variance.

The third situation, inwhich the log-transformed responses have normal errors ε∗i,x and ε∗j,y, that
is, the responses are generated from log-normal models, is designed to demonstrate the robustness
of the proposed CAMWE ÂM(z). Since a log-transform often stabilizes the variability, we assume
a constant variance σ2 on log-scale for both groups. Let µ∗

1(·) and µ∗
2(·) be the mean functions

on log-scale, while µ1(·) and µ2(·) correspond to the original scale. From the properties of the
log-normal distribution, one has

log{µ1(z)} = µ∗
1(z) + σ2

2
, v1(z) = (eσ

2 − 1)µ2
1(z)

log{µ2(z)} = µ∗
2(z) + σ2

2
, v2(z) = (eσ

2 − 1)µ2
2(z).

We choose µ1(z) = 1 − 0.5z− 0.25 sin(πz) and µ2(z) = 1 − 0.5z− 0.25 sin(πz) +
1.5

√
z+ 0.5, z ∈ [0, 1], and σ2 = 1/3. Then the models are completely determined and

can be written as

xi = exp{µ∗
1(zi,x) + σε∗i,x}, yj = exp{µ∗

2(zj,y) + σε∗j,y}, (23)

where the covariates zi,x and zj,y are independently generated from U[0, 1], ε∗i,x and ε∗j,y are
standard normal errors, i = 1, . . . , m, j = 1, . . . , n.

With the generated data we compared three estimators, ÂN(z) with normal error assumption,
CAMWE ÂM(z) with non-normal error assumption as well as the kernel estimator ÂK(z). For
bandwidth choices, recall that joint selection aiming for ÂN(z) and ÂM(z) is not feasible and
that cross-validation fails for ÂK(z). To make the comparisons possible, for ÂN(z) and ÂM(z)
we minimized the true integrated squared errors, respectively, say

∫ {µ̂1(z;h1) − µ1(z)}2 dz to
select h1, and similarly for h2, b1, and b2, while

∫ {ÂK(z;hx, hy) − A(z)}2 dz was minimized for
choosing hx and hy in ÂK(z). One can see that, if one targets at A(z), the bandwidths chosen for
ÂN(z) and ÂM(z) may not be as “optimal” as those for ÂK(z). However, it is demonstrated below
that even in such a disadvantageous situation, the proposed estimators, especially ÂM(z), are still
preferable. We used the sample sizes of n = m = 40 and n = m = 100, while all the estimates
were improved with increased sample sizes as expected. All three AUC estimates are obtained by
applying the estimation procedures to the simulated data {(zi,x, xi)}i=1,...,m and {(zj,y, yj)}j=1,...,n
(on original scale throughout) in the aforementioned three situations. Monte Carlo averages (cal-
culated from 500 runs in each case) of Mean Squared Errors at different values of z are presented
in Figure 1. We can see that, for the normal error model the CAMWE ÂM(z) and normal estimator
ÂN(z) are comparable and both outperform the kernel estimator ÂK(z). Although ÂK(z) improves
upon ÂN(z) under the heavy-tailed Student-t error model, the CAMWE ÂM(z) is still the most
effective. For the log-normal model, when we apply these three estimation procedures to the
original responses, the CAMWE and kernel estimators yield comparable results (CAMWE seems
slightly better), and both significantly improved upon the normal estimator (Figures 2 and 3).

Now we examine the empirical performance of the pointwise confidence bands and variance
estimates obtained by “bootstrapping the data” in the possibly non-normal error models, that
is when the CAMWE ÂM(z) is used for estimation, we carried out an additional study. We
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Figure 1: Simulation results for the normal model, where the sample sizes are m = n = 40 (left) and
m = n = 100 (right), respectively. Shown are Monte Carlo averages of Mean Squared Errors (MSE) of
three estimators, ÂM (CAMWE, solid), ÂN (Normal, dash-dotted), and ÂK (Kernel, dashed) at different

values of z.

Figure 2: Simulation results with the same setting as Figure 1, except that the model has a Student-t error
with 3 degrees of freedom.

Figure 3: Simulation results with the same setting as Figure 1, except that the model has a lognormal error.

used the same settings for the three models with normal, Student with 3 degrees of freedom
and log-normal errors, respectively. The benchmark used for comparison is the 95% pointwise
confidence bands and variance estimates averaged from 500 Monte Carlo runs. In each Monte
Carlo run, ÂM(z) was obtained andwe bootstraped the data 1,000 times to calculate 95% bootstrap
bands (defined between the 2.5th and the 97.5th percentiles) and bootstrap sample variance. All the
bandwidths involved in the estimation are selected, respectively, by leave-one-out cross-validation
in smoothing steps. In the left panels of Figures 4–6 we reported, for all three data-generating
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Figure 4: Simulation results of 95% pointwise bootstrap confidence bands (left) and variance comparisons
(right) for the model with normal error with the same settings as in Figure 1 and sample sizes n = m = 40.
Left: True AUC and 95% pointwise Monte Carlo (MC) bands (solid) obtained from 500 runs, and the
MC averages of 95% pointwise bootstrap bands (dashed). Right: MC variance estimates (solid) versus MC

averages of bootstrap variance estimates (dashed), as described in Section 4.1.

Figure 5: Simulation results with the same setting as Figure 4, except that the model has a Student-t error
with 3 degrees of freedom.

Figure 6: Simulation results with the same setting as Figure 4, except that the model has a lognormal error.

models with moderate sample sizes n = m = 40, the comparisons between the Monte Carlo
averages of the bootstrap bands and theMonteCarlo bands. In the right panels, similar comparisons
were shown for the averaged bootstrap variance estimates of ÂM(z) against the Monte Carlo
variances. From Figures 4–6, for the CAMWE ÂM(z), the averages of confidence bands obtained
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Figure 7: Spanish Onion Data with response on the original scale (left) and the logarithmic scale (right),
with the smooth estimates of the mean functions for two populations, Pumong Landing (solid) and Virginia

(dashed).

by “bootstrapping the data” approximate well the 95% pointwise Monte Carlo bands, and the
same can be said about the averages of bootstrap variance estimates. This provides some empirical
evidence for using the bootstrap confidence bands and variance estimates for the CAMWE ÂM(z)
in models without normality assumption. For the normal error model, we have done similar
comparisons and the results are almost identical to those obtained for ÂM(z) (thus not reported
for brevity).

4.2. Example: Spanish Onion Growth—Yield and Density
We consider the white onions data originally reported by Ratkowski (1983) on the density-yield
relationship of varieties of white Spanish Onion grown in various regions of Australia. These data
have been the subject of a nonparametric analysis of covariance in Young & Bowman (1995).
One can see from Figure 7 that the relationship between the density and yield is nonlinear for the
two regions considered here: Virginia and Purnong Landing. A question of interest is whether
the two regions of origin for the onions can be separated simply by looking at the yield. Figure
7 shows that the difference between yields depends on the density which will be the covariate
under consideration in our study.

If we apply directly the method of Faraggi (2003) to the data on the original scale we observe
a large discrepancy between the parametric and nonparametric analyses, as illustrated by the left
panel in Figure 8. We also notice that bootstrapping the data produces wider 95% confidence
bands for large values of the density due to the sparseness and high variability. But even such
confidence bands do not cover the parametric estimator of the AUC. We should note that due to
the sparseness of observations with densities larger than 150 we focus on the covariate range (0,
150). On the logarithmic scale, the relationship between yield and density is more linear as can
be seen from the right panel in Figure 7. In addition, the transformation seems to stabilize the
variance so it is not unexpected that he difference between the nonparametric approach and
the parametric one diminishes. We can also notice that, on both original and logarithmic
scales, the estimates obtained under the normal assumption are more conservative indicat-
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Figure 8: Left panel: Comparison of estimated functional relationship between AUC and density obtained
using the nonparametric approach with and without normal error assumption, denoted by Normal and
CAMWE, respectively, with the parametric estimate following Faraggi (2003). Also shown are the 95%
pointwise confidence bands obtained from nonparametric Bootstrap method. Right panel: Same comparison

as in the top panel with response on the logarithmic scale.

ing a smaller AUC for small densities. This indicates that the normal assumptions may not
be valid for this dataset and that the nonparametric approach is more suitable due to its
robustness.

5. CONCLUSIONS

We introduce nonparametric adjustment for covariate information in the context of ROC analysis,
more specifically for the AUC index. The essential idea in our proposal is that the conditional
ROC curve and all the indexes associated with it (e.g., Youden Index (YI) and its optimal cutoff
value) can be computed using the statistical model and, subsequently, the reconstructed working
sample. The theoretical properties of the index estimators deserve further investigation. The
approach bears some similarity to the work on nonparametric adjustment for covariates when
estimating a treatment effect as in Young & Bowman (1995) and Cantoni & de Luna (2006) and
advances in that field are likely to yield newer results for the ROC covariate adjustment. In contrast
to their work we focus on a generalized Mann–Whitney approach. Our simulations demonstrate
effectiveness and robustness of the proposedmethod.While the discussion is limited to the case of
only one covariate, the proposed approach can be extended to multiple covariates in various ways
(e.g.; additive models). It is expected that the computational load will significantly increase with
each additional covariate added to themodel. In principle onemay consider reasonable parametric
approximations suggested by nonparametric approaches that lead to simpler interpretations. For
instance, one possibility is to use parametricmodels for themean and variance functions following
the nonparametrically estimated forms. Similar strategy applies to approximating the empirical
c.d.f. of the noise by parametric functions.
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APPENDIX

Recall that {(zi,x, xi)}1≤i≤m and {(zj,y, yj)}1≤j≤n are nondiseased and diseased samples. The local
polynomial regression estimator of µ1(z) is obtained by minimizing

m∑
i=1

{
xi −

p∑
k=0

βk(zi,x − z)k
}2

Kh1 (zi,x − z), (24)

where h1 = h1(m) is the bandwidth controlling the amount of smoothing, and Kh1 (·) =
K(·/h1)/h1. It is more convenient to work with matrix notation. Denote the design matrix of
(24) by Zx,

Zx =


1 (z1,x − z) · · · (z1,x − z)p

...
...

...
1 (zm,x − z) · · · (zm,x − z)p

 ,

andputWx,h1 = diag{Kh1 (zi,x − z) : i = 1, . . . , m} andx = (x1, . . . , xm)T. The local polynomial
estimator is then given by

µ̂1(z) = eT1 (Z
T
xWx,h1Zx)

−1ZxWx,h1x. (25)

Analogously for the diseased sample (zj,y, yj), j = 1, . . . , n, the design matrix Zy and weight
matrixWy,h2 are similarly defined, letting y = (y1, . . . , y)T, then the local polynomial estimator
for µ2 is µ̂2(z) = eT1 (Z

T
yWy,h2Zy)

−1ZyWy,h2y.
We next estimate the variance functions v1(z) and v2(z) for heteroscedastic errors according

to models (1) and (2). The nonparametric estimators v̂1(z) and v̂2(z) are obtained by fitting local
polynomial regression to the squared residuals, that is, the variance observations vi,x and vj,y as in
(12). Let b1 = b1(m) and b2 = b2(n) be the sequences of bandwidths for v̂1(z) and v̂2(z). Denote
vx = (v1,x, . . . , vm,x)T and vy = (v1,y, . . . , vn,y)T, we have

v̂1(z) = eT1 (Z
T
xWx,b1Zx)

−1ZxWx,b1vx, v̂2(z) = eT1 (Z
T
yWy,b2Zy)

−1ZyWy,b2vy,

where Zx and Zy are defined as the above, Wx,b1 = diag{Kb1 (zi,x − z) : i = 1, . . . , m} and
Wy,b2 = diag{Kb2 (zj,y − z) : j = 1, . . . , n}.

We list below the regularity conditions that are standard in nonparametric smoothing. Recall
the notations defined in Section 3.1. Denote by N(z) a neighbourhood of z. Assume that, for a
given value z of Z,

(A1) θ(z) > 0 and θ(·) is continuous in N(z).
(A2) v1(z) > 0, µ(p+1)

1 (·), v(p+1)
1 (·), η1(·) and κ1(·) are continuous in N(z).

(A3) h1 → 0,mh1 → ∞,mh2p+3
1 → d21 for some d1 > 0, b1/h1 → ρ1 for some 0 < ρ1 < ∞,

as m → ∞.
(A4) v2(z) > 0, µ(p+1)

2 (·), v(p+1)
2 (·), η2(·) and κ2(·) are continuous in N(z);

(A5) h2 → 0, nh2 → ∞, nh2p+3
2 → d22 for some d2 > 0, and b2/h2 → ρ2 for some 0 < ρ2 <

∞.
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Denote by Z the set of possible values of Z (usually an interval on the real line). Additional
assumptions below are needed for the uniform convergence results,

(A6) K∗ is uniform continuous, absolutely integrable with respect to Lebesgue measure on �
and of bounded variation, K∗(u) → 0 as |u| → ∞,

∫ {|u log(|u|)|}1/2| dK∗(u)| < ∞.
(A7) E(|X|s) < ∞, supz∈Z

∫ |x|sp(Z,X)(z, x) dx < ∞ for some s ≥ 2, where p(Z,X) is the joint
density of (Z, X).

(A8) E(|Y |s) < ∞, supz∈Z
∫ |y|sp(Z,Y )(z, y) dy < ∞ for some s ≥ 2, where p(Z,Y ) is the joint

density of (Z, Y).

For the proof of Theorem 2 we need to modify (A1)–(A5) as follows. For convenience we impose
conditions on the equivalent kernel K∗ (13) instead of the original kernel K.

(A1†) θ(·) > 0, and θ(p+1)(·) is bounded and continuous on Z .
(A2†) On the domain Z , v1(·) > δ1 for some δ1 > 0 and is bounded, µ1(·) is bounded, µ(p+1)

1 (·),
v
(p+1)
1 (·), η1(·), and κ1(·) are bounded and continuous.

(A3†)
∑
m h

�1
1 < ∞ for some �1 > 0, m2ρ1−1h1 → ∞ for some ρ1 < 1 − s−1, where s > 2

satisfies (A7.1).
(A4†) On the domainZ , v2(·) > δ2 for some δ2 > 0 and is bounded, µ2(·) is bounded, µ(p+1)

2 (·),
v
(p+1)
2 (·), η2(·), and κ2(·) are bounded and continuous.

(A5†)
∑
n h

�2
2 < ∞ for some �2 > 0, n2ρ2−1h2 → ∞ for some ρ2 < 1 − s−1, where s > 2

satisfies (A7.2).

For establishing Theorem 4, as mentioned in Section 3.1, the regularity conditions (A3†) and
(A5†) can be relaxed as follows, with an additional assumption (A9).

(A3∗) h1 → 0, mρ1h1 → ∞ for some ρ1 < 1 − s−1, where s satisfies (A7.1).
(A5∗) h2 → 0, nρ2h2 → ∞ for some ρ2 < 1 − s−1, where s satisfies (A7.2).
(A9) F∗(·) and G∗(·) are continuous on their domains.

Due to limited space we provide two lemmas with proofs in Supplementary file available
at http://fisher.utstat.toronto.edu/fyao/publication.html, where Lemma 1 states the asymptotic
normality of

√
mh1{µ̂1(z) − µ1(z), v̂1(z) − v1(z)} and

√
mh1{µ̂1(z) − µ1(z), v̂1 − v1(z)} and√

mh2{µ̂2(z) − µ2(z), v̂2(z) − v2(z)} and Lemma 2 states the uniform consistency of µ̂1, v̂1,
µ̂2 and v̂2 (Mack and Silverman, 1982; Horng, 2006). Then Theorem 1 and 2 follows immediate
by applying the Cramér–Wold device and Slustsky’s theorem to ÂN(z), respectively, where the
proofs are straightforward and thus not shown.

Proof of Theorem 3. For a given Z = z, one can see that “hypothetical” estimator AM(z)
is in fact a two-sample U-statistic. The argument used in the theory of U-statistics can
be applied here. The unbiasedness of AM(z) is obvious. For the asymptotic variance at a
given z, put h(X, Y ; z) = 1[0,∞)(Y −X|Z = z) − A(z), h∗

0,0 = E{h(X, Y ; z)} ≡ 0. h∗
1,0(X; z) =

E{h(X, Y ; z)|X}, h∗
0,1(Y ; z) = E{h(X, Y ; z)|Y}. Note that

h∗
0,1(Y ; z) = P(Y ≥ X|Y,Z = z)

= P
(
µ1(z) + ε1

√
v1(z) ≤ µ2(z) + ε2

√
v2(z)

∣∣∣ ε2)
= P

(
ε1 ≤

√
v2(z)
v1(z)

ε2 + µ2(z) − µ1(z)√
v1(z)

∣∣∣∣∣ ε2
)

≡ h1,0(ε2; z),
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and similarly h∗
1,0(X; z) ≡ h1,0(ε1; z), that is, ξ21,0 ≡ var{h∗

1,0(Y ; z)}, ξ20,1 ≡ var{h∗
0,1(Y ; z)} as

specified in Section 3.2. The unbiasedness of AM(z) is obvious from h∗
0,0 ≡ 0. For the variance

calculation, after some counting techniques, one has,

var{AM(z)} = 1
mn

∑
c=0,1

∑
d=0,1

C1
cC

m−1
1−c C

1
dC

n−1
1−dξc,d = ξ21,0(z)

m
+ ξ20,1(z)

n
+ o

(
1

m+ n

)
, (26)

where Cnk is the combination of choosing k from n. This proves (18).
To show the asymptotic normality (19), define

Tm,n(z) = √
m+ n

 1
m

m∑
i=1

h∗
1,0(xi,z) + 1

n

n∑
j=1

h∗
0,j(yj,z)

 ,
which is in fact the projection of

√
m+ n{AM(z) − A(z)} on the space formed by random vari-

ables of the form of {∑m
i=1 ψ(xi,z) +∑n

j=1 ψ
∗(yi,z)}, where ψ and ψ∗ are arbitrary measurable

functions. From Hájek’s Projection Theorem and (26), we have, as m, n → ∞,

var{√m+ nAM(z) − Tm,n(z)} = var{√m+ nAM(z)} − var{Tm,n(z)} −→ 0,

which, together with unbiasedness, implies that
√
m+ n{AM(z) − A(z)} is asymptotically

equivalent to Tm,n(z). Then following central limit theorem, when n/(m+ n) → λ∗ and
min{ξ21,0(z), ξ20,1(z)} > 0, Tm,n(z) has the limiting distribution as specified in (19). So does√
m+ n{AM(z) − A(z)}. �

Proof of Theorem 4. Define wij = yi,z − xi,z and ŵij = ŷi,z − x̂i,z, and the dependences
of wij and ŵij on xi,z, yj,z, zi,x, zj,y and z are suppressed for simplicity. Let a1(z) =
µ2(z) − µ1(z), a2(zj,y, z) =√v2(z)/v2(zj,y, z), a3(zi,x, z) = −√v1(z)/v1(zi,x), a4(zj,y, z) =
−µ2(zj,y)a2(zj,y, z), a5(zi,x, z) = −µ1(zi,x)a3(zi,x, z), and then

wij = a1(z) + a2(zj,y, z)yj + a3(zi,x, z)xi + a4(zj,y, z) + a5(zi,x, z),

ŵij = â1(z) + â2(zj,y, z)yj + â3(zi,x, z)xi + â4(zj,y, z) + â5(zi,x, z),

where “ ˆ ” is the generic notation for estimated quantities. By analogy to the proof of Lemma
2 with the assumptions (A3†) and (A5†) replaced by (A3∗) and (A5∗), we obtain weak (in
probability) uniform consistency of µ̂1, µ̂2, v̂1, and v̂2. This is sufficient for our purpose,
the reason of which will be singled out below. Again by analogy to the proof of Theorem
2 with Slutsky’s Theorem (in probability instead of almost sure), we have, for a given z,
â1(z)

p→ a1(z), supzj,y |âk(zj,y, z) − ak(zj,y, z)| = op(1), supzi,x |âl(zi,x, z) − al(zi,x, z)| = op(1),

for k = 2, 4 and l = 3, 5. Since ε1,i
i.i.d.∼ F∗, one has ε1,i = Op(1) and, analogously, ε2,j =

Op(1), regardless of i and j. Also note that µ1, µ2, v1 and v2 are bounded on Z , then we
obtain supi,j,zi,x,zj,y |ŵij − wij| = op(1) that only depends on the given z. We observe that

E[{ÂM(z) − AM(z)}2] = E0,0 + E1,0 + E0,1 + E1,1, where

E0,0 = 1
m2n2

∑
i	=i′,j 	=j′

E
[{1[0,∞)(ŵij) − 1[0,∞)(wij)}{1[0,∞)(ŵi′j′ ) − 1[0,∞)(wi′j′ )}

]
,
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whileE1,0,E0,1, andE1,1 are defined in the same way, withE1,0 corresponds to
∑
i=i′,j 	=j′ ,E0,1

to
∑
i	=i′,j=j′ and E1,1 to

∑
i=i′,j=j′ . We first focus on E0,0,

E0,0 = 1
m2n2

∑
i	=i′,j 	=j′

{
P(ŵij ≥ 0, ŵi′j′ ≥ 0) + P(wij ≥ 0, wi′j′ ≥ 0)

− P(ŵij ≥ 0, wi′j′ ≥ 0) − P(wij ≥ 0, ŵi′j′ ≥ 0)
}

≤ sup
i,i′,j,j′

∣∣P(ŵij ≥ 0, ŵi′j′ ≥ 0) + P(wij ≥ 0, wi′j′ ≥ 0)

− P(ŵij ≥ 0, wi′j′ ≥ 0) − P(wij ≥ 0, ŵi′j′ ≥ 0)
∣∣ . (27)

For any given z, from Slutsky’s Theorem, we have (ŵij, ŵi′j′ )T, (ŵij, wi′j′ )T and (wij, ŵi′j′ )T

converge in probability to (wij, wi′j′ )T uniformly in all arguments except z, which implies
uniform convergence in distribution. Therefore the four sequences of probabilities in (27) all
uniformly converge to P(wij ≥ 0, wi′j′ ≥ 0) as m, n → ∞, which leads to E0,0 → 0. From
the above argument, one can see that the weak uniform consistency is sufficient, also that the
convergence rates cannot be preserved for evaluating upper bounds for those probability differ-
ences. Using similar arguments, it is easy to show that E1,0 = O(E0,0/m), E0,1 = O(E0,0/n)
and E1,1 = O{E0,0/(mn)}. �
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