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Divide and Conquer: A Mixture-Based
Approach to Regional Adaptation for MCMC

Yan BAI, Radu V. CRAIU, and Antonio F. DI NARZO

The efficiency of Markov chain Monte Carlo (MCMC) algorithms can vary dramati-
cally with the choice of simulation parameters. Adaptive MCMC (AMCMC) algorithms
allow the automatic tuning of the parameters while the simulation is in progress. A mul-
timodal target distribution may call for regional adaptation of Metropolis–Hastings
samplers so that the proposal distribution varies across regions in the sample space.
Establishing such a partition is not straightforward and, in many instances, the learning
required for its specification takes place gradually, as the simulation proceeds. In the
case in which the target distribution is approximated by a mixture of Gaussians, we
propose an adaptation process for the partition. It involves fitting the mixture using the
available samples via an online EM algorithm and, based on the current mixture para-
meters, constructing the regional adaptive algorithm with online recursion (RAPTOR).
The method is compared with other regional AMCMC samplers and is tested on simu-
lated as well as real data examples.

Relevant theoretical proofs, code and datasets are posted as an online supplement.
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1. INTRODUCTION

In recent years, the Markov chain Monte Carlo (MCMC) class of computational al-
gorithms has been enriched with adaptive MCMC (AMCMC). Spurred by the semi-
nal article of Haario, Saksman, and Tamminen (2001), an increasing body of literature
has been devoted to the study of AMCMC due to its attractive potential for applica-
tions. For instance, while it has long been known that the choice of the proposal distri-
bution’s parameters in a Metropolis sampler is central to the performance of the algo-
rithm, the fine tuning required is traditionally carried out by the programmer through a
lengthy and sometimes frustrating trial and error process. The recent work of Haario, Saks-
man, and Tamminen (2001, 2005), Andrieu and Robert (2001), Andrieu and Moulines
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(2006), Andrieu, Moulines, and Priouret (2005), and Roberts and Rosenthal (2007) has
provided the theory needed to prove that it is possible to adapt the parameters of the pro-
posal distribution automatically and “on the fly,” that is, to allow the simulation process
to self-adjust at each iteration n using all the samples available by that time. How-
ever, the practical implementation of AMCMC samplers requires careful consideration in
those cases when the target distribution is multimodal (Craiu, Rosenthal, and Yang 2009;
Giordani and Kohn 2010). For instance, a posterior distribution may be multimodal if
the sampling distribution is represented as a mixture. The latter occurs when we assume
that the population of interest is heterogeneous or when such a formulation is a conve-
nient representation of a nonstandard density. It is well known that MCMC sampling
from multimodal distributions can be extremely difficult as the chain can get trapped in
one region of the sample space due to areas of low probability (bottlenecks) between
the modes. Therefore, a large amount of effort has been devoted to designing efficient
MCMC sampling methods for multimodal target distributions (Gelman and Rubin 1992;
Geyer and Thompson 1994; Neal 1994; Richardson and Green 1997; Kou, Qing, and Wong
2006). One possible approach is to approximate the multimodal posterior distribution with
a mixture of Gaussians as in the article by West (1993), who also showed that such an ap-
proximation may be useful for computation even if the target is skewed and not necessarily
multimodal. AMCMC algorithms based on the same natural approach have been devel-
oped by Giordani and Kohn (2010), Andrieu and Thoms (2008), and Craiu, Rosenthal, and
Yang (2009).

The mixture representation implies that the geography of the target distribution may
differ across various regions of the sample space. One possible way to incorporate this in-
formation in the design of a Metropolis–Hastings sampler is to consider regional adaptation
in which the proposal distribution varies across regions of the sample space. In the article
by Craiu, Rosenthal, and Yang (2009) the regional adaptive (RAPT) sampler is designed
assuming that one has reasonable knowledge about the regions where different sampling
regimes are needed. These regions remain unchanged even though one may realize, as the
simulation progresses, that partitions leading to a more efficient algorithm are possible. In
addition, while one could use sophisticated methods to detect the modes of a multimodal
distribution (see Neal 2001; Sminchisescu and Triggs 2001), it is not obvious how to use
such techniques for defining the desired partition of the sample space.

Here we consider a different framework which allows the regions to evolve as the sim-
ulation proceeds. The regional adaptive random walk Metropolis (RWM) algorithm pro-
posed here relies on the approximation of the target distribution π with a mixture of Gaus-
sians. The partition of the sample space used for the regional adaptive algorithm with
online recursion (RAPTOR) is defined based on the mixture parameters which, in turn,
are updated using the simulated samples. An algorithm based on a somewhat similar idea
has been developed independently by Andrieu and Thoms (2008). However, their algo-
rithm 7 (henceforth denoted AT7) differs from RAPTOR in a few important aspects that
are discussed in the next section. We emphasize that the approach proposed here is aimed
at continuous distributions π as a direct extension of these ideas to discrete multimodal
distributions is not straightforward.
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In the following sections we present: the RAPTOR algorithm and its comparison with
AT7 and RAPT (Section 2), the theoretical results on RAPTOR’s ergodicity (Section 3),
and the simulation studies and real data applications (Sections 4 and 5). The technical
proofs, data, and programs used in the article are included in the Supplemental Materials
accessible from the JCGS website.

2. REGIONAL ADAPTATION

2.1 RAPTOR: RAPT WITH ONLINE RECURSION

Regional adaptation may be needed for a number of statistical models, but in this article
we assume that it is a consequence of the target’s representation as a mixture. Intuitively,
if π is well approximated using a mixture of Gaussians, then it is reasonable to surmise
that each component of the mixture is a good proposal in a given region of the sample
space S ⊂ R

d . To make concepts more precise, assume that π has K modes and consider
its approximation by the mixture model

q̃η(x) =
K∑

k=1

β(k)Nd

(
x;μ(k),�(k)

)
, (2.1)

where β(k) > 0 for all 1 ≤ k ≤ K ,
∑K

k=1 β(k) = 1, Nd(x;μ,�) is the probability density
of a d-variate Gaussian distribution with mean μ and covariance matrix �, and we set
η = {(β(k),μ(k),�(k)) : 1 ≤ k ≤ K}. At each time n during the simulation process one has
available n samples which are used to fit the mixture (2.1). In turn, the mixture parameters
decide the form of the proposal distribution. In the following sections we describe in de-
tail the online EM algorithm used for fitting the mixture, the construction of the partition
underlying the regional sampler, and finally, the proposal distribution used for RAPTOR.

2.1.1 Recursive Adaptation

The analysis of mixture models has relied for a while now on the EM algorithm
(Dempster, Laird, and Rubin 1977) as discussed by Titterington, Smith, and Makov (1985)
and references therein. In the setting considered here, the simulation parameters need to
be updated on the fly each time new draws from the target distribution are added to the
Monte Carlo sample (as opposed to refitting using the entire sample). Our approach fol-
lows that of Andrieu and Moulines (2006) who have designed the method in conjunc-
tion with an adaptive independent Metropolis algorithm. A similar online EM for inde-
pendent data was studied by Cappé and Moulines (2009). Suppose that at time n − 1
the current parameter estimates are ηn−1 = {β(k)

n−1,μ
(k)
n−1,�

(k)
n−1}1≤k≤K and the available

samples are {x0, x1, . . . , xn−1}. If we define the mixture indicator Zi such that Zi = k

if and only if xi has been generated from the kth component of mixture (2.1), then let
ν

(k)
i = P(Zi = k|xi, ηi). Given the additional data xn we have

ν
(k)
i = β

(k)
i−1Nd(xi;μ(k)

i−1,�
(k)
i−1)∑

k′ β
(k′)
i−1Nd(xi;μ(k′)

i−1,�
(k′)
i−1)

∀1 ≤ i ≤ n,1 ≤ k ≤ K. (2.2)
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Define

s(k)
n = 1

n + 1

n∑
i=0

ν
(k)
i = s

(k)
n−1 + 1

n + 1

(
ν(k)
n − s

(k)
n−1

)
(2.3)

and γ
(k)
n = ν

(k)
n

(n+1)s
(k)
n

, for all 1 ≤ k ≤ K . Then the recursive estimator ηn = {(β(k),μ
(k)
n ,

�
(k)
n ) :k = 1, . . . ,K} is, for all 1 ≤ k ≤ K ,

β(k)
n = s(k)

n ,

μ(k)
n = μ

(k)
n−1 + ρnγ

(k)
n

(
xn − μ

(k)
n−1

)
, (2.4)

�(k)
n = �

(k)
n−1 + ρnγ

(k)
n

((
1 − γ (k)

n

)(
xn − μ

(k)
n−1

)(
xn − μ

(k)
n−1

)� − �
(k)
n−1

)
,

where ρn is a user-defined nonincreasing positive sequence such that
∑∞

n=1 γ
(k)
n ρn < ∞

a.s. (this last condition is needed for the stability of the EM algorithm—see Section 3). In
practice we use ρn = n−1.1 which, coupled with γ

(k)
n ∈ [0,1], ensures the convergence of∑∞

n=1 γ
(k)
n ρn.

The RAPTOR implementation described in Section 2.1.4 also requires the sample co-
variance matrix of {x1, . . . , xn}, �

〈w〉
n , which can be computed recursively using

�〈w〉
n = �

〈w〉
n−1 + 1

n + 1

((
1 − 1

n + 1

)(
xn − μ

〈w〉
n−1

)(
xn − μ

〈w〉
n−1

)� − �
〈w〉
n−1

)
. (2.5)

2.1.2 Definition of Regions

Using the mixture representation (2.1), we define the partition S = ⋃K
k=1 S (k) so that,

on each set S (k), π is more similar to Nd(x;μ(k),�(k)) than to any other distribution
entering (2.1). More precisely, if, for simplicity, we consider the case K = 2, then we
define the partition S = S (1) ∪ S (2) such that we maximize the sum of differences between
Kullback–Leibler (KL) divergences

	KL
(

S (1), S (2)
)

:= KL
(
π,Nd

(·;μ(2),�(2)
)∣∣S (1)

) − KL
(
π,Nd

(·;μ(1),�(1)
)∣∣S (1)

)
+ KL

(
π,Nd

(·;μ(1),�(1)
)∣∣S (2)

) − KL
(
π,Nd

(·;μ(2),�(2)
)∣∣S (2)

)
, (2.6)

where KL(f, g|A) = ∫
A

log(f (x)/g(x))f (x) dx. Note that we expect 	KL > 0 since we
want the KL divergence between Nd(x;μ(k),�(k)) and π(x) to be the smallest on S (k).
With this aim we define, at time n, the region S (k)

n as the set in which the kth component
of the mixture density q̃ηn dominates the other ones, that is,

S (k)
n =

{
x : arg max

k′
Nd

(
x;μ(k′)

n ,�(k′)
n

) = k
}
. (2.7)

In the following, for simplicity we assume that π is equal to (2.1) and we drop the
index n. One can see that, for K = 2, Nd(x;μ(i),�(i)) ≤ π(x) ≤ Nd(x;μ(j),�(j)) on
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S(j) when i �= j . Therefore,

KL
(
π,Nd

(·;μ(1),�(1)
)∣∣S (1)

) ≤ KL
(
π,Nd

(·;μ(2),�(2)
)∣∣S (1)

)
, (2.8)

KL
(
π,Nd

(·;μ(2),�(2)
)∣∣S (2)

) ≤ KL
(
π,Nd

(·;μ(1),�(1)
)∣∣S (2)

)
. (2.9)

Now consider a different partition than the one given in (2.7), say S = S̃ (1) ∪ S̃ (2).
Assume that S̃ (1) = A ∪ B with A ⊂ S (1) and B ⊂ S (2). Then

	KL
(

S̃ (1), S̃ (2)
) = 	KL

(
S (1), S (2)

)
+ 2

[
KL

(
π,Nd

(·;μ(1),�(1)
)|S1\A

)
− KL

(
π,Nd

(·;μ(2),�(2)
)|S1\A

)]
+ 2

[
KL

(
π,Nd

(·;μ(2),�(2)
)|B) − KL

(
π,Nd

(·;μ(1),�(1)
)|B)]

≤ 	KL
(

S (1), S (2)
)
. (2.10)

The last inequality is true because of (2.8)–(2.9). Note that (2.10) may hold even if π is
not exactly equal to the mixture (2.1).

An alternative partition of the sample space can be produced based on regions

R(k)
n =

{
x : arg max

k′
β(k′)

n Nd

(
x;μ(k′)

n ,�(k′)
n

) = k
}
. (2.11)

However, in our experience, estimates for β
(k)
n remain volatile until the simulation has

been run long enough and the correct proportions of samples from each modal region are
obtained. Usually, such balance requires a longer sampling time and, before it is achieved,
a partition like (2.11) can be very unstable. In addition, (2.8) and (2.9) may not hold if S (i)

is replaced with R(i), i = 1,2. For all these reasons, in this article we will work throughout
with regions defined using (2.7) although the theoretical justification of the algorithm can
be extended to the case when the regions are defined using (2.11). Figure 1 displays some
actual shapes of the boundary between the two regions specified by (2.7) which show a
good level of flexibility. However, in situations such as those shown in Figure 1(c) where

(a) (b) (c)

Figure 1. RAPTOR-defined regions for different relative values of the mixture components parameters. Re-
gion 1 in dark gray, region 2 in light gray. Mixture means are marked with a cross and a plus sign. (a) Different
means, equal variances. (b) Different means, different variances. (c) Equal means, different variances.
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the normal components have the same mean, RAPTOR performs with similar efficiency as
the adaptive Metropolis algorithm of Haario, Saksman, and Tamminen (2001) (henceforth
denoted AM).

2.1.3 Definition of the Proposal Distribution

The approximation (2.1) along with the online EM and the partition defined in (2.7)
allow us to define the proposal distribution for RAPTOR. One may be tempted to consider,
at time n, the proposal distribution

Qn(x, dy) =
K∑

k=1

1S (k)
n

(x)Nd

(
y;x,�(k)

n

)
dy. (2.12)

In other words, in each region S (k)
n we would use the dominant component of the mixture

as a proposal distribution. However, while such a proposal may have good local properties,
it may not guarantee a good flow between different regions. A similar problem has been
studied and validated theoretically in a nonadaptive setting by Guan and Krone (2007)
who proved the benefit of adding long-range jumps to Metropolis–Hastings samplers for
multimodal densities. Thus, at each time n during simulation, RAPTOR uses

Qn(x, dy) = (1 − α)

K∑
k=1

1S (k)
n

(x)Nd

(
y;x, sd�̃(k)

n

)
dy + αNd

(
y;x, sd�̃〈w〉

n

)
dy, (2.13)

where sd = 2.382/d , a choice based on the optimality results obtained for the RWM by
Roberts, Gelman, and Wilks (1997) and Roberts and Rosenthal (2001), �̃

(k)
n = �

(k)
n + εId ,

�̃
〈w〉
n = �

〈w〉
n + εId , ε > 0 is a small constant, Id is the d ×d identity matrix, and α ∈ (0,1)

is a fixed weight which controls the flow between regions. Adding εId ensures that each
covariance matrix is positive definite, an approach that follows that of Haario, Saksman,
and Tamminen (2001). The theoretical derivations of Guan and Krone (2007) suggest using
α = 0.3 and this is the value used throughout the current article. We emphasize that the
transition kernel (2.13) depends on the mixture parameters ηn in two ways: via the regions
defined in (2.7) and, more directly, via the covariance matrices �

(k)
n and �

〈w〉
n .

2.1.4 Implementation of RAPTOR

The adaption parameter for RAPTOR is

γ = (
μ(1), . . . ,μ(K), �̃(1), . . . , �̃(K), �̃〈w〉) ∈ Y ,

where Y = R
d × · · · × R

d︸ ︷︷ ︸
K+1

×R
d×d × · · · × R

d×d︸ ︷︷ ︸
K+1

is the adaption parameter space.

In practice, γ is assigned a starting value which is kept constant during an initialization
period after which the adaptation defined by RAPTOR is implemented. Suppose that after
the initialization period the chain is in X0. Subsequently, at every n ≥ 0, we construct the
partition (2.7) based on the value, at time n, of the adaption parameter

�n = {
μ(1)

n , . . . ,μ(K)
n , �̃(1)

n , . . . , �̃(K)
n , �̃〈w〉

n

}
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and sample the proposal Yn+1 ∼ Qn(Xn;dY ). If q�n(Xn,Y ) denotes the density of
Qn(Xn;dY ), then the sample at time n + 1 is

Xn+1 =
{

Yn+1, with probability R�n(Xn,Yn+1)

Xn, with probability 1 − R�n(Xn,Yn+1),

where Rγ (x, y) = min{1,
π(y)qγ (y,x)

π(x)qγ (x,y)
} and �n is obtained from (2.2)–(2.5).

2.2 OTHER REGIONAL AMCMC ALGORITHMS

In the case in which one uses throughout the simulation a fixed partition of the space
S = S1 ∪ S2, the mixed RAPT algorithm (Craiu, Rosenthal, and Yang 2009) for a random
walk Metropolis (RWM) sampler uses at iteration n the following mixture as a proposal
distribution:

Qn(x, dy) = (1 − β)

2∑
i=1

1Si
(x)

[
λ

(i)
1 (n)Nd

(
y;x, sd�(1)

n + sdεId

)
dy

+ (
1 − λ

(i)
1 (n)

)
Nd

(
y;x, sd�(2)

n + sdεId

)
dy

]
+ βNd

(
y;x, sd�〈w〉

n + sdεId

)
dy, (2.14)

where �
(i)
n is the sample covariance matrix computed from those samples in Si and �

〈w〉
n

is the sample covariance matrix estimated from all n samples in S . The mixing parameters
λ

(i)
1 , i = 1,2, are adapted using the jump distances measured for each proposal, that is,

λ
(i)
j (n) =

⎧⎨
⎩

d
(i)
j (n)∑2

h=1 d
(i)
h (n)

, if
∑2

h=1 d
(i)
h (n) > 0

1/2, otherwise,

where d
(i)
j (n) is the average square jump distance up to iteration n computed every time

the accepted proposal was generated from j th regional proposal and the current state of
the chain was in Si . The parameter β ∈ (0,1) is constant throughout the simulation, and
is usually smaller than 0.5. For further details on RAPT we refer to the article of Craiu,
Rosenthal, and Yang (2009). An important difference from RAPTOR is that the bound-
ary between regions is fixed, essentially ignoring the information from the Monte Carlo
sample. This imposes the use, in each region, of proposals from each component entering
(2.14). Therefore, one has to accept a possible loss of computational efficiency each time
a proposal is generated from the component of (2.14) which is not tuned for the region
the chain is currently visiting. By allowing the regions to evolve, RAPTOR alleviates this
problem, as in region S (k) it considers proposals generated only from the dominant and
global components of the mixture.

Algorithm AT7, developed independently by Andrieu and Thoms (2008), is also based
on approximating π with (2.1). However, in their approach, instead of using a partition of
the space, at time n+1 the proposal is generated from the mixture component most favored
by the current state of the chain, xn. More precisely, the generation involves sampling first
the mixture indicator variable zn ∼ p(Zn|xn, η) and then the proposal is generated from
Y ∼ Nd(·;xn,λ

(zn)�(zn)), where λ(zn) is a scaling factor that is also adapted based on the
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available samples (for details, see Andrieu and Thoms 2008). AT7 does not have a global
component in the proposal distribution so that the flow between regions may be slower
than for RAPTOR. This is particularly relevant in those situations when the number of
components K is misspecified so that the local approximation is good only in a subset of
the sample space. In Section 4, we perform a simulation in which K is misspecified and
AT7 and RAPTOR are compared.

3. THEORETICAL RESULTS

The proof of ergodicity for RAPTOR relies on the sufficient conditions established by
Roberts and Rosenthal (2007) to ensure the ergodicity of general adaptive MCMC. For-
mally, an adaptive MCMC algorithm for the target distribution π is defined using the adap-
tation parameter γ ∈ Y , that is, the transition kernel’s parameter vector which is allowed to
evolve as the simulation proceeds. It is assumed that for each γ ∈ Y the time-homogeneous
Markov chain kernel Pγ has stationary distribution π (Meyn and Tweedie 1993). The
adaptive paradigm assumes that given an initial point X0 := x0 ∈ S ⊂ R

d and a kernel
P�0 with �0 := γ0 ∈ Y , at each iteration n + 1, Xn+1 is generated from P�n(Xn, ·), where
�n+1 is a function of X0, . . . ,Xn+1 and �0, . . . ,�n. We say that the adaptive MCMC
process {Xn :n ≥ 0} is ergodic if limn→∞ ‖L(Xn) − π‖TV, where for any measure μ,
‖μ‖TV = supA |μ(A)|.

Roberts and Rosenthal (2007) gave two conditions, Containment and Diminishing
Adaptation, which together imply ergodicity of adaptive MCMC. By definition, Contain-
ment holds if for all ε > 0, the sequence {Mε(Xn,�n) :n ≥ 0} is bounded in probability
conditional on any X0 = x0 and �0 = γ0, that is, for all δ > 0, there is N ∈ N such that
P(Mε(Xn,�n) ≤ N |X0 = x0,�0 = γ0) ≥ 1 − δ for all n ∈ N, where Mε(x, γ ) = infn{n ≥
1 :‖P n

γ (x, ·) − π(·)‖TV ≤ ε} is the “ε-convergence” function.
The Diminishing Adaptation condition is defined as limn→∞ Dn = 0 in probability,

where

Dn = sup
x∈S

∥∥P�n+1(x, ·) − P�n(x, ·)∥∥TV (3.1)

represents the change between the transition kernels used at iterations n and n + 1.
We prove the ergodicity of RAPTOR assuming the following compactness condition:
(A1) There is a compact subset S ⊂ R

d such that the target density π is continuous on
S , positive on the interior of S , and zero outside of S .

It should be noted that compact sets can be arbitrarily large so (A1) does not impose a
significant limitation in practice. The stability of the online EM depends on the properties
of the sequences {γ (k)

n }n≥0 and {ρn}n≥0. We prove the stability of the online EM using the
following conditions:

(A2) The sequence {ρj : j ≥ 1} is positive and nonincreasing.
(A3) For all k = 1, . . . ,K ,

P

(
lim sup
i→∞

sup
l≥i

l∑
j=i

ρj γ
(k)
j = 0

)
= 1.
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It is worth emphasizing that (2.3) implies γ
(k)
j ∈ [0,1] for all 1 ≤ j ≤ n and 1 ≤ k ≤ K .

In practice we have freedom over the choice of the sequence {ρj }j≥1 so we set ρj = j−1.1.
This choice guarantees that (A2) and (A3) are simultaneously satisfied in all simulations
and real data applications considered in the next two sections.

Theorem 1. With the above notations, the following hold:

(a) Assuming (A1) and (A2), the RAPTOR algorithm is ergodic to π .

(b) Assuming (A2) and (A3), the adaptive parameter {�n}n≥0 converges in probability.

The proof of the theorem is in the Appendix which is accessible from the JCGS website.

4. SIMULATIONS

In this section, we illustrate the performance of the RAPTOR algorithm using Gaussian
mixtures under different scenarios which were designed to cover a range of possibilities.
We compare different regional random walk Metropolis algorithms by means of the mean
squared error (MSE) of the sample mean estimator of the first coordinate of the chain,
evaluated by independently replicating each simulation 1000 times. Similar results hold
for the other components but are not reported here due to space limitations. Relevant code
is available as Supplemental Material.

We consider the target distribution equal to the d-variate Gaussian mixture restricted to
a large compact set

π(x;m,s) ∝ 1Cd
(x)[0.5Nd(x;−m × 1, Id) + 0.5Nd(x;m × 1, s × Id)], (4.1)

where Cd = [−1010,1010]d , m ∈ R, s ∈ [1,∞).
For increasing values of m, the target distribution presents two modes which are more

and more separated, while s is the ratio between the variances of the two mixture compo-
nents. We will consider the cases where the state space dimension d ∈ {2,5}. For all the
algorithms used we set the following common starting estimates:

μ̂
(1)
0 = (−2,0, . . . ,0)T , μ̂

(2)
0 = (2,0, . . . ,0)T ,

(4.2)
β̂

(k)
0 = 0.5, �̂

(1)
0 = 0.1 × Id, �̂

(2)
0 = 0.1 × s × Id,

and we set �̂
〈w〉
0 = 50 × I2 when the state space dimension is equal to 2, and �̂w

0 = 10 × I5

when it is equal to 5. These values are pessimistic, as one would normally obtain more
reasonable mixture estimates using a preliminary run of the simulation. We compare the
five following different regional random walk Metropolis algorithms:

• RAPTOR, with starting mixture estimates set to (4.2),

• a Regional Random Walk Metropolis (RRWM) which uses the same proposal as
RAPTOR with mixture estimates fixed to their true values (the boundary used is
defined in (2.7)),
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• AT7 with starting mixture estimates set to (4.2) and proposal variance scaling factors
fixed to εd = 2.382/d ,

• RAPT, with boundary x1 = 0, and starting local proposal covariance matrices set to
(4.2). The boundary set-up gives an approximate separation of the two modes using
a d − 1 hyperplane and is reasonable when d = 2 but it is less so when d = 5.

We run each chain from a fixed, central starting value, for a total of 1000 iterations,
using the first 100 as burn-in. For each dimensionality of the state space, we considered
the scenarios given by the following ten combinations of parameter values:

(d,m, s) ∈ {
(2,1,1), (5,0.5,1), (2,1,4), (5,0.5,4), (2,0,1),

(5,0,1), (2,0,4), (5,0,4), (2,2,1), (5,1,1)
}
. (4.3)

These scenarios cover all the boundary shapes depicted in Figure 1 and span a reason-
ably wide range of separation between the modes from m = 0 (no separation) to m = 2.
For each simulation and for each algorithm we report the mean squared error (MSE) of the
sample mean estimator of the first coordinate. These are computed based on independent
replications of the simulation, knowing that the true mean of the first component is 0. All
the results are reported in Table 1.

The algorithm RRWM performs best in the experimented scenarios, thus supporting the
choice of partitioning the state space. When d = 2 all algorithms seem to perform simi-
larly, but for d = 5 RAPTOR’s performance comes closest to that of RRWM. Comparing
RAPTOR with RAPT for d = 5, we notice that the strategy of adapting the boundary leads
to efficiency gains. In the scenarios shown here RAPTOR does better than AT7 when the
latter has been implemented with fixed variance scaling. The variable scaling is designed
to preserve a certain acceptance rate but in a mixture setting one is unsure of which accep-
tance rate is optimal. The values used in the simulations lead to similar acceptance rates
for RAPTOR and AT7 (around 40% when d = 2 and around 32% when d = 5).

Table 1. Gaussian mixture target distribution: mean squared error ×1000 of the sample mean estimator of the
first coordinate, for different values of the distance between modes, different ratios between target
mixture variances, in state spaces with two or five dimensions.

(m, s) RAPTOR RRWM AT7 RAPT

d = 2
(1,1) 21 21 25 22
(1,4) 43 39 43 46
(0,1) 10 8 12 11
(0,4) 25 20 27 28
(2,1) 170 170 247 136

d = 5
(0.5,1) 30 22 33 41
(0.5,4) 72 62 90 108
(0,1) 23 18 26 29
(0,4) 51 48 66 62
(1,1) 126 72 156 142
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Table 2. Comparison of RAPTOR and AT7 when K is misspecified. Reported is the mean squared error of the
sample mean of the first coordinate.

Model RAPTOR-2 AT7-2 RAPTOR-3 AT7-3

π1 0.167 0.240 0.157 0.221
π2 0.033 0.068 0.045 0.092

We have also studied a number of scenarios in which the number of mixture components
is misspecified as this is not uncommon in practice. Due to space restrictions we report on
two representative cases:

π1(x) ∝ 1C5(x)[0.4N5(x;−3 × 1, I5) + 0.2Nd(x;0, I5) + 0.4Nd(x;3 × 1, I5)],
π2(x) ∝ 1C5(x)[0.4N5(x;−1.5 × 1, I5) + 0.6N(x;1, I5)]

for which we run RAPTOR and AT7 using K = 2 and K = 3. In Table 2 we report the
MSE for the sample mean of first coordinate which was computed from 1000 replicates.
Note that RAPTOR-k and AT7-k refer to runs of RAPTOR and AT7 algorithms when we
assume the K = k specification. The starting points for the two algorithms are included
in the Supplemental Material available online. We suspect that the global component in
RAPTOR provides an edge over AT7. However, this could be easily fixed by adding a
global component in AT7 and only extensive use of the two algorithms can lead to more
definitive comparisons.

5. REAL DATA EXAMPLES

5.1 GENETIC INSTABILITY OF ESOPHAGEAL CANCERS

We analyzed the “Loss of Heterozygosity” (LOH) dataset from the Seattle Barrett’s
Esophagus research project (Barrett et al. 1996). Cancer cells suffer a number of genetic
changes during disease progression, one of which is loss of heterozygosity (LOH). Chro-
mosome regions with high rates of LOH are hypothesized to contain genes which regulate
cell behavior and may be of interest in cancer studies. For additional details we refer to
the report by Warnes (2001). The dataset contains 40 frequencies of the event of inter-
est (LOH) and their associated sample sizes. We model the frequencies using the mixture
suggested by Desai (2000):

Xi ∼ η Binomial(Ni,π1) + (1 − η)Beta-Binomial(Ni,π2, γ ), (5.1)

with priors η ∼ Unif[0,1],π1 ∼ Unif[0,1],π2 ∼ Unif[0,1], γ ∼ Unif[−30,30], where η

is the probability of a location being a member of the binomial group, π1 is the probability
of LOH in the binomial group, π2 is the probability of LOH in the beta-binomial group,
and γ controls the variability of the beta-binomial group. The parameterization adopted for
the Beta-Binomial distribution is such that γ ’s range is the real line and we have used the
logistic transformation on the parameters η,π1,π2 so that the range for each component
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Figure 2. LOH dataset: smoothed marginal bivariate distribution (left) and a slice of the final state space par-
titioning (right). In the smoothed distribution plot, a darker color corresponds to a higher probability density.
In the partition slice plot, parameters η and γ are fixed to their estimated posterior means. Means of mixture
components are marked with crosses.

is the entire real line. In our implementation, we study the target distribution restricted to
C4 = [−1010,1010]4 which does not have a noticeable effect on the analysis but brings it
within the scope of Theorem 1. We run independently four parallel chains using the AM
algorithm and RAPTOR with α = 0.3, using starting points drawn from a quasi-random
distribution uniformly covering the parameter space (in the original parameterization). We
run 800,000 iterations for each chain and after dropping the first 40,000 as burn-in we retain
only every 40th sample obtained. Starting values for the mixture parameters are included
in the Supplemental Materials.

In Figure 2, left panel, we show the marginal scatterplot of (π1,π2) for all the samples
obtained using the RAPTOR algorithm. In this plot we can clearly distinguish two separate
modes with very different size and shape. It is difficult to visualize the partition produced
by RAPTOR in the four-dimensional space so instead we show one slice of the partition.
If the partition is defined according to (2.7), then, for a fixed subset I of the coordinates of
interest and after fixing xI = (xj : j ∈ I ) at, say, x̃I , we can consider the slice through S (k)

determined by x̃I as

S (k)(x̃I ) =
{
xIc : arg max

k′
N

(
x = (x̃I , xIc );μ(k′),�(k′)) = k

}
, (5.2)

where I c is the complement of set I . We can also define S (k)
I c the projection of S (k) on the

xIc -coordinate space and then

S (k)
I c =

⋃
x̃I

S (k)(x̃I ),

where the union is taken over all the possible values of x̃I . One must choose which slices
are more informative to look at and here we choose x̃ equal to posterior means. In Figure 2,
right panel, a bi-dimensional slice of the RAPTOR regions is plotted when η and γ are
equal to their posterior means.
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Table 3. Simulation results for LOH data. Region-specific and global parameters means, and mean of first 40
absolute lag-correlations for RAPTOR and AM, for each coordinate.

RAPTOR AM

Mean sd |ACF | Mean sd |ACF |

η 0.828 0.155 0.15 0.820 0.171 0.27
π1 0.248 0.106 0.19 0.254 0.121 0.32
π2 0.614 0.174 0.05 0.608 0.179 0.13
γ 12.732 11.561 0.09 12.406 11.917 0.16

In Table 3 we summarize the RAPTOR and AM estimates on the original scales. We can
see that the estimated posterior expected values and standard deviations are quite similar
so the two algorithms give consistent results. However, there are important differences
in the performances of the two methods. In Table 3 we also report, for each parame-
ter, the mean of the first 40 absolute lag-correlations obtained from the unthinned chains
(in the original scale), for RAPTOR and AM. While the mean absolute autocorrelation
is smaller in RAPTOR for all model parameters, the increase in efficiency of RAPTOR
is strengthened by its average acceptance rate, which was 19.4% compared to 4% for
AM.

5.2 ACIDITY OF NORTHEASTERN U.S. LAKES

We consider an application to the acidity dataset first introduced by Small, Sutton, and
Milke (1988) and later reconsidered by several authors (Crawford 1994; Richardson and
Green 1997). Data are extracted from a survey started in 1983 by the U.S. Environmental
Protection Agency to evaluate the acidity of lakes in the northeastern United States. One of
the variables registered in the survey was the Acid-Neutralizing Capacity (ANC), which is
of great interest as low values of ANC can lead to a loss of biological resources in the lake.
The dataset consists of 155 measures of the ANC index on log scale, taken from different
lakes. The frequency histogram of this dataset is reported in Figure 3. The data can be
modeled using a mixture of two normal distributions

p(y|ω,μ1, σ1,μ2, σ2,w)

= ωN(y;μ1, σ
2
1 ) + (1 − ω)N(y,μ2, σ

2
2 ),

with the following improper, independent priors on the parameters defined over the re-
stricted domain where μ1 ≤ μ2:

p(μk) ∝ 1, p(σk) ∝ 1

σk

, k = 1,2;
p(ω) = Unif(0,1).

We apply the log transformation to σi and the logit transformation to ω so the target dis-
tribution has support R5. In our implementation, we study the posterior distribution on the
compact space C5 = [−1010,1010]5.
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Figure 3. Histogram of the acidity dataset.

We simulate 100,000 realizations from each chain and we retain in our sample every
tenth sample obtained. In order to investigate the effect of starting values we run, for each
algorithm, two independent chains, starting in different regions of the sample space (the
starting values are included in the Supplemental Materials). We compare the AM algo-
rithm and the RAPTOR algorithm with α = 0.3. In Table 4 we report the final parameter
estimates (posterior mean and standard deviation) together with the mean absolute au-
tocorrelation computed from the first 40 lags of the original (unthinned) chain. For each
parameter, RAPTOR has smaller autocorrelations and its acceptance rate, 84.3%, improves
significantly the average acceptance rate of AM which is 1.2%.

In Figure 4, left column, we report some of the posterior bivariate distributions of the
model parameters. The distributions appear unimodal, but asymmetric and with relatively
long tails. Even if in this example the target distribution is unimodal, RAPTOR produces
more efficient estimates than the AM algorithm.

In particular, in Figure 4, right column, we show slices of the final partition estimated
by the RAPTOR algorithm.

Table 4. Simulation results for acidity data. The standard deviations (sd) of the Monte Carlo estimators for
the posterior means are calculated from 1000 independent replicates of the simulation and the chain’s
average absolute autocorrelations are computed from the first 40 lags.

RAPTOR AM

Mean sd |ACF | Mean sd |ACF |

μ1 4.320 0.054 0.039 4.300 0.296 0.567
μ2 6.204 0.148 0.065 6.142 0.257 0.907
σ1 0.369 0.052 0.054 0.360 0.168 0.572
σ2 0.573 0.125 0.073 0.622 0.174 0.947
w1 0.580 0.059 0.051 0.546 0.112 0.920
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Figure 4. Acidity dataset: posterior bivariate distributions (left column) and a slice of the final state space par-
titioning (right column), estimated by RAPTOR for different pairs of parameters. All the nonvarying parameters
are fixed to their estimated expected value in each slice. Means of mixture components are marked with crosses.
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6. CONCLUSION

We propose a mixture-based approach for regional adaptation of the random walk
Metropolis algorithm. We assume an approximation of the target by a mixture of Gaus-
sians and use an online EM algorithm to estimate the mixture parameters using the stream
of data produced by the MCMC algorithm. In turn, the mixture approximation is used to
define an adaptive regional MCMC algorithm which compares favorably with its competi-
tors. In the future we would like to explore the possibility of using mixtures of Student-t
distributions as a way to further robustify the method against misspecification of the num-
ber of modes, K , and to broaden its applicability.

SUPPLEMENTAL MATERIALS

Theoretical proofs, code, and datasets: A zip archive containing an Appendix, C library
with implementations of the algorithms, simulation scripts, LOH and Acidity datasets
is available online. The file “Readme.txt” in the archive has a detailed description of the
archive. (supplement.zip)
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