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Abstract: The minimum description length (MDL) principle originated from data

compression literature and has been considered for deriving statistical model selec-

tion procedures. Most of the existing methods that use the MDL principle focus

on models with independent data, particularly in the context of linear regression.

This paper considers data with repeated measurements and studies the selection of

fixed effect covariates for linear mixed effect models. We propose a class of MDL

procedures that incorporate the dependence structure within individual or clus-

ter and use data-adaptive penalties that suit both finite and infinite dimensional

data generating mechanisms. Theoretical justifications are provided from both data

compression and statistical perspectives, where the covariance of random effects is

treated as known or estimated by maximum likelihood. Numerical experiments are

conducted to demonstrate the usefulness of the proposed MDL procedure and the

influence of the estimated covariance, and an application to U.S. EPA data for air

quality control is provided.

Key words and phrases: AIC, BIC, data compression, linear mixed effects, minimum

description length.

1. Introduction

The concept of a “true model” responsible for generating a given set of data

is usually introduced solely for theoretical purposes since, in practice, the mech-

anisms producing the data are often much more complex than the models that

are being contemplated. From a model selection perspective, a more reasonable

aim is to detect, in a class of models, the one that best approximates, or de-

scribes, the observed data — this is the approach adopted in this paper. The

initial model selection criteria were established from a “true model” perspective

for independent data (Schwarz (1978)), or for “best” prediction within a class

of candidate models (Akaike (1973)). However, a model selection criterion that

performs optimally under a wide variety of scenarios has been elusive so far,

this area of research continuing to grow rapidly even after more than 30 years

of development. For instance, there has been an increasing demand for criteria

applicable for correlated data models such as those encountered in longitudinal

studies (Pan (2001); Vaida and Blanchard (2005)).
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For a model under consideration and given a sample Yn of size n, both the

Akaike Information Criterion (AIC, Akaike (1973)) and the Bayesian Informa-

tion Criterion (BIC, Schwarz (1978)) take the form of a penalized log-likelihood

−2l(θ|Yn) + R(n, p), where θ ∈ Θ is the vector of parameters under focus and

p is the dimension of the parameter space Θ. Under independence, the AIC

and BIC penalties are, respectively, RAIC = 2k and RBIC = k log(n), where k

represents the number of free parameters to be estimated in the model. Both

AIC and BIC have become widely accepted concepts and a large literature has

been devoted to the study of their statistical properties and to the development

of alternative formulations. Modifications of the AIC have been proposed to

account for small sample sizes (AICc, Hurvich and Tsai (1989)), for overdisper-

sion in count data (QAIC, Burnham and Anderson (2002)). For fitting linear

mixed effects (LME) models, Vaida and Blanchard (2005) distinguished between

model selection for marginal and conditional models. In the latter case, they

propose the conditional AIC (cAIC) for selection of the random effects covari-

ates. Similarly, Pauler (1998) proposed a modification of BIC for correlated data

models, while Pan (2001) proposed a modification of AIC (named QIC) for gen-

eralized estimating equation models. Also relevant are likelihood ratio tests in

LME models, most of which aim for testing random effects based on restricted

likelihoods (Morrel (1998); Crainiceanu and Ruppert (2004); Wiencierz, Greven

and Küchenhoff (2011), among others).

It is well known that the AIC and BIC address different goals of model

selection — the former achieves asymptotic optimality and the latter possesses

selection consistency (e.g., Shibata (1981); Nishii (1984)). However, Yang (2005)

has shown that the main properties of AIC and BIC cannot be shared. This

motivates our proposed model selection criterion for models with correlated data

built upon the minimum description length (MDL) principle, as it attempts to

find a good balance between AIC and BIC. Our exposition of MDL principle

differs from the shrinkage-type variable selection based on penalized likelihoods.

The MDL, introduced by Rissanen (1978), originated from Shannon’s coding

theory (Shannon (1948)), as a general principle for statistical model selection

based on the code length needed to describe the data. From the MDL standpoint,

any probability distribution is considered for its ability to describe the data and

does not have to be identical to the distribution underlying the data-generating

mechanism. The connection between MDL and statistical analysis has matured

with the work of Barron, Rissanen and Yu (1998), Hansen and Yu (2001), Lee

(2000, 2001); Lu, Lund and Lee (2010) and Hansen and Yu (2003). Hansen

and Yu (2001, 2003) presented various frameworks in which the MDL principle

can be applied to (generalized) linear models with independent data. They also

pointed out numerous connections between MDL and AIC/BIC. In this work,
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we focus on the selection of fixed effects. The main contribution is to derive

valid model selection criteria based on the MDL principle for widely used LME

models. The proposed criteria systematically take into account the dependence

structure by interweaving the estimation of variance-covariance structure with

the code length calculation. This does not follow straightforwardly from the

independent case and has large effects on the performance of the criterion. The

methods developed for LME models are justified as a “valid” description length

in the sense of achieving the smallest redundancy in terms of Kullback-Leibler

divergence. Moreover, the proposed criteria possess the selection consistency of

BIC for finite-dimensional models, while the data-adaptive penalties are observed

to mimic the behavior of AIC as the number of covariates increases.

A brief general description of MDL, followed by the proposed criteria for

LME models, is presented in Section 2, with theoretical justifications in Section

3. Numerical experiments are conducted in Section 4 to illustrate the perfor-

mance of the proposal, and an application to the U.S. EPA data is presented in

Section 5. The paper ends with concluding remarks and suggestions for future

developments.

2. MDL for Linear Mixed Effects Model

2.1. A general description of MDL principle

The MDL principle relies on the length of the code used for data description

(or transmission) based on a given model. In general, Cover and Thomas (1991)

uncovered the correspondence between the description length function L(·) and
the distribution function. Suppose the data string y = (y⊤1 , . . . , y

⊤
n )

⊤ is modeled

by M = {f(y|θ) : θ ∈ Θ}, a class of models known up to θ. If θ is given,

then the description length of the data can be found using the density function

indexed by θ, L(y|θ) = − log fθ(y). However, since the parameter needs to

be estimated, it is necessary to transmit the estimator θ̂ too. A simple two-

stage framework consists of transmitting the estimate θ̂, followed by encoding

the data sequence with the distribution fθ̂ indexed by θ̂. Then the resulting code

length L(y) = L(y|θ̂) + L(θ̂) = − log fθ̂(y) + (k/2) log(n) is the same as BIC,

if the responses are independent. The term log(n)/2 reflects the precision used

to encode each parameter with a uniform encoder. However, the coding rule

suggests assigning short codewords to a common symbol and long codewords to

a rare symbol. If we believe that the parameter follows a distribution other than

uniform, then the minimum code length should be different from k log(n)/2.

Following the idea of mixture description length suggested by Hansen and

Yu (2003), we assume for the data a mixture distribution induced by the user-

defined probability distribution ω(θ) on the parameter space Θ. The mixture
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description length of y is then − logm(y) = − log
∫
fθ(y)ω(θ)dθ. If λ is a hy-

perparameter, ω(θ) = ω(θ|λ), then the code length used to transmit λ should

be added. Rissanen (1989) emphasizes that ω(θ) is not a Bayesian prior, but

“an artificial device to minimize the description length”. One can see that the

mixture MDL may take into account the “believed” structure of the parameter

space. This is a desirable feature that can be carried over to correlated data

models which are our primary interest. Due to the complex nature of the models

considered here, it is possible that not all parameters can be assigned suitable

distributions that lead to closed form calculation of m(y). In such situations, we

are often able to utilize appropriate distributions for the parameters of primary

interest, e.g., regression coefficients, while the estimates of the nuisance param-

eters (e.g., variance components) are plugged in and encoded accordingly. From

a model selection perspective, the challenge arises from appropriately assessing

the information contained in the dependent data.

2.2. Proposed MDL criteria for linear mixed effects models

The general framework of a LME model (Laird and Ware (1982)) is

yi = Xiβ + Zibi + εi,

where yi = (yi1, . . . , yini)
⊤ is the ni × 1 response vector for the i-th subject,

1 ≤ i ≤ n, Xi and Zi are (ni × p) and (ni × q) design matrices for fixed and

random effects, respectively, β is the p× 1 vector of fixed effects parameters, bi

is the q× 1 vector of random effects, and n is the number of subjects. It is often

assumed that the vector of random effects bi is N(0, D), the ni × 1 vector of

residuals, ϵi = (ϵi1, . . . , ϵini)
⊤, is N(0, Ri), and bi, εi′ are mutually independent

for all 1 ≤ i, i′ ≤ n. Throughout we use the canonical form Ri = σ2Ini for a

clear exposition. As a consequence, the cluster-specific response vectors yi are

independent yi ∼ N(Xiβ, ZiDZ⊤
i + σ2Ini), i = 1, . . . , n.

We focus on a marginal approach with the selection of the fixed effects co-

variates β, while the variance-covariance components of the random effects are

treated as nuisance parameters. We begin with the simple case in which only

β is unknown. To suitably transmit the unknown parameters, we apply the

mixture MDL principle. A convenient distribution choice for assigning code

length to β is the multivariate normal with covariance hyperparameter V , say

β ∼ N(0, V ), a conjugate prior in the Bayesian context. Then the marginal dis-

tribution of y has description length L(y|V ) = − logm(y|V ). Here V needs to

be specified by the user since the length function depends on it. Since we usu-

ally use the generalized least square estimator of β in practice, we assume that

V = cVar(β̂GLS) = c(
∑n

i=1X
⊤
i Σ−1

i Xi)
−1, where Σi = ZiDZ⊤

i + σ2Ini and c ≥ 0

is a scalar. This leads to a simplification of the code length expression, which
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remains only a function of the hyperparameter c. The MDL principle suggests

minimizing the length function with respect to c ≥ 0, yielding the estimate ĉ

which is plugged into the code length function and leads to the lMDL0 criterion
1

2

{ n∑
i=1

y⊤i Σ
−1
i yi − FSSσ + p

[
1 + log

(FSSσ

p

)]
+ log n

}
, if FSSσ > p,

1

2

n∑
i=1

y⊤i Σ
−1
i yi, otherwise,

(2.1)

where FSSσ = (
∑n

i=1 y
⊤
i Σ

−1
i Xi)(

∑n
i=1X

⊤
i Σ−1

i Xi)
−1(
∑n

i=1X
⊤
i Σ−1

i yi) and

(log n)/2 is the length of code needed for transmitting ĉ. The detailed derivation

is deferred to the Appendix. When FSSσ ≤ p, the estimate ĉ = 0 and the

“device” distribution of β becomes a point mass. This corresponds to the null

model with all fixed effects zero.

The first term of the lMDL0 criterion, (
∑n

i=1 y
⊤
i Σ

−1
i yi − FSSσ), is the log-

likelihood. From (2.1), lMDL0 has the same form of a penalized likelihood as

AIC and BIC, but its penalty is data-adaptive; in lMDL0 both the data size and

its dependence structure are taken into account. For instance, the penalty term

depends on FSSσ which involves the covariance matrices Σi, i = 1, . . . , n.

The criterion (2.1) is usually impractical, as in most applications all the

parameters, {β, σ2, D}, are unknown. Since for modeling purpose the focus is

on β, the variance-covariance components are treated as nuisance parameters.

Nevertheless, one still needs to consider the impact of the dependence structure

on the derivation of MDL criteria. We assume a normal distribution for β but we

modify the variance specification to include the parameter σ2. Thus Σi = σ2Wi,

where Wi = ZiD
∗Z⊤

i + Ini and D = σ2D∗. Then β ∼ N(0, σ2V ), where V =

c(
∑n

i=1X
⊤
i W−1

i Xi)
−1 with a slight abuse of notation. Put τ = σ2 and assume

an inverse gamma distribution as the coding device, τ ∼ InvGamma(a, 3/2), as

suggested by Hansen and Yu (2003). In this formulation the criterion depends

on D∗. However introducing a device to encode the p × p covariance matrix

D∗ does not yield a closed form criterion, nor is amenable to efficient numerical

computation. We thus adopt a two-stage principle to treat D∗ by plugging in

its consistent estimate and increasing the code length by s log(n)/2 (empirically

supported by simulations), where s is the number of distinct parameters used for

modeling D∗.

The marginal distribution of y now includes hyperparameters a and c. Fol-

lowing the MDL principle, we jointly estimate them by minimizing the length

function (details deferred to the Appendix), yielding the MDL criterion, denoted
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by lMDL,

1

2

{ n∑
i=1

log |Ŵi|+N log
(N ·RSS

Ŵ

N − p

)
+p log

[(N − p)FSS
Ŵ

pRSS
Ŵ

]
+(s+2) log n

}
,

if
FSS

Ŵ
/RSS

Ŵ
p/(N−p) > 1,

1

2

{ N∑
i=1

log |Ŵi|+N log
n∑

i=1

y⊤i Ŵ
−1
i yi + (s+ 1) log n

}
, otherwise,

(2.2)

where N =
∑n

i=1 ni,

FSSW =
( n∑

i=1

y⊤i W
−1
i Xi

)( n∑
i=1

X⊤
i W−1

i Xi

)−1( n∑
i=1

X⊤
i W−1

i yi

)
,

RSSW =

n∑
i=1

y⊤i W
−1
i yi − FSSW , (2.3)

and “ˆ” is generic notation for those quantities obtained when replacing D∗ with

its ML estimate. Similar to lMDL0, the second form is taken when ĉ = 0 leading

to the null model. Note that without the constant part, (2.2) is

−1

2

n∑
i=1

log |Ŵi| −
N

2
log

N ·RSS
Ŵ

N − p

which is the log-likelihood calculated using the estimate of D∗. The remaining

terms play the role of the penalty on model complexity and show the distinction

from AIC or BIC by incorporating the dependence structure inherent to the data.

3. Theoretical Justification

In this section we show that the MDL procedures not only possess the desir-

able property from data compression perspective, but also enjoy the consistency

of BIC and the asymptotic optimality of AIC for different underlying model sit-

uations due to the data-adaptive penalty forms. The latter also improve the

criterion’s finite sample performance, as illustrated by the simulation studies in

Section 4.

We begin our exposition from the point of view of data compression. Sup-

pose that fθ(y) is the true density function and Q(y) is any other density func-

tion with the corresponding code length (− logQ). To encode the data string

y, some extra code length is needed to transmit the parameters. The expected

value of this extra code length is called the redundancy of Q, defined as R(Q) =

Eθ{− logQ(y)− [− log fθ(y)]}, which coincides with the Kullback-Leibler diver-

gence between Q and fθ. Hansen and Yu (2001) pointed out that if Q can achieve
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the “smallest” redundancy possible for all members inM = {fθ(y) : θ ∈ Θ}, then
(− logQ) is a valid description length for the data string based on models from the

class M. Rissanen (1986) has shown that, if a
√
n-rate estimator θ̂(y) exists and

it has uniformly summable tail probabilities, Pθ{
√
n||θ̂(y) − θ|| ≥ log(n)} ≤ δn

for all θ and
∑

n δn ≤ ∞, then the redundancy for any density Q satisfies, for all

θ ∈ Θ except on a set with Lebesgue measure zero,

lim inf
n→∞

Eθlog[fθ(y)/Q(y))]

(k/2) log n
≥ 1, (3.1)

where k is finite and represents the number of free parameters to be estimated.

This implies that one needs at least (k/2) log n additional bits to encode the

data without knowing the true distribution fθ. If R(Q) = (k/2) log n[1 + o(1)],

we say that the redundancy of Q achieves the lower bound. If one focuses on the

primary parameters β, the following property can be obtained, see the Appendix

for details.

Theorem 1. If σ2 and D are known, conditional on {X1, . . . , Xn}, p is finite,

and n−1
∑n

i=1X
⊤
i Σ−1

i Xi → C as n → ∞ for some positive definite matrix

C, max1≤i≤n ni < ∞, then the redundancy of the density that induces lMDL0

achieves the lower bound.

Although the MDL principle is well motivated from data compression per-

spective, it is also of interest to assess whether the proposed MDL formulations

lead to statistically sensible model selection procedures. AIC and BIC cannot

share each other’s advantage. AIC achieves asymptotic optimality when the

true underlying model is infinite-dimensional, while BIC possesses selection con-

sistency when the “true” model is finite-dimensional. We show that the MDL

criteria asymptotically behaves similar to BIC, and we illustrate that the MDL

procedures can also adjust the data-adaptive penalties to include more covariates

when the model dimension becomes large, which mimics the AIC behavior. For

technical convenience, we consider the balanced design with ni = m < ∞, for

i = 1, . . . , n, and that all individuals are independent realizations. As argued

by Breiman and Freedman (1983, Lemma 2.1), there is no loss of generality by

assuming that the columns of the m×p design matrix, Xij , are independent and

identically distributed (i.i.d.), since the column space and σ-field do not differ

from those given by a general setting that assumes imperfectly correlated co-

variates. We thus take σ2
0 =

∑∞
j=1 β

2
j < ∞ and σ2

p =
∑∞

j=p+1 β
2
j for simplicity.

When the “true” model is finite-dimensional, there exists a p0, such that σ2
p = 0

for p ≥ p0.
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Theorem 2. Under the random design assumptions,

FSSσ =
N

σ2

[
c0σ

2
0 − cpσ

2
p +

p

N(cpσ2
p + σ2)

]
(1 + op(1)).

(N − p)FSSW

pRSSW
=
[N
p

c0σ
2
0 − cpσ

2
p

cpσ2
p + σ2

+ 1
]
(1 + op(1)).

for some positive constants c0 and cp, where the op(1) in both statements are

uniform over 1 ≤ p ≤ n/2, FSSσ is as in (2.1) and FSSW and RSSW are as in
(2.3).

From this theorem we can see that, when the model is finite-dimensional,
FSSσ = Op(N) and (N − p)FSS

Ŵ
(pRSS

Ŵ
)−1 = Op(N). Then lMDL0 and

lMDL share with BIC the consistency of selection. However, for moderate sam-
ples, it is not clear which method performs better and we compare their perfor-
mances via simulations in the next section. If the model is infinite-dimensional in

the sense that p may increase with sample size, it is easy to see that the penalty
in lMDL0 is more affected by p with (c0σ

2
0 − cpσ

2
p) decreasing. For lMDL, the

factor [c0σ
2
0 − cpσ

2
p][p(cpσ

2
p + σ2)]−1 reflects “the average signal to noise ratio for

the fitted model”, which balances between N and p and makes the penalty rel-
atively small with large p, thus making it more likely to include more covariates

and to mimic the behavior of AIC. This self-adjustment property of the proposed
MDL criteria makes them suitable for different data generating mechanisms.

Notice the connection between model selection based on information criteria

and the likelihood ratio test (LRT), where the penalty difference between the
considered full and reduced models can be compared to a LRT rejection region.
Unlike AIC/BIC, due to data-adaptive feature of MDL penalties, it is not easy

to appreciate such connections in an explicit form. The theoretical justification
with estimated D deserves further investigation due to allowing p to vary in the

range 1 ≤ p ≤ n/2.

4. Simulation Studies

Previous comparisons have shown that MDL has a more balanced perfor-
mance than AIC and BIC as its capability is close to the best of the two in a

wide range of scenarios for independent data (see, for example, Hansen and Yu
(2003); Craiu and Lee (2005)), and we expect similar findings for correlated data
models.

To demonstrate the application of MDL criterion for the linear mixed effects
models, we simulated data for n = 50 (respectively n = 80) clusters/individuals

each containing ni = 4 repeated measurements, 1 ≤ i ≤ n. The fixed covari-
ates contain an intercept and up to 12 more predictors generated from multi-
variate normal distributions with unit variances, where the autoregressive (AR)
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and compound symmetric (CS) correlation structures were used when simulating

these predictors. We considered AR(0.3) and CS(0.15) for the weaker correla-

tion, AR(0.5) and CS(0.4) for stronger cases. The whole set of fixed coefficients

were (.5, .6, .6, .6, .5, .6, .5, .5, .5, .4, .5, .5, .5)⊤ ∈ R13. We considered four underly-

ing models with increasing dimensions: the first four (x1 ∼ x4), the first seven

(x1 ∼ x7), the first ten (x1 ∼ x10), and all (x1 ∼ x13) fixed predictors, respec-

tively. In order to maintain the study computationally feasible, we examined

13 candidate models, beginning with an intercept and subsequently including an

additional variable. Two random effect covariates were included, one of which

coincided with the fixed covariate and the second independently generated from

standard normal, zij1 = xij1 = 1 and zij2 ∼ N(0, 1). The set of random effects

also include a random intercept and were multivariate normal with mean zero

and covariances cov(bi1, bi2) = 0.8, cov(bi1, bi3) = 0.5, cov(bi2, bi3) = 0.4. An

unstructured covariance was used in estimation throughout the simulation stud-

ies. The error vector εi was independently simulated from N(0, 2I5), implying a

relatively high noise level.

Our comparison focused on lMDL, as this is the criterion most likely to be

used in a realistic data analysis. The lMDL with REML estimate of D yielded

suboptimal results in our simulations (not reported for conciseness), thus we fo-

cused our comparisons on the lMDL with ML estimate. Of interest is assessing

the incurred effect on the model criterion accuracy when D is estimated. There-

fore, in addition to lMDL based on the ML estimate of D, we also include, for

reference, the lMDLD calculated based on the true value. We compare the se-

lection results with those of AIC and BIC based on 500 Monte Carlo replicates

for sample sizes n = 50 and n = 80 in Table 1 and Table 2, respectively. There

we see that the lMDL and lMDLD yield comparable results, providing empiri-

cal support for using the ML-estimated covariance. When the number of fixed

covariates is relatively low, e.g. the models contain only the first 4 predictors,

AIC always chooses larger models while BIC selects the correct model more of-

ten. The proposed lMDL’s performance tends to be closer to BIC in this case.

When p is increased to 7, the gap between lMDL and BIC becomes narrower,

but AIC still underperforms. For the case of 10 predictors, lMDL outperforms

both BIC and AIC in all settings. The last model containing all fixed covariates

clearly points to AIC as the winner, nevertheless, lMDL yields close results and

outperforms BIC. In this numerical study, we confirm the known fact that the

AIC and BIC work in opposite directions in terms of over-/under-selection across

various model dimensions. More importantly, we see that the performance of the

proposed lMDL criterion is more balanced and stable compared to AIC and BIC

for different model complexities, and may outperform both for some intermedi-

ate cases. This suggests the MDL proposal can be used as a safe alternative in
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Table 1. Comparison of lMDL criterion with AIC and BIC for LME with
the sample size n = 50 and cluster size 4, where lMDL is calculated with
the ML estimate of D, while lMDLD uses the true values of D. Shown
are the selection percentages (%) out of 500 Monte Carlo runs, F<T or
F>T corresponds to the final models that are under-selected or over-selected,
respectively, while F=T indicates that the true model is correctly identified.

True (T) x1 ∼ x4 x1 ∼ x7 x1 ∼ x10 x1 ∼ x13

Method AIC BIC lMDL lMDLD AIC BIC lMDL lMDLD AIC BIC lMDL lMDLD AIC BIC lMDL lMDLD

F<T 0.6 3.2 1 0.8 1.8 10 4.8 6 7.6 30.6 15.6 16.8 1.8 11.8 4.8 6.2

AR(.3) F=T 63.2 93.2 82.8 81.6 66 85.8 84 83.8 65.2 67 74.4 72.8 98.2 88.2 95.2 93.8

F>T 36.2 3.6 16.2 17.6 32.2 4.2 11.2 10.2 27.2 2.4 10 10.4 0 0 0 0

F<T 0.4 6.6 1.8 1.2 2.6 17.2 7.2 6.8 12 38.6 27.6 29.2 5.2 19.4 11.8 12.2

AR(.5) F=T 67.6 90.2 83.2 83.6 65.8 81 86.6 84.6 60.6 58.4 66.8 63.6 92.6 80.6 88.2 87.8

F>T 32 3.2 15 15.2 31.6 1.8 6.2 8.6 27.4 3 5.6 7.2 0 0 0 0

F<T 0.6 3.4 0.6 0.4 4 7.2 2.6 3.2 6.8 30.6 18.4 18.8 2.2 13.8 7.8 9

CS(.15) F=T 71.2 93.2 85.2 84.4 67.8 89 85.8 83.2 65.4 67 74.2 72.8 97.8 86.2 92.2 91

F>T 28.2 3.4 14.2 15.2 28.2 3.8 11.6 13.6 27.8 2.4 7.4 8.4 0 0 0 0

F<T 1.2 7.4 1.8 1.2 6 24.8 14.4 15.2 6 24.6 16 16.8 2.4 15.6 11.2 13.6

CS(.4) F=T 64 88.6 84.6 86.2 65.6 72.8 77.2 75.8 63.2 72.4 76.8 74.6 97.6 84.4 88.8 86.4

F>T 34.8 4 13.6 12.6 28.4 2.4 8.4 9 30.8 3 7.2 8.6 0 0 0 0

Table 2. Comparison of lMDL criterion with AIC and BIC for LME with
the sample size n = 80 using the same setting as in Table 1.

True (T) x1 ∼ x4 x1 ∼ x7 x1 ∼ x10 x1 ∼ x13

Method AIC BIC lMDL lMDLD AIC BIC lMDL lMDLD AIC BIC lMDL lMDLD AIC BIC lMDL lMDLD

F<T 0 0.4 0 0 0 2.6 0.8 0.6 0.8 12 5 8.6 0 2.8 1.4 1.8

AR(.3) F=T 70.6 96.6 88.4 89.8 76 96.4 92.8 90.4 73.6 85.2 86.2 85.8 100 97.2 98.6 98.2

F>T 29.4 3 11.6 10.2 24 1 6.4 9 25.6 2.8 8.8 4.6 0 0 0 0

F<T 0 0.4 0 0 0.6 5 2 2.6 3 18.8 10.8 11.8 0.6 5.8 3 3.6

AR(.5) F=T 72.2 97.6 91 89.6 66.8 92.2 86.8 88.2 72.6 80.4 85.8 84.2 99.4 94.2 97 96.4

F>T 27.8 2 9 10.4 32.6 2.8 11.2 9.2 24.4 0.8 3.4 4 0 0 0 0

F<T 0 0.2 0 0 0.4 2.4 1 2.4 2 12.6 7.4 7.8 0.2 1.6 0.8 1.4

CS(.15) F=T 72.6 97.6 89.8 90.2 67.8 96.6 92.4 91.6 71.6 85.4 87.6 86.8 99.8 98.4 99.2 98.6

F>T 27.4 2.2 10.2 9.8 31.8 1 6.6 6 26.4 2 5 5.4 0 0 0 0

F<T 0 0.8 0.2 0 0.8 7 3.4 2.8 1 9 5.6 5.8 0.2 2.4 1.4 0.8

CS(.4) F=T 69 96.4 88.6 87.8 70.4 90.8 89.8 88.4 71.2 88.8 89.6 90.2 99.8 97.6 98.6 99.2

F>T 31 2.8 11.2 12.2 28.8 2.2 6.8 8.8 27.8 2.2 4.8 4 0 0 0 0

practical data analysis where one has little idea about the underlying model and

is uncertain about the use of BIC or AIC.

5. Application to the U.S. EPA Data

We applied the proposed MDL procedure to the U.S. EPA data which have

been recently used to study the association between total nitrate concentration

in the atmosphere and a set of measured predictors that can serve as surrogates

for different nitrate formation and loss pathways (Ghosh et al. (2010)). The

data are from the U.S. EPA Clean Air Status and Trends Network (CASTNet),
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consisting of multiple sites with repeated measurements of pollution and mete-
orological variables. We based our analysis on the previous study conducted by
Bondell, Krishna and Ghosh (2010), and used the same subset of 15 sites in the
eastern portion of U.S. for the period of 2000 to 2004, with monthly average as
observations. The response was log(TNO3) as taken by Ghosh et al. (2010), and
the nine meteorological predictors were sulfate (SO4), ammonium (NH4), ozone
(O3), temperature (T), dew point temperature (Td), relative humidity (RH),
solar radiation (SR), wind speed (WS), and precipitation (P). To describe the
liner and seasonal and trends, we also included l(t) = t, sj = sin(2πjt/12), and
cj = cos(2πjt/12), j = 1, 2, 3. The response was centered and the predictors
standardized to remove the fixed intercept.

Since practitioners usually consider few possible random effects for the me-
teorological predictors, we set the random effects according to those obtained by
Bondell, Krishna and Ghosh (2010), including an intercept, a linear trend l(t),
and seasonal trends s1(t), c1(t), and c2(t). The emphasis of Bondell, Krishna
and Ghosh (2010) was the joint selection of fixed and random effects in LME by
adopting shrinkage penalty via the adaptive LASSO idea. Our goal was to choose
fixed predictors while keeping the same random effects. For estimation we use
an unstructured covariance for all models considered. We used AIC, BIC, and
the proposed lMDL procedures, conducting backward selection starting with a
full model containing all 16 fixed predictors. To assess the performance of differ-
ent methods, we calculated the 5-fold cross-validation likelihood based on 1,000
random splits (van der Laan, Dudoit and Keles (2004)). From Table 3, we see
that the lMDL differs from the proposal of Bondell, Krishna and Ghosh (2010)
by one variable, T , while the AIC (resp. BIC) selects more (resp. less) variables,
as expected. Although the cross-validated (CV) likelihood values slightly favor
BIC, the lMDL is comparable to that obtained by Bondell, Krishna and Ghosh
(2010) and outperforms AIC. It is known that the performance of linear models
can be heavily impacted by strong collinearity. Therefore we conducted a second
analysis by first inspecting the 16 predictors, and removing the NH4 that had
the strongest collinearity with all other variables. Then we applied AIC, BIC
and lMDL analogously to arrive at models shown in Table 4 with drastically
improved CV likelihoods. It is interesting to see that the lMDL now yields the
most favorable result in terms of CV likelihood, followed by AIC and then BIC.
The model chosen by lMDL is more parsimonious than the one by AIC, and
is more desirable in practice. This indicates that the performance of selection
criteria in this application is indeed confounded by collinearity, so that none of
them is able to yield the “best model” without dropping NH4. To conclude this
section, we also list the models chosen by lMDL based on the REML estimate
of D; they are identical to ones chosen by the recommended ML-based lMDL,
where the CV likelihood is no longer applicable.
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Table 3. Selection of fixed effects for the CASTNet data obtained via
different model selection criteria. All models include the random effects
{1, l(t), c1(t), s1(t), c2(t), s2(t)}.

Method Fixed Effects CV Likelihood

Bondell et al. SO4, NH4, O3, T, RH, P, l(t), s1(t), c1(t), s2(t) -697.29 (0.839)

AIC SO4, NH4, T, O3, RH, P, WS, l(t), s1(t), c1(t), s2(t), s3(t) -700.06 (0.912)

BIC SO4, NH4, O3, P, l(t), s1(t), c1(t), s2(t) -695.53 (0.875)

lMDL SO4, NH4, O3, T, RH, P, l(t), s1(t), c1(t), s2(t) -696.92 (0.926)

lMDLR SO4, NH4, O3, T, RH, P, l(t), s1(t), c1(t), s2(t) —

Table 4. Comparison of fixed effects selected for the CASTNet data after ex-
cluding the NH4 covariate that exhibits strong collinearity with all other vari-
ables. All models include the random effects {1, l(t), c1(t), s1(t), c2(t), s2(t)}.

Method Fixed Effects CV Likelihood

AIC SO4, T, O3, RH, P, WS, l(t), s1(t), c1(t), s2(t), s3(t) -641.24 (0.892)

BIC T, O3, RH, P, l(t), s1(t), c1(t), s2(t) -644.83 (0.864)

lMDL SO4, O3, T, RH, P, WS, l(t), s1(t), c1(t), s2(t) -640.42 (0.903)

lMDLR SO4, O3, T, RH, P, WS, l(t), s1(t), c1(t), s2(t) —

6. Conclusion

In this work we motivate the use of MDL principle for LME models, and pro-

vide theoretical justifications from both information and statistical perspectives.

These results partially explain its advantage across different model dimensions,

as evidenced by our numerical studies, and suggests that the MDL principle may

be used as a viable alternative, especially when one has little information about

the underlying model. In spite of many documented instances where the MDL

principle yields reliable model selection procedures, their use in the statistical

literature has been rather infrequent. We hope that our contribution to MDL

criterion for LME models will stimulate the growth and usage of this exciting area

of statistics. Theoretical investigation of the unknown random effects covariance

in the MDL context is challenging and deserves further study. Extensions to a

variety of complex data models, e.g., categorical response with generalized esti-

mating equation approach and spline representation models for functional data,

are potentially useful. We are also interested in adopting the MDL principle in

choosing tuning parameters in shrinkage-type variable selection approaches for

high-dimensional data, in which very few methods have been utilized besides AIC

and BIC.
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Appendix: Derivations and Technical Proofs

A.1. Derivations of MDL formulations

Derivation of lMDL0 (2.1). The marginal distribution of y is

m(y|V ) =

∫ ( n∏
i=1

1

(2π)ni/2|Σi|1/2
)
exp

{
−

n∑
i=1

1

2
(yi −Xiβ)

⊤Σ−1
i (yi −Xiβ)

}
× 1

(2π)p/2|V |1/2
exp

{
− 1

2
β⊤V −1β

}
dβ.

Taking the form V = c(
∑n

i=1X
⊤
i Σ−1

i Xi)
−1, the description length L(y|c) is given

by

p

2
log(1 + c) +

1

2

[
n∑

i=1

y⊤i Σ
−1
i yi

− c

1 + c

( n∑
i=1

y⊤i Σ
−1
i Xi

)( n∑
i=1

X⊤
i Σ−1

i Xi

)−1( n∑
i=1

X⊤
i Σ−1

i yi

)]
.

Minimizing the above expression w.r.t. c ≥ 0 yields

ĉ = max

(( n∑
i=1

y⊤i Σ
−1
i Xi

)( n∑
i=1

X⊤
i Σ−1

i Xi

)−1( n∑
i=1

X⊤
i Σ−1

i yi

)
p−1 − 1, 0

)
.

Substituting ĉ with an additional length (log n)/2 for the hyperparameter leads

to (2.1).

Derivation of lMDL (2.2). The marginal distribution of y is

m(y|a, c,D∗) =

∫ ∫
fβ,τ (y)ω(β, τ |D∗)dβdτ=

∫ {∫
fβ,τ2(y)ωD∗(β|τ)dβ

}
ω(τ)dτ

=

(
n∏

i=1

1

(2π)ni/2|Wi|1/2

)
|(
∑n

i=1X
⊤
i W−1

i Xi + V −1)−1|1/2

|V |1/2

×
√
a√
2π

(
RSSV + a

2

)−(N+1)/2

Γ

(
N + 1

2

)
,

where N =
∑n

i=1 ni is the total number of observations and RSSV =
∑n

i=1

y⊤i W
−1
i yi − (

∑n
i=1 y

⊤
i W

−1
i Xi)(

∑n
i=1X

⊤
i W−1

i Xi + V −1)−1(
∑n

i=1X
⊤
i W−1

i yi). Ig-

noring the terms that do not depend on the choice of the model, we have the
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code length function

L(y|a, c,D∗) =
1

2

n∑
i=1

log |Wi|+
1

2
log |

n∑
i=1

X⊤
i W−1

i Xi + V −1|

+
1

2
log |V | − 1

2
log a+

N + 1

2
log(RSSV + a).

Minimizing this with respect to a yields the solution â = RSSV /N . If one

assumes that V = c(
∑n

i=1X
⊤
i W−1

i Xi)
−1, the description length function is

L(y|c,D∗) =
1

2

n∑
i=1

log |Wi|+
p

2
log(1+c)+

N

2
log
( n∑

i=1

y⊤i W
−1
i yi−

c

1 + c
FSSW

)
.

In turn, we find the value of c to minimize this,

ĉ = max

(
(N − p)FSSW

pRSSW
− 1, 0

)
.

Insert the expression of ĉ here to get the shortest description length

L(y|D∗) =
1

2

n∑
i=1

log |Wi|+
p

2
log

(N − p)FSSW

pRSSW
+

N

2
log

N ·RSSW

N − p
.

Substituting an estimate of D∗ with an additional length s log n/2, where s is

the number of unknown parameters in D∗, achieves the lMDL (2.2).

A.2. Technical proofs of main theorems

Proof of Theorem 1. In our case Q(y) = m(y) and θ = β. Recall (2.1) and

FSSσ = (
∑n

i=1 y
⊤
i Σ

−1
i Xi)(

∑n
i=1X

⊤
i Σ−1

i Xi)
−1(
∑n

i=1X
⊤
i Σ−1

i yi). By Jensen’s In-

equality, the numerator in (3.1) is bounded by

2Eβ[log fβ(y)− logm(y)] = Eβ

[
lMDL1 −

n∑
i=1

(yi −Xiβ)
⊤Σ−1

i (yi −Xiβ)
]

= pEβ

[
log
(FSSσ

p

)]
≤ p log

[Eβ(FSSσ)

p

]
.

We then simplify EFFSσ as follows, where tr(·) denotes the trace,

Eβ

[
β̂⊤
GLS

( n∑
i=1

X⊤
i Σ−1

i Xi

)
β̂GLS

]
= Eβ

{
tr
[
β̂⊤
GLS

( n∑
i=1

X⊤
i Σ−1

i Xi

)
β̂GLS

]}
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= tr
[( n∑

i=1

X⊤
i Σ−1

i Xi

)
Eβ(β̂GLS β̂

⊤
GLS)

]
= tr

[( n∑
i=1

X⊤
i Σ−1

i Xi

)(( n∑
i=1

X⊤
i Σ−1

i Xi

)−1
+ ββ⊤

)]
= tr

[
Ip +

( n∑
i=1

X⊤
i Σ−1

i Xi

)
ββ⊤

]
= p+ β⊤

( n∑
i=1

X⊤
i Σ−1

i Xi

)
β.

The assumption n−1
∑n

i=1X
⊤
i Σ−1

i Xi → C for some positive definite matrix C

implies that β⊤(
∑n

i=1X
⊤
i Σ−1

i Xi)β = O(n). Then

lim inf
n→∞

Eβ[log fβ(y)− logm(y)]

(p/2) log n

≤ lim inf
n→∞

(p/2) log(1 + β⊤(
∑n

i=1X
⊤
i Σ−1

i Xi)β/p)

(p/2) log n
= 1,

together with (3.1), leads to the proposition.

Proof of Theorem 2. Since our interest is the marginal distribution of y, we

simplify the model to yi = Xiβ + ϵi, where ϵi = Zibi + εi. Since Wi is positive

definite, we can find Mi = M⊤
i such that Wi = M2

i . Then we can consider the

problem as a simple linear regression of M−1
i Xi on M−1

i yi, M
−1
i yi = M−1

i Xiβ+

M−1
i ϵi. Let y∗i = M−1

i yi, X
∗
i = M−1

i Xi and ϵ∗i = M−1
i ϵi. Here var(ϵ∗i ) = σ2Ini .

Let W = diag(W1, . . . ,Wn), M = diag(M1, . . . ,Mn), X
∗ = (X∗⊤

1 , . . . , X∗⊤
n )⊤,

and y∗ = (y∗⊤1 , . . . , y∗⊤n )⊤. Following Breiman and Freedman (1983), let

Rnp =
1

N − p

n∑
i=1

m∑
k=1

(y∗ik − ŷ∗ik)
2 =

RSSW

N − p
,

where ŷ∗ik =
∑p

j=1 x
∗
ijkβ̂j . Furthermore, let δ∗i =

∑∞
j=p+1X

∗
ijβj and S = S(n, p)

= ||(I −H)y∗||2 = (N − p)Rnp, where H = X∗(X∗TX∗)−1X∗T . Then

S = ||(I −H)(ϵ∗ + δ∗)||2 = S1 + S2 + S3,

where

S1 = ||(I −H)ϵ∗||2, S2 = ||(I −H)δ∗||2, S3 =< (I −H)ϵ∗, (I −H)δ∗ > .

Since ϵ∗ and δ∗ are independent of each other and also independent of (I −H),

the cross term S3 can be ignored. It is obvious that (I − H) is an idempotent

matrix with trace equal to (N − p). We follow the arguments for Lemma 2.2–2.5

in Breiman and Freedman (1983). We have S1 = σ2
∑N−p

j=1 Z2
j

.
= (N − p)σ2,

where Zj ’s are i.i.d. standard normal, and “
.
=” signifies asymptotic equivalence

in the sense of Breiman and Freedman (1983). Without loss of generality, the
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Xij can be regarded as i.i.d. standard normal. If the jth column of X is X(j),

the second term can be written as

S2 = ||(I −H)δ∗||2 = δ∗T (I −H)δ∗ =

∞∑
j=p+1

β2
jX

(j)TM−1(I −H)M−1X(j).

Since M is of full rank and rank(I − H) = N − p, S2
.
= σ2

p

∑N−p
j=i τjZ

2
j , where

τj ’s are the eigenvalues of M−1(I −H)M−1. Given (N − p) = O(n) and the fact

that all the matrices are blocked and each block possesses identical distributions,

one has tr{M−1(I − H)M−1} .
= (N − p)cp for some cp > 0. Consequently

S2/(N − p)
.
= cpσ

2
p. As for the term FSSW = ||Hy∗||2,

FSSW = ||y∗||2 + ||Hy∗||2 − ||y∗||2 =
∥∥∥ ∞∑

j=1

β2
jX

(j)∗ + ϵ∗
∥∥∥2 − (N − p)RSSW

.
=Nc0σ

2
0 +Nσ2 − (N − p)σ2 − (N − p)cpσ

2
p

= pσ2 +Ncoσ
2
0 −Ncpσ

2
p + pcpσ

2
p,

where tr(W−1)
.
= Nc0 for some c0 > 0. Therefore, we have

(N − p)FSSW

pRSSW
=
[N
p

c0σ
2
0 − cpσ

2
p + (p/N)(cpσ

2
p + σ2)

cpσ2
p + σ2

]
(1 + op(1)).

Noticing FSSσ = FSSW /σ2 leads to

FSSσ =
N

σ2

[
c0σ

2
0 − cpσ

2
p +

p

N
(cpσ

2
p + σ2)

]
(1 + op(1)),

and this completes the proof.
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