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ABSTRACT
One of the most widely used samplers in practice is the component-wise Metropolis–Hastings (CMH) sam-
pler that updates in turn the components of a vector-valued Markov chain using accept–reject moves gen-
erated from a proposal distribution. When the target distribution of a Markov chain is irregularly shaped, a
“good”proposal distribution for one region of the state–spacemight be a “poor”one for another region.We
consider a component-wisemultiple-tryMetropolis (CMTM) algorithm that chooses from a set of candidate
moves sampled from different distributions. The computational efficiency is increased using an adaptation
rule for the CMTM algorithm that dynamically builds a better set of proposal distributions as the Markov
chain runs. The ergodicity of the adaptive chain is demonstrated theoretically. The performance is studied
via simulations and real data examples. Supplementary material for this article is available online.

1. Introduction

Markov chain Monte Carlo (MCMC) methods are widely used
to analyze complex probability distributions, especially within
the Bayesian inference paradigm. One of the most used MCMC
algorithms is the Metropolis–Hastings (MH) sampler, first
developed by Metropolis et al. (1953), and later expanded by
Hastings (1970). At each iteration, the MH algorithm samples
a new candidate state from a proposal distribution which is
subsequently accepted or rejected. When the state–space of the
chain is high dimensional or irregularly shaped, finding a good
proposal distribution that can be used to update all the com-
ponents of the chain simultaneously is very challenging, often
impossible. The optimality results for the acceptance rate of the
Metropolis–Hastings algorithm (Gelman, Roberts, and Gilks
1996; Roberts and Rosenthal 2001) have inspired the develop-
ment of the so-called adaptive MCMC (AMCMC) samplers that
are designed to adapt their transition kernels based on the grad-
ual information about the target that is collected through the
very samples they produce. Successful designs can be found in
Haario, Saksman, and Tamminen (2001), Haario et al. (2006),
Turro et al. (2007), Roberts and Rosenthal (2009), Craiu, Rosen-
thal, and Yang (2009), Giordani and Kohn (2010), and Vihola
(2012), among others. Theoretical difficulties arise because the
adaptive chains are no longer Markovian so ergodicity proper-
ties must be proven on a case-by-case basis. Attempts at stream-
lining the theoretical validation process for AMCMC sam-
plers have been increasingly successful including Atchadé and
Rosenthal (2005), Andrieu and Moulines (2006), Andrieu and
Atchadé (2007), Roberts and Rosenthal (2007), Fort, Moulines,
and Priouret (2011), and Craiu et al. (2015). For useful reviews
of AMCMC,we refer to Andrieu andThoms (2008) andRoberts
and Rosenthal (2009). It is our experience that existing adaptive
strategies for MH in high-dimensional spaces may take a very
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long time to “learn” good simulation parameters so that the sam-
plers may not improve much before the simulation is ended.

We can increase the computational efficiency if, instead of
using a full MH to update all the components at once, we choose
to update the components of the chain one-at-a-time. The lat-
ter strategy, originally proposed byMetropolis et al. (1953), uses
an MH transition kernel for each component of the chain sep-
arately and the acceptance or rejection is based on the target’s
conditional distribution of that component given all the other
ones. More precisely, if we are interested in sampling from the
continuous densityπ(x) : X ⊂ Rd → R+; the component-wise
MH (CMH) transition kernel updates the ith component of the
chain, xi, using a proposal yi ∈ R, yi ∼ Ti(·|xi) and setting the
next value of the chain as

z =
⎧⎨
⎩

(x1, . . . , xi−1, yi, xi+1, . . . , xd ) w.p. αi
x w.p. 1 − αi,

where

αi = min
{
1,

Ti(xi|yi)π(yi|x[−i])

Ti(yi|xi)π(xi|x[−i])

}
,

and π(·|x[−i]) is the target conditional distribution
of the ith component given all the other components
x[−i] = (x1, . . . , xi−1, xi+1, . . . , xd ). The CMH replaces the
difficult problem of finding one good proposal in d dimen-
sions with that of finding d good one-dimensional proposals.
However, this seemingly easier task can also be challenging
when the conditional densities π(·|x[−i]) change significantly,
for example, have very different variances, as x[−i] varies. Intu-
itively, let us imagine that for a region of the sample space
of x[−i], the proposal Ti must have a higher spread for the
chain to mix well and a smaller one for the remaining part
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of the support. In this case, an adaptive strategy based on a
single proposal distribution cannot be efficient everywhere in
the support of π . Some success has been obtained in lower
dimensions or for distributions with a well-known structure
using the regional adaptive MCMC strategies of Craiu, Rosen-
thal, and Yang (2009) or Bai, Craiu, and Di Narzo (2011), but
extending those approaches can be cumbersome when d is
even moderately large. Other adaptive MCMC ideas proposed
for the CMH include Haario, Saksman, and Tamminen (2005)
where the authors propose to use component-wise random
walk Metropolis (RWM) and to use the component-specific
sample variance to tune the proposal’s variance, along the same
lines that were used by Haario, Saksman, and Tamminen (2001)
to adapt the proposal distribution for a joint RWM. Another
intuitive approach is proposed in Roberts and Rosenthal (2009)
who aim for a particular acceptance rate for each component
update.

The strategy we propose here aims to close the gap that still
exists between AMCMC and efficient CMH samplers. When
contemplating the problem, onemay be tempted to try to “learn”
each conditional distribution π(·|x[−i]), but parametric models
are likely not flexible enough while nonparametric models will
face the curse of dimensionality even for moderate values of d.
Note that here the difficult part is understanding how the con-
ditional distribution changes as x[−i] varies, which is a (d − 1)-
dimensional problem.

Before getting to the technical description of the algorithm,
we present here the intuitive idea behind our design. Within the
CMH algorithm imagine that for each component we can pro-
pose m candidate moves, each generated from m different pro-
posal distributions. Naturally, the latter will be selected to have
a diverse range of variances so that we generate some proposals
close to the current location of the chain and some that are fur-
ther away. If we assume that the transition kernel for each com-
ponent is such that among the proposed states it will select the
one that is most likely to improve the trade-off between accep-
tance probability and jump distance, then one can reasonably
infer that this approach will boost the mixing of the chain pro-
vided that the proposal distributions are reasonably calibrated.
To mirror the discussion above, in a region where Ti should
have small spread, one wants to have among the proposal dis-
tributions a few with small variances, and similarly in regions
where Ti should be spread out we want to include among our
proposal densities a few with larger variances. This intuition can
be tested using an approach based on the multiple-tryMetropo-
lis (MTM) that originated with Liu, Liang, and Wong (2000)
and was further generalized by Casarin, Craiu, and Leisen
(2013).

This article is organized as follows. Section 2 introduces a
component-wise multiple-try Metropolis (CMTM) algorithm.
In Section 3, we add adaption to CMTM, creating a new Adap-
tive CMTM (henceforth denoted ACMTM) algorithm in which
the proposal distributions get modified on the fly according to
the local shape of the target distribution, and we prove (Theo-
rem 1) convergence of this algorithm. Section 4 then applies the
adaptive CMTM algorithm to numerical examples, and com-
pares the efficiency of the adaptive CMTM algorithm to other
adaptive Metropolis algorithms.

2. Component-Wise Multiple-Try Metropolis

2.1. Algorithm

Assume that a Markov chain {Xn} is defined on X ⊂ Rd

with a target distribution π . The component-wise multiple-try
Metropolis (CMTM) will update the chain one-component-at-
a-time usingm proposals. Specifically, the kth component of the
chain is updated using proposals {y(k)

j : 1 ≤ j ≤ m} that are
sampled from {T (k)

j : 1 ≤ j ≤ m}, respectively. Let the value of
the chain at iteration n be Xn = x ∈ Rd . One step of the CMTM
involves updating every coordinate Xk of the chain in a fixed
order, for k ∈ {1, . . . , d}. The following steps are performed to
update the kth component:

1. Draw proposals y(k)
1 , . . . , y(k)

m where y(k)
j ∼ T (k)

j (·|xk) for
all 1 ≤ j ≤ m.

2. Compute

w(k)
j (y(k)

j , x) ∝ π(y(k)
j |x[−k])Tj(xk|y(k)

j )λ
(k)
j (y(k)

j , xk), (1)

for each 1 ≤ j ≤ m, where x[−k] denotes the state of the chain
without the kth component and λ

(k)
j (xk, y(k)

j ) is a nonnega-
tive symmetric function satisfying λ

(k)
j (xk, y(k)

j ) > 0 whenever
T (k)
j (y(k)

j |xk) > 0.
3. Select one y = y(k)

s out of y(k)
1 , . . . , y(k)

m with probability
proportional to w j(y(k)

j , x).
4. Draw x∗(k)

1 , . . . , x∗(k)
s−1 , x∗(k)

s+1 , . . . , x∗(k)
m where x∗(k)

j ∼
T (k)
j (·|y) and set x∗(k)

s = x.
5. Compute

w(k)
j (x∗(k)

j , y) ∝ π(x∗(k)
j |x[−k])Tj(y|x∗(k)

j )λ
(k)
j (x∗(k)

j , y), (2)

for each 1 ≤ j ≤ m.
6. Accept y with probability

ρ = min
[
1,

w1(y(k)
1 , x) + · · · + wm(y(k)

m , x)
w1(x∗(k)

1 , y) + · · · + wm(x∗(k)
m , y)

]
.

Wenote that in step 1, the proposal distributionsT (k)
j depend

only on the kth component of the current state of the chain.
Throughout the article, we use Gaussian distributions centered
at xk for the proposal distributions T (k)

j (y(k)
j |xk). More general

formulations are possible, but make intuitive adaptive schemes
more cumbersome and without clear benefits in terms of effi-
ciency. Having dependent proposals can be beneficial when the
proposal distributions are identical (Craiu and Lemieux 2007).
However, in the current implementation the proposals have dif-
ferent scales so the advantage of using dependent proposals is
less clear and will not be pursued in this article.

Whether a proposal distribution is “good” or not will depend
on the current state of the Markov chain, especially if the target
distribution π have conditional densities with varying proper-
ties, for example, different variances, across the target’s support.
In addition to choosing the m proposals, an added flexibility
of the CMTM algorithm is that we have freedom in choosing
the nonnegative symmetric maps λ

(k)
j as long as they satisfy

λ
(k)
j (xk, y(k)

j ) > 0 whenever T (k)
j (y(k)

j |xk) > 0. In subsequent
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Figure . Target density plot. Two-dimensional mixture of two normals.

sections, we show that the CMTM algorithm with Gaussian
proposals can benefit from choosing a particular form of the
function λ

(k)
j (xk, y(k)

j ).
Our choice of λ(k)

j is guided by a simple and intuitive princi-
ple. Between two candidate moves y(k)

1 and y(k)
2 that are equally

far from the current state we favor y(k)
1 over y(k)

2 if π(y(k)
1 |x[−k])

is greater than π(y(k)
2 |x[−k]), but if π(y(k)

1 |x[−k]) is similar to
π(y(k)

2 |x[−k]), we would like CMTM to favor whatever candidate
is further away from the current state. These simple rules lead us
to consider

λ
(k)
j (x, y) = T (k)

j (y(k)
j |xk)−1‖(y(k)

j − xk)‖α, (3)

where ‖ · ‖ is the Euclidean norm. Note that this choice of λ(k)
j is

possible because T (k)
j (y(k)

j |xk) is a symmetric function in xk and
y(k)
j as it involves only one draw from a normal distribution with

mean xk.
Replacing (3) in the weights Equation (1) results in

w(k)
j (y(k)

j , x) = π(y(k)
j |x[−k])T (k)

j (xk|y(k)
j )λ

(k)
j (y(k)

j , xk)

= π(y(k)
j |x[−k])‖(y(k)

j − xk)‖α. (4)

With this choice of λ, the selection probabilities are only depen-
dent on the value of the target density at the candidate point
y(k)
j and the size of the potential jump of the chain, where this

candidate accepted. From (3), we can see that the size of α will
negotiate the balance between the jump distance from the cur-
rent state and the weight of the new state under π . However,
while we understand the trade-off imposed by the choice of α

for selecting a candidate move, it is less clear how it will impact
the overall performance of the CMTM, for example, acceptance
rate or average (over coordinates and iterations) jump distance.

Therefore, it is paramount to gauge what are good choices
for the parameter α for the mixing of the CMTM chain. In
the next section, we approach this task via the average squared
jumping distance (ASJ) and the autocorrelation time (ACT).
To obtain the average squared jumping distance, we calcu-
late the squared jumping distance for each iteration, (Xn+1 −
Xn)

2 = ∑d
k j=1(Xn+1,k − Xn,k)

2 and average themover thewhole

Markov chain run. Note that if a new proposal is rejected for
the jth coordinate, then (Xn+1,k − Xn,k)

2 is equal to zero, so we
still add zero to total sum of the squared jumping distances and
divide the sum by the total number of iterations. The ACT can
be calculated component-wise for the kth coordinate using

τk = 1 + 2
∞∑
j=1

ρk j,

where for the kth coordinate ρk j = cov(X0,k,Xj,k)/var(X0,k)

is the autocorrelation at lag j, 1 ≤ k ≤ d. Higher ACT for a
Markov chain implies successive samples are highly correlated,
which reduces the effective information contained in any given
number of samples produced by the chain.

While ACT has long been known to relate directly with the
variance of the Monte Carlo estimators (Geyer 1992), the ASJ
incorporates both the jump distance and the acceptance rate, a
combination that has turned out to be useful in other adaptive
MCMC designs (e.g., Craiu, Rosenthal, and Yang 2009). Esti-
mates of ACT and ASJ are obtained by averaging over the coor-
dinates and the realized path of the chain.

2.2. Choice of α

To study the influence of the parameter α on the CMTM effi-
ciency, we have conducted a number of simulation studies, some
of which are described here.

We considered first a two-dimensional mixture of two nor-
mal distributions

0.5N(μ1, �1) + 0.5N(μ2, �2), (5)

where

μ1 = (5, 0)T

μ2 = (15, 0)T

�1 = diag(6.25, 6.25)
�2 = diag(6.25, 0.25).

An iid sample of size 2000 from (5) is plotted in Figure 1. We
run the CMTM algorithm repeatedly with λ j(x, y j) functions
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Figure . Proportion of proposal distribution selected. Coordinate : Red, blue, green, orange, and purple lines show behavior when σk, j = 1, 2, 4, 8, 16, respectively.

in (3) while changing the value of α from 0.1 to 15. We choose
m = 5 as the number of proposals for each component, while
the proposal standard deviations σk, j ’s are for each component
1, 2, 4, 8, and 16. As we see in Figure 2, the proportion of each
proposal distribution selected increases/decreases as α changes.
As expected, when α increases we see the selection percentages
of the proposal distributions with smaller σk, j ’s drop and those
with larger σk, j ’s increase. Figure 2 shows, with larger α’s, our
algorithm favors proposal distributions with larger scales, which
makes sense based on Equation (4).

Figure 3 shows how the ASJ and ACT change as the value of
α changes. We can infer that the highest efficiency is achieved
for α ∈ (2, 4).

We also examined a four-dimensionalmixture of two normal
distributions as our target density:

0.5N(μ1, �1) + 0.5N(μ2, �2),

where

μ1 = (5, 5, 0, 0)T

μ2 = (15, 15, 0, 0)T

�1 = diag(6.25, 6.25, 6.25, 0.01)
�2 = diag(6.25, 6.25, 0.25, 0.01).

The number of proposals, m = 5 and σk, j ’s of the set of pro-
posal distributions for each coordinate are 0.5, 1, 2, 4, and 8.
Figure 4 shows the results. We notice that the ACT measure-
ments are more noisy, while the ASJ ones yield a more precise
message that is in line with the previous example. Once again
we can see from Figure 4 that the average squared jumping dis-
tances are largest for α ∈ (2, 4).

Other numerical experiments not reported here agree with
the two examples presented and suggest that optimal values of α
are between 2 and 4. In the absence of theoretical results, we can-
not claim a universal constant α that would be optimal in every

Figure . Two-dimensional mixture of two Gaussians: ASJ (left panel) and ACT (right panel) for different values of α. For each α, the estimates are obtained from a single
run with , iterations.
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Figure . Four-dimensional mixture of two Gaussians: ASJ (left panel) and ACT (right panel) for different values of α. For each α, the estimates are obtained from a single
run with , iterations.

example. However, based on the available evidence, we believe
that a value of α in the (2, 4) range will increase the efficiency of
the chain. Henceforth, we fix α = 2.9 in all simulations involv-
ing CMTM.

3. Adaptive Component-Wise Multiple-Try Metropolis

3.1. CMTM Favors Component-Wise “Better” Proposal
Distributions

The intuition behind our construction as described in the intro-
duction, relies on the idea that CMTMwill automatically tend to
choose the “right” proposal among the m possible ones. In this
section, we verify empirically that this is indeed the case.

We consider the same four-dimensional mixture of normal
distributions from Section 2.2 as our target distribution and run
the CMTM algorithm. The target parameters are set to reflect
the numerical experiments reported in Section 4, that is, m =
20 and σk, j = 2 j with j ∈ {−10,−9, . . . , 9}. Table 1 reports the
selection probabilities computed from 10,000 samples for each
proposal and each coordinate.

Tables 2(a) and 2(b) present the proportion of candidate
selection and acceptance rates for each proposal. We compare
the proportion of proposals selected in the regions A1 = {X ∈
R4 : X2 < 8} andA2 = {X ∈ R4 : X2 ≥ 8}.While these regions
are defined based on knowing the target exactly, they do not
enter in any way in the design of the CMTM and are used here
only to verify that the sampler indeed automatically adapts to
local characteristics of the target. We can see that the CMTM
favors proposal distributions with smaller σk, j ’s when updating
the third coordinate in the region A2. This is appropriate given
that in that region largermoves for the third coordinate will tend
to be rejected. This pattern does not hold for the first two coor-
dinates for which larger moves are appropriate throughout the
sample space. This is in line with what is expected since the tar-
get variances (= 6.25) are the same in both directions in that
region and confirms that the CMTM algorithm tends to choose

the “better” proposal distribution out of the available choices
provided at each iteration.

3.2. Comparisonwith aMixture Transition Kernel

An astute reader may wonder about a different strategy for
using the different proposals that onemay have at one’s disposal.
Maybe the most natural alternative is a random mixture of the
component-wise Metropolis–Hastings (CMH) algorithms. The
set of proposal distributions used in both algorithms is the same
and we assign equal weights for the proposal distributions in the
mixture. The mixture CMH kernel selects each proposal at ran-
dom with equal probability, but since a single proposal is pro-
duced each time a coordinate is updated, it is different than a
CMTM algorithm with equal weights w j.

Table . CMTM: Frequency of selection for each proposal and each coordinate.

Coordinate

σk, j coord coord coord coord

2−10 . . . .
2−9 . . . .
2−8 . . . .
2−7 . . . .
2−6 . . . .
2−5 . . . .
2−4 . . . .
2−3 . . . .
2−2 . . . .
2−1 . . . .
20 . . . .
21 . . . .
22 . . . .
23 . . . .
24 . . . .
25 . . . .
26 . . . .
27 . . . .
28 . . . .
29 . . . .
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Table . Selection frequencies for each proposal and each coordinate calculated on two regions of the support, A1 = {X ∈ R4 : X2 < 8} (left table) and A2 = {X ∈ R4 :
X2 ≥ 8} (right table). The entries in boldface show the difference in selection frequencies for some of the proposals in the two regions of the support considered.

(a) A1 = {X ∈ R4 : X2 < 8} (b) A2 = {X ∈ R4 : X2 ≥ 8}
Coordinate Coordinate

σk, j coord coord coord coord σk, j coord coord coord coord

2−10 . . . . 2−10 . . . .
2−9 . . . . 2−9 . . . .
2−8 . . . . 2−8 . . . .
2−7 . . . . 2−7 . . . .
2−6 . . . . 2−6 . . . .
2−5 . . . . 2−5 . . . .
2−4 . . . . 2−4 . . . .
2−3 . . . . 2−3 . . . .
2−2 . . 0.00 . 2−2 . . 0.06 .
2−1 . . 0.01 . 2−1 . . 0.20 .
20 . . 0.04 . 20 . . 0.24 .
21 . . 0.17 . 21 . . 0.20 .
22 . . 0.28 . 22 . . 0.13 .
23 . . 0.23 . 23 . . 0.08 .
24 . . 0.13 . 24 . . 0.03 .
25 . . . . 25 . . . .
26 . . . . 26 . . . .
27 . . . . 27 . . . .
28 . . . . 28 . . . .
29 . . . . 29 . . . .

However, this comparison will help us determine whether
adjusting the selection probabilities of each proposal distribu-
tion is an improvement over equal probability selection.Our tar-
get distribution is the four-dimensional mixture of two normals
introduced in Section 2.2We usem = 20 and the same proposal
scales discussed in the previous section. In Tables 3(a) and 3(b),
we present the acceptance rates for each coordinate and each
proposal for the two samplers. The results in Table 3 suggest that
proposal distributionswith small variances have their proposals,
if selected, accepted with high frequency. In the case of mixture
of CMH this also means that if we were to guide our selection

of proposals based on acceptance rates, we would favor small
jumps. The selection step in the CMTMyieldsmore even accep-
tance probabilities across proposals. This leads us to believe that
the acceptance rates are not very informative about which vari-
ances are preferable in each coordinate.

To compare the efficiency of the two algorithms, we report in
Table 4 the ASJ and ACT calculated from 100 replicated runs as
well as the CPU time. We note that the average squared jump-
ing distance significantly improves with the CMTM compared
to themixture CMH.We can also see that for all the chain’s coor-
dinates theACT is an order ofmagnitude smaller for the CMTM

Table . Postselection acceptance frequencies. The NA’s in the table are because some proposals are never selected for some of the coordinates.

(a) Mixture of CMH (b) CMTM

Coordinate Coordinate

σk, j coord coord coord coord σk, j coord coord coord coord

2−10 . . . . 2−10 NaN NaN NaN NaN
2−9 . . . . 2−9 NaN NaN NaN NaN
2−8 . . . . 2−8 NaN NaN NaN NaN
2−7 . . . . 2−7 NaN NaN NaN .
2−6 . . . . 2−6 NaN NaN NaN .
2−5 . . . . 2−5 NaN NaN . .
2−4 . . . . 2−4 . NaN . .
2−3 . . . . 2−3 . . . .
2−2 . . . . 2−2 . . . .
2−1 . . . . 2−1 . . . .
20 . . . . 20 . . . .
21 . . . . 21 . . . .
22 . . . . 22 . . . .
23 . . . . 23 . . . .
24 . . . . 24 . . . .
25 . . . . 25 . . . .
26 . . . . 26 . . . .
27 . . . . 27 . . . .
28 . . . . 28 . . . .
29 . . . . 29 . . . NaN
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Table . Comparison of performance indicators thatwere computed from  inde-
pendently replicated runs. The tables contain statistics about the execution time
for a complete run (cputime), the average squared jump distance, and the ACT. For
CMTM, two cputimes are shown: fast (“vectorized”) and slow (no “vectorization” for
likelihood evaluations is used).

(a) Mixture of CMH

Min. Median Mean Max.

cputime(s) . . . .
sq. jump . . . .

coord coord coord coord
ACT . . . .

(b) CMTM
Min. Median Mean Max.

cputime(s)-fast . . . .
cputime(s)-slow . . . .
sq. jump . . . .

coord coord coord coord
ACT . . . .

than the mixture CMH. When programming the examples in
this article, we were able to take advantage of the R software’s
efficient handling of vector operations (the programs used are
included in the online supplementary materials for the article).
This explain the small difference in CPU time even as CMTM
requiresm timesmore evaluations of the target than themixture
CMH.

3.3. The Adaptive CMTMAlgorithm (ACMTM)

Given its propensity to choose a good candidate among those
put forward by the proposal distributions, it is reasonable to
infer that CMTM’s performance will be roughly aligned with
the most suitable proposal for the region of the state–space cur-
rently visited by the chain. The other side of the coin is that a
whole set of bad proposals will compromise the efficiency of the
CMTM algorithm. Therefore, we focus our efforts in develop-
ing an adaptive CMTM (ACMTM) design that aims to mini-
mize, possibly annihilate, the chance of having at our disposal
only poorly calibrated proposal distributions in any region of
the space.

The adaptation strategy is centered on findingwell-calibrated
values for the set Sk = {σk, j : 1 ≤ j ≤ m} for every coordinate
1 ≤ k ≤ d. Note that Sk varies across coordinates.

Consider an arbitrarily fixed coordinate k and suppose we
label them proposal distributions such that σk,1 < σk,2 < · · · <

σk,m. Changes in the kernel occur at fixed points in the simula-
tion process, called adaption points. We want our adaptive algo-
rithm to adapt less and less as the simulation proceeds, a con-
dition known as diminishing adaptation (DA) and long recog-
nized as being useful for establishing the chain’s valid asymptotic
behavior (Roberts and Rosenthal 2007). However, the adaption
strategy proposed abovemay not diminish in the long run, sowe
ensure the DA condition more directly by only adapting on ath
iteration (for a ≥ 1) with probability Pa = max(0.99a−1, 1√

a ).
Since Pa → 0, the DA condition is ensured. On the other hand,
we chose Pa so that it decreases slowly and has high values
at the beginning of the run when most adaptations will take
place. Furthermore, the Borel–Cantelli lemma guarantees that
the adaption will keep occurring for as long as we run the chain
since

∑∞
a=1 Pa = ∞. For instance, in 10,000 iterations we have

recorded between 60 and 70 adaptation attempts, a quarter of
which occurred within the first 2000 iterations. An adaption is
performed only if the selection frequencies are anomalous, as
detailed below.

Specifically, an adaption is required for the standard devia-
tions σk, j only if we notice that the candidates generated by the
proposal distribution T (k)

j with the smallest scale, σk,1, or the
largest one, σk,m, are under- or over-selected. For instance, sup-
pose that in an interadaptation time interval the candidates gen-
erated using σk,1 are selected more than 100 × 2

m% or less than
100 × 1

2m% of the time. If we denote q j the frequency of select-
ing the candidate generated using σk, j , we have mmax q j ≥∑

j q j = 1 ≥ mmin q j. Thus, the thresholds represent, respec-
tively, more than double the selection percentage for the least
selected proposal and less than half of the selection percentage
for the most popular proposal. A high selection percentage for
σk,1 suggests that the chain tends to favor, when updating the kth
coordinate, proposals with smaller scale so the ACMTM design
requires to: (1) halve the value of σk,1; (2) recalculate the inter-
mediate values, σk,2, . . . , σk,m−1 to be equidistant between σk,1
and σk,m on the log-scale. A low selection percentage for σk,1 will
ensure that the lowest scale is doubled up followed by step (2).

Similarly, if the largest element in Sk, σk,m, produces pro-
posals with selection percentages above or below the thresh-
oldsmentioned above, we will double or halve σk,m, respectively.
Each modification is followed by redistribution of the interme-
diate scales.

If neither the smallest nor the largest elements in Sk pro-
duce proposals that are outside the boundaries set by the two
thresholds, we wait until the algorithm reaches the next “adap-
tion point” and recalculate the proportion of each proposal can-
didate being selected during the last interadaption time interval.

Let us denote by m the number of multiple-try proposals, d
the number of coordinates for the Markov chain, β the length
of interadaptation period, Pa the probability to at each attempt,
and M the number of MCMC iterations. With these notations
we lay out the rules for the ACMTM update in Algorithm 1.

Finally, we make two minor technical modifications to our
ACMTM algorithm, to ensure the Containment condition of
Roberts and Rosenthal (2007), and thus allow us to prove the
convergence of our algorithm in Section 3.5. Namely:

(A1)We choose a (very large) nonempty compact subsetK ⊂
X , and forceXn ∈ K for all n. Specifically, we reject all proposals
Yn+1 
∈ K (but ifYn+1 ∈ K, then we still accept/rejectYn+1 by the
usual rule for the CMTM algorithm described in Section 2.1).
Correspondingly, the initial value X0 should be chosen in K.

(A2)We choose a (very large) constant L > 0 and a (very
small) constant ε > 0, and force the proposal scalings σk, j to
always be in [ε, L]. Specifically, if σn,k, j is the value of σk, j used at
the nth iteration in our adaptive CMTM algorithm, then if σn,k, j
would be greater than L, we instead set σn,k, j = L, while if σn,k, j
would be less than ε, we instead set σn,k, j = ε. Correspondingly,
the initial values σ0,k, j should all be chosen in [ε, L].

Remark 1. Our adaptive algorithm keeps the number of differ-
ent proposals at each iteration fixed at some constantm.We have
also experimented with allowing the valuem itself to be updated
adaptively. This strategy did not outperform the algorithmswith
fixedm = 20 design in any of the experiments conducted, so we
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Algorithm 1 Adaption Rules for ACMTM
Given: {σk, j : 1 ≤ k ≤ d, 1 ≤ j ≤ m} - initial proposal vari-
ances
Set initial values β = 100, Pa = 1
for t = 1 toM do

if t = 0 mod β then
Let a = t/β and u ∼ u[0, 1]
if u ≤ Pa then

Let σk, j ≤ · · · ≤ σk,m be the scales used and {Sk, j :
1 ≤ k ≤ d, 1 ≤ j ≤ m} be the selection rates computed since
the previous adaptation till now. Then

for k = 1 to d do
if Sk,m > 2/m then

σk,m = 2σk,m
Adjust {σk, j} so that they are equidistant

on log base 2 scale.
else if (Sk,m < 1/(2m)) ∧ (σk,1 <

σk,m/2) then
σk,m = σk,m/2
Adjust {σk, j} so that they are equidistant

on log base 2 scale.
end if
if Sk,1 > 2/m then

σk,1 = σk,1/2
Adjust {σk, j} so that they are equidistant

on log base 2 scale.
else if (Sk,1 < 1/(2m)) ∧ (2σk,1 <

σk,m) then
σk,1 = 2σk,1
Adjust {σk, j} so that they are equidistant

on log base 2 scale.
end if

end for
end if
Pa = max(0.99a−1, 1√

a )

end if
Perform CMTM update as described in Section 2

end for

do not pursue it further here. However, our theoretical justifi-
cation also covers this case as long as the possible m values are
bounded; see the remark following the proof of Theorem 1.

3.4. To Adapt or Not To Adapt?

We compare the ACMTMalgorithmwith the CMTMalgorithm
without adaption to see if the adaption indeed improves the effi-
ciency of the algorithm.We use the four-dimensionalmixture of
two normal distributions from Section 2.2 as our target distribu-
tion. The σk, j ’s for the nonadaptive algorithm are those given in
Section 3.1 and they are also the starting σk, j ’s for the adaptive
algorithm. Evidently, the final values are the same as the initial
ones for the nonadaptive version of the sampler. In Table 5, we
report the final values of the σk, j ’s obtained after the last adap-
tion in one random run of ACMTM. For this particular run, the
last adaption occurred right after 1800 iterations out of 10,000
iterations in total. We notice that the scales chosen vary from
component to component. For instance, the fourth component

Table . Adaptive CMTM: Final σk, j for each coordinate and each proposal used.

coord coord coord coord

prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .

of the chain has a smaller marginal variance so the adaption
will favor smaller scales. Similarly, the third component requires
both large and small proposal scales andwe can see that reflected
in the range of values for {σ3, j; 1 ≤ j ≤ m} which is different
than for the first two components.

The comparison in terms of ASJ and ACT is based on 100
independent replicates. The results shown inTable 6 indeed con-
firm the benefits of adaptation, as both ASJ and ACT are in
agreement regarding the superiority of ACMTM over CMTM.

When comparing the rate of selection for each proposal, as
reported in Tables 1 and 7, we observe the almost constant selec-
tion probabilities for the ACMTM which suggests that all the
proposal scales selected are important in the simulation. Finally,
we also compare the acceptance frequencies for the selected
proposals for CMTMandACMTM, as shown in Tables 3(b) and
8, respectively. The adaptive version of the algorithm clearly
makes better use of the generated proposals. There are no
longer any NA’s, that is, all proposals are occasionally accepted
in each coordinate. In fact, the acceptance rates for ACMTM
are quite even, again suggesting a balanced use of the proposal
distributions. In almost every instance, the acceptance rates
have gone up compared to the CMTM values in Table 3(b).

Table . Comparison of performance indicators thatwere computed from  inde-
pendently replicated runs. The tables contain statistics about the execution time for
a complete run (cputime), the average squared jump distance, and the ACT.

(a) Nonadaptive CMTM

Min. Median Mean Max.

cputime(s) . . . .
sq. jump . . . .

coord coord coord coord
ACT . . . .

(b) Adaptive CMTM
Min. Median Mean Max.

cputime(s) . . . .
sq. jump . . . .

coord coord coord coord
ACT . . . .
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Table . Adaptive CMTM: Rate of selection for each proposal and each coordinate.

coord coord coord coord

prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .

3.5. Convergence of Adaptive CMTM

We prove below the convergence of the adaptive CMTM algo-
rithm described in Section 3.3 As explained in Section 3.3,
Diminishing Adaptation condition holds by the construction of
the adaption mechanism.

Theorem 1. Consider the adaptive CMTM algorithm in Section
3.3 to sample from state–spaceX that is an open subset ofRd for
some d ∈ N. Letπ be a target probability distribution, which has
a continuous positive density on K with respect to the Lebesgue
measure. Then, the adaptive CMTMalgorithm converges to sta-
tionarity as in

lim
n→∞ sup

A∈F
|P(Xn ∈ A) − π(A)| = 0. (6)

Proof. By Roberts and Rosenthal (2007), the convergence of an
adaptive MCMC algorithm as in (6) can be ensured by two
conditions diminishing adaptation and containment. Our algo-
rithm satisfies diminishing adaptation (DA) as explained in

Table . ACMTM: Postselection acceptance probabilities for each proposal.

coord coord coord coord

prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .
prop . . . .

Section 3.3 So, it suffices to show that our algorithm satisfies the
containment condition.

The containment condition of Roberts and Rosenthal (2007)
(see also Craiu et al. 2015; Rosenthal and Yang 2016) states
that the process’s convergence times are bounded in probability,
that is, that {Mε (Xn, �n)}∞n=1 is bounded in probability, where
Mε (x, γ ) := inf{n ≥ 1 : ‖Pn

γ (x, ·) − π(·)‖ ≤ ε} for all ε > 0,
and Pn

γ is a fixed n-step proposal kernel.
We proceed similarly to the proof of Proposition 23 of Craiu

et al. (2015). By our assumption (A1), the process {Xn} is
bounded in probability, in fact ‖Xn‖ ≤ L for all n. To continue,
we let Y be the collection of all d × m matrices of real num-
bers in [ε, L]. Then by our assumption (A2),Y is compact. Here
each γ ∈ Y corresponds to a particular choice of MTM propos-
als, where γk, j equals the scaling of the jth proposal kernel for
the kth coordinate. And, our adaption rule is such that choos-
ing which γ ∈ Y to use for each iteration n is determined by the
past and/or current information obtained from the chain.

Next, let Pγ be the Markov kernel corresponding to one
full sequence of updates for all coordinates of the chain, in
sequence. Then Pγ is Harris ergodic to π , since it is known
that any nonadaptive CMTM algorithmmust converge to π (see
Liu, Liang, and Wong 2000; Casarin, Craiu, and Leisen 2013).
It follows that 
(x, γ , n) := ‖Pn

γ (x, ·) − π(·)‖ → 0 as n → ∞
for each (x, γ ), where ‖ · · · ‖ is the usual total variation dis-
tance convergence metric. Now, with our algorithm as set up
in Section 3.3, 
(x, γ , n) is a continuous function of (x, γ ):
indeed, it is a composition of single-coordinate MTM updates
each of which is continuous as in the proof of Corollary 11 of
Roberts and Rosenthal (2007).

To finish, we note (following Rosenthal and Yang 2016) that
by Dini’s theorem,

lim
n→∞ sup

x∈C
sup
γ∈Y


(x, γ , n) = 0

for any compact set C ⊂ X . Hence, for any ε > 0, there is
D < ∞ such that supx∈C supγ∈Y 
(x, γ ,D) < ε. It follows that
supx∈C supγ∈Y Mε (x, γ ) ≤ D < ∞. In particular, choosingC =
K from our assumption (A1), we know that P(Xn 
∈ K) = 0
for all n, so if D := supx∈K supγ∈Y Mε (x, γ ), then for any
δ > 0, P(Mε (Xn, �n) > D) = 0 ≤ δ for all n. In particular,
{Mε (Xn, �n)}∞n=1 is bounded in probability. Therefore, the Con-
tainment condition holds, thus finishing the proof. �
Remark 2. Our theorem is still valid if the number of proposals
m is allowed to change from iteration to iteration, providedm is
forced to remain between 1 and some large finite upper bound
M. Indeed, in that case Y is a discrete union ofM different col-
lections of d × m matrices, and 
(x, γ , n) is continuous sepa-
rately on each collection, and the rest of the proof can then pro-
ceed without further change.

4. Applications

In the following examples, we compare the CMTM and
ACMTM started with the same set of σk, j . We also compare
their performance with CMH and adaptive CMH. The design of
the latter is based on the theoretical results of Gelman, Roberts,
and Gilks (1996) and Roberts and Rosenthal (2001) who found

284 J. YANG, E. LEVI, R. V. CRAIU , AND J. S. ROSENTHAL



Table . Dyestuff batch yield (in grams).

Batch      
Batch      
Batch      
Batch      
Batch      
Batch      

that the optimal acceptance rate for one-dimensional Metropo-
lis algorithm is 0.44 and therefore adjusts the proposal variance
to get an acceptance rate close to this value for each coordinate.

First, we compare CMTM (with different number of pro-
posals m) with CMH, both with generic proposals. For CMTM

with m proposals, we set σk, j = 2 j−1−�m/2� for each coordi-
nate 1 ≤ j ≤ m. The CMH’s proposals are fixed at 1 for each
coordinate.

In second comparisons, we compare adaptive CMTM with
different number of proposals and adaptive CMH. The start-
ing σ ’s are identical to the ones used in their nonadaptive
counterparts.

For all the examples, we use the effective sample size (ESS)
and ESS/CPUtime (CPUtime is the time needed to complete
the simulation) to compare the efficiency of MCMC algorithms.
The latter is particularly relevant for algorithmcomparison since
it is a way to quantify the resource allocation efficiency. Since
ESS= M/τ , whereM is the number of samples obtained from a
Markov chain and τ is the ACT, one can see that ESS is equiva-
lent to ACT. Onemay intuitively interpret ESS the number of iid

Figure . Variance components model. For nonadaptive samplers, we compare CMTMwith  and  generic proposals and CMH represented by red, green, and blue lines,
respectively. For adaptive samplers, we compare between ACMTM with , , , or  proposals and the adaptive CMH represented by red, green, purple, black, and blue
lines, respectively. Top row: Comparison of ESS for nonadaptive (left panel) and adaptive (right panel) samplers. Bottom row: Comparison of ESS/CPU for nonadaptive
samplers (left panel) using “vectorized operations” for likelihood evaluations in CMTM, ESS/CPU for adaptive samplers with “vectorized operations” (middle panel), and
without (right panel).
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Figure . Banana-shaped distribution. For nonadaptive samplers, we compare CMTMwith  and  generic proposals and CMH represented by red, green, and blue lines,
respectively. For adaptive samplers, we compare between ACMTM with , , , or  proposals and the adaptive CMH represented by red, green, purple, black, and blue
lines, respectively. Top row: Comparison of ESS for nonadaptive (left panel) and adaptive (right panel) samplers. Bottom row: Comparison of ESS/CPU for nonadaptive
samplers (left panel) using “vectorized operations” for likelihood evaluations in CMTM, ESS/CPU for adaptive samplers with “vectorized operations” (middle panel), and
without (right panel).

samples from the target that would contain the same amount of
information about the target as the MCMC sample. The chains
are run for 10,000 iterations. The first 5000 samples obtained
are discarded while the remaining ones are used to calculate the
ACT. The reported ESS is based on averaging the ACT over 50
independent runs. TheRprogramsused to generate these results
are included in the online supplementary material.

4.1. Variance ComponentsModel

The Variance Components Model (VCM) is a typical hierarchi-
cal model, often used in Bayesian statistics community. Here,
we use the data on batch to batch variation in dyestuff yields.
The data were introduced in Davies (1967) and later analyzed
by Box and Tiao (1973). The Bayesian set-up of the Variance

Components Model on dyestuff yields is also well-described
in Roberts and Rosenthal (2004). The data record yields on
dyestuff of five samples, from each of six randomly chosen
batches. The data are shown in Table 9.

Let yi j be the yield on the dyestuff batch, with i indicating
which batch it is from and j indexing each individual sam-
ple from the batch. The Bayesian model is then constructed
as

yi j|θi, σ 2
e ∼ N(θi, σ

2
e ), i = 1, 2, . . . ,K, j = 1, 2, . . . , J,

where θi|μ, σ 2
θ ∼ N(μ, σ 2

θ ). θi’s are conditionally inde-
pendent of each other given μ, σ 2

θ . The priors for the
σ 2

θ , σ 2
e , and μ are: σ 2

θ ∼ IG(a1, b1), σ 2
e ∼ IG(a2, b2),

and μ ∼ N(μ0, σ
2
0 ). Letting �θ = {θ1, θ2, . . . , θK} and

D = {yi j : i = 1, 2, . . . ,K, j = 1, 2, . . . , J} , the posterior
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Figure . -dimensionalmixture distribution. For nonadaptive samplers, we compare CMTMwith  and  generic proposals and CMH represented by red, green, and blue
lines, respectively. For adaptive samplers, we compare between ACMTM with , , , or  proposals and the adaptive CMH represented by red, green, purple, black, and
blue lines, respectively. Top row: Comparison of ESS for nonadaptive (left panel) and adaptive (right panel) samplers. Bottom row: Comparison of ESS/CPU for nonadaptive
samplers (left panel) using “vectorized operations” for likelihood evaluations in CMTM, ESS/CPU for adaptive samplers with “vectorized operations” (middle panel), and
without (right panel).

density function of this VCMmodel is

f (σ 2
θ , σ 2

e , μ, �θ |D, a1, a2, b1, b2, σ 2
0 , μ0)

∝ (σ 2
θ )−(a1+1)e−b1/σ 2

θ (σ 2
e )−(a2+1)e−b2/σ 2

e e−(μ−μ0)
2/2σ 2

0

×
K∏
i=1

e(θi−μ)2/2σ 2
θ

σθ

K∏
i=1

J∏
j=1

e(yi j−θi )
2/2σ 2

e

σe
.

We set the hyperparameters a1 = a2 = 300 and b1 = b2 =
1000, making inverse gamma priors very concentrated and let
σ 2
0 = 1010 and μ0 = 0. The variance components are updated

on the log scale.
Figure 5 shows ESS and ESS/CPU (averaged over 50 runs)

of the CMTM algorithms with and without adaption and
of standard CMH and adaptive CMH algorithm. For both

CMTM algorithms (with and without adaption), the start-
ing proposals were generic for every coordinate as described
above.

The plots for nonadaptive samplers clearly show that CMTM
with 30 proposals is the most efficient in ESS and even when
CPU time is taken into account it still performs better than
CMH. Similar results are evident for adaptive samplers. Clearly
adaptive CMTM with 20 or 30 proposals have much better ESS
than adaptive CMH. When CPU time is considered than adap-
tive CMTM with 20 proposals is the most efficient.

4.2. “Banana-Shaped” Distribution

The “banana-shaped” distribution was originally presented in
Haario, Saksman, and Tamminen (1999) as an irregularly
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shaped target that may call for different proposal distributions
for the different parts of the state–space.

The target density function of the “banana-shaped” dis-
tribution is constructed as fB = f ◦ φB, where f is the
density of d-dimensional multivariate normal distribution
N(0, diag(100, 1, 1, . . . , 1)) and φB(x) = (x1, x2 + Bx21 −
100B, x3, . . . , xd ). B > 0 is the nonlinearity parameter and the
nonlinearity or “bananacity” of the target distribution increases
with B. The target density function is

fB(x1, x2, . . . , xd ) ∝ exp[−x21/200 − 1
2
(x2 + Bx21 − 100B)2

−1
2
(x23 + x24 + · · · + x2d )].

We setB = 0.01 and d = 10, the results are shown in Figure 6
(averaged over 50 runs starting with generic proposals).

Focusing on ESS plots, CMTM, and adaptive CMTM with
30 proposals clearly outperform standard CMH and adaptive
CMH in all coordinates. When CPU time is taken into account
then CMH and adaptive CMH performs a little better than
CMTM algorithms on most coordinates. However on coordi-
nate 1, CMTMmethods performmuch better thanCMHs, actu-
ally by a factor of 2.5 or more.

4.3. Mixture of 20-Dimensional Gaussians

We are also examining the gains brought by the ACMTM in the
case of bimodal distributions. We consider the mixture

0.5N20(μ1, �1) + 0.5N20(μ2, �2),

where

μ1 = (5, 5, 0, 0, 0, 0, 10, 15, 0, 0, 5, 5, 0, 0, 0, 0, 10, 15, 0, 0),

μ2 = (10, 10, 0, 0, 0, 0, 7, 20, 0, 0, 10, 10, 0, 0, 0, 0, 7, 20, 0, 0),

�1 = diag (16.00, 16.00, 0.25, 4.00, 1.00, 0.01, 9.00, 16.00, 9.00,

0.01, 16.00, 16.00, 0.25, 4.00, 1.00, 0.01, 9.00, 16.00, 9.00, 0.01),

�2 = diag (16.00, 16.00, 6.25, 4.00, 1.00, 4.41, 9.00, 16.00, 0.25,

0.01, 16.00, 16.00, 6.25, 4.00, 1.00, 4.41, 9.00, 16.00, 0.25, 0.01).

In this example, CMTMmethods with 30 proposals (in each
coordinate) is the most efficient in ESS and ESS/CPU. The com-
parison is reported in Figure 7. We note that the adaptive and
nonadaptive versions of CMTM perform much better than the
CMHs counterparts.

The ESS/CPU calculations suggest that the best performance
is achieved when the number of chainsm is between 20 and 30.
When programming the examples (the programs are available as
online supplemental material), we have taken advantage of the
software R’s ability to handle vectorial operations much more
efficiently than loops. When similar savings can be obtained, we
recommend using m = 20 in practice. In instances where the
likelihood is expensive to compute due to the large number of
observations in the data, embarrassingly parallel strategies could
be used efficiently in conjunction with ACMTM (Neiswanger,
Wang, and Xing 2013; Scott et al. 2013;Wang and Dunson 2013;
Reihaneh, Craiu, and Rosenthal 2016).

It is also important to note that in all three examples
described above adaptive CMTM is always more efficient
than CMTM with generic proposals. CPU time for both
are about the same but ESS generally much larger for the
latter. Hence, adaptive CMTM generally produces much
better results and it is advisable to use it for real-world prob-
lems especially since it only requires a few lines of extra
code.

5. Conclusion and Discussion

It is known that adaptive algorithms can be highly influenced
by initial values given to their simulation parameters and by
the quality of the chain during initialization period, that is, the
period during which no modifications of the transition kernel
take place. ACMTM is no exception, but some of its features
can be thought of as means toward a more robust behavior.
For instance, the fact that we can start with multiple proposals
makes it less likely that all initial values will be poor choices
for a given coordinate. The ACMTM is motivated by situations
in which the sampler requires very different proposals across
coordinates and across regions of the state–space. In such sit-
uations, traditional adaptive samplers are known to fail unless
special modifications are implemented (Craiu, Rosenthal, and
Yang 2009; Bai, Craiu, and Di Narzo 2011), but even these
tend to underperform when the sample space dimension is
high.

The adaption mechanism is very rapid as the scales can
change in multiple of 2’s and is also stable since modifications to
the kernel occur only if over selection from one of the boundary
scale proposals is detected. Thus, even if proposal scales are not
perfect but good enough, they would not change much under
this adaptive design.

The increase in CPU time is the price we pay for the added
flexibility of havingmultiple proposals and the ability to dynam-
ically choose the ones that fit the region of the space so that
acceptance rate and mixing rates are improved. And while this
tends to attenuate the ACMTM’s efficiency, one cannot find
among the algorithmswe used for comparison in this article one
that is performing better on average even after taking CPU time
into account. However, we recommend using ACMTM in dif-
ficult sampling problems (e.g., multimodal target, variable vari-
ances for the conditional distributions across the sample space)
when other approaches do not perform well.

Finally, it is the authors’ belief that AMCMC samplers will be
used in practice more if their motivation is intuitive and their
implementation is easy enough. We believe that the ACMTM
fulfills these basic criteria and further modifications can be eas-
ily implemented once new needs are identified.

Supplementary Materials

function_description.pdf contains a description of
the R program used for the examples in the article.

CMTM_sampling_fun.pdf contains the R program
used for the examples in the article.

target_densities_used.R contains the R program
that implements the method for the targets used in the article.
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