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TUNING OF MARKOV CHAIN MONTE CARLO
ALGORITHMS USING COPULAS

Radu V. Craiu1

Algoritmii de tipul Metropolis-Hastings se constituie ı̂ntr-una din-
tre cele mai folosite clase de algoritmi Monte Carlo cu lanţuri Markov
(MCMC). Eficienta implementare a acestor algoritmi depinde ı̂n mare măsu-
ră de abilitatea utilizatorului de a crea o bună distributie de propunere. In
această lucrare propunem o metodă de construcţie a distribuţiei de prop-
unere bazată pe modele cu copule. Dacă distribuţia de interes π are suportul
ı̂ntr-un spaţiu de dimensiune d > 2, construim o distribuţie de propunere
bazată pe aproximarea distribuţiilor marginale bi-dimensionale ale lui π
obţinute dintr-o selecţie iniţială. Eficacitatea metodei este ilustrată prin
simulări.

The Metropolis-Hastings class of algorithms is probably the most
widely used in the Markov chain Monte Carlo (MCMC) universe. The
efficiency of such algorithms hinges on the statistician’s ability to consider
a good proposal distribution. We consider here an approach in which the
tuning of the proposal distribution is performed using approximations build
via copulas. In multivariate settings where the target distribution π has sup-
port of dimension d > 2 we consider an proposal build upon approximations
of the bivariate marginals which are estimated from the available samples.
We use simulations to show the gain in efficiency produced by the method.

Keywords: Composite likelihood, Copula models, Frank copula, Markov
Chain Monte Carlo, Metropolis-Hastings algorithm.
MSC2000: 53C05.

1. Introduction of Markov chain Monte Carlo Methods

The development of Markov chain Monte Carlo (MCMC) methods within
the statistical community has been spectacular in the last two decades. Gen-
erated by the work of [16] and [12] the methodology has enhanced enormously
the applicability and impact of Bayesian inference in realistic statistical anal-
yses. The main original purpose of the Monte Carlo method is approximating
integrals of the type

I =

∫
f(x)π(x)dx (1)
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where π is a density of interest and f is an integrable function with respect
to the measure induced by π. Specifically, when computing analytically (1) is
impossible, the Monte Carlo paradigm recommends generating M independent
and identically distributed (iid) samples {x1, . . . , xM} from the density π and
approximating (1) with

ÎM =
1

M

M∑
m=1

f(xi) (2)

since law of large numbers guarantees the almost sure convergence of ÎM to I.
Sometimes, obtaining iid samples from π is an impossible task. The

fundamental idea shift behind MCMC is to construct an ergodic Markov chain
whose stationary distribution is exactly π and use the realizations obtained
along the path of the chain as the Monte Carlo sample. (Throughout the
paper, we will use a slight abuse of notation, using π to denote both the
distribution and the density of interest.)

Theoretically, if the Markov chain is aperiodic, irreducible and positive
Harris recurrent with invariant distribution π then the ergodic theorem implies
that with probability one ÎM → I as M → ∞; for definitions see [17]. The
popularity of MCMC is explainable by the ease with which such a chain can
be constructed when π is known up to a normalizing constant, a situation that
occurs very often in Bayesian statistical inference.

In practice, after an initialization period, also known as burn-in period,
the realizations of the chain are collected as dependent samples following dis-
tribution π. One of the most used MCMC methods is the Metropolis-Hastings
(MH) algorithm that builds the Markov chain using an accept-reject strategy
for each proposed new state of the chain. Each of the potential new states
are sampled from a proposal distribution q which must be easy to sample from
and is allowed to depend on the current state of the chain. More precisely, if
the chain is initialized at X0 = x0 then at any time t ≥ 1 the MH algorithm
performs the following steps:

(1) Generate a proposal y ∼ q(·|xt−1),

(2) Compute the acceptance ratio r = min
{

1, π(y)q(xt−1|y)
π(xt−1)q(y|xt−1)

}
,

(3) With probability r, set Xt = y and otherwise Xt = xt−1.

Popular variants of the MH algorithm are the random walk Metropolis
(RWM) in which y = x + ε and ε is generated from a spherically symmetric
distribution, e.g., ε ∼ N(0, Σ), and the independent Metropolis (IM) in which
q(y|x) = q(y), i.e. q does not depend on the current state of the chain, x.
Generally, the RWM is used in situations in which we have little idea about
the shape of the target distribution and therefore we need to ”totter” through
the sample space. The opposite situation is one in which we have a pretty good
idea about the target π and we are able to produce a credible approximation
q which can be used as the proposal in the IM algorithm.



Tuning of Markov Chain Monte Carlo algorithms Using Copulas 7

The speed and modes of convergence of the MH chains have been studied
by [15], [20],[19] and [13], among others. Despite understanding theoretically
quite well the general convergence properties of the MH algorithms, in prac-
tical implementations the user is left with the difficult task of determining
and tuning an appropriate proposal distribution. For instance, in the case of
a RWM one has to choose carefully the variance Σ so that a good balance is
achieved between the acceptance rate and the chain’s autocorrelation function.
Similarly, in the case of an IM algorithm, one needs to find a distribution q
that satisfies two non-trivial conditions: 1) it approximates reasonably well
the target π and 2) it can be easily sampled from. In practice, the process of
determining a good proposal requires a back-and-forth strategy in which one
starts with an initial proposal and subsequently makes a number of modifica-
tions while trying to assess their influence on the performance of the algorithm.
This ”tune-up” requires re-starting the simulation process a number of times
and can be time-consuming and is often frustrating. The difficulties are ampli-
fied when the target π has support in a high dimensional space. It is thus useful
to develop more automatic or generic ways to update the proposal distribution
for a wide spectrum of MCMC applications where MH is needed.

A recent promising direction is offered by the class of adaptive MCMC
(AMCMC) algorithms in which the proposal distribution is changed on the
go at any time t using the information contained in the samples obtained up
to time t. Such an approach does not require re-starting of the chain, can
be fully automatic but requires careful theoretical analysis since, by using the
past realizations of the chain (and not only the current state), the process
loses its Markovian property and asymptotic ergodicity must be proven on
a case-by-case basis. For more details regarding the theoretical analysis and
implementability of AMCMC we refer the reader to [10], [18],[21],[2],[8], [3],
[4] and references therein.

In the present paper we propose an alternative approach in which we
construct a proposal for π based on a number of two-dimensional marginal
distributions built using copula models. In Section 2 we detail the construc-
tion of the approximation and the performance of the method is tested with
simulations in Section 3. Conclusions and plans for further work are in the
last section of the paper.

2. Copula-based tuning for MCMC

In this section we assume that of interest is sampling from a distribution
π that has support in Rd and is known up to a normalizing constant. We
also assume that from an initial stage of the simulation we have available a
sample of size M , {x1, . . . , xM}, that has been obtained with a generic MCMC
algorithm designed to sample from π. For instance, this could be a RWM using
a Gaussian proposal with a variance chosen so that the acceptance rate is at
least 10%.
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Assuming that the target has support of dimension d = 6 we can write

π(x) = π12(x1, x2|x3, . . . , x6)π34(x3, x4|x5, x6)π56(x5, x6).

For an arbitrary dimension d,

π(x) = πd,d−1(xd, xd−1|xd−2, . . . , x1) . . . πi,i−1(xixi−1|xi−2, . . . , x1) . . .

The last term in the above product is either π1(x1) or π12 = π(x1, x2) depend-
ing on whether d is odd or even. The approximation proposed here is two-fold:
on one hand we approximate each conditional bivariate distribution using a bi-
variate distribution (ignoring the conditions), i.e. πi;i−1(xi, xi−1|xi−2, . . . , x1) ≈
hi(xi, xi−1) and on the second hand we set

hi(x, y) ≈ n(x|µ1i, σ1i)n(y|µ2i, σ2i)cθi
(Φ((x− µ1i)σ

−1
1i ), Φ((x− µ2i)σ

−1
2i )),∀i,

(3)
where n(·|µ, σ) is the density of a Gaussian with mean µ and variance σ2 and
cθ(x, y) is the density of a parametric copula density function characterized by
the parameter θ.

Essentially, model (3) considers bivariate models in which the marginals
are Gaussians and the dependence structure is fitted via a copula model. The
choice of the copula family to be used in the approximation is very important
as has been discussed by [7]. Throughout the paper we consider the Frank’s
copula due to its flexibility at modeling both negative and positive dependen-
cies. An adaptive MCMC algorithm due to [10] considers the approximation
via a multivariate Gaussian distribution whose parameters are continuously
updated based on all the samples available. In large dimensions, learning the
entire d× d covariance matrix can be a lengthy process and by approximating
the d-dimensional joint distribution using bivariate joint distributions we aim
to accelerate the learning process without a great loss of efficiency.

Due to lack of closed form solutions for the copula parameter estimators,
the copula-based approach can be computationally intensive if one continu-
ously adapts the proposal distribution. Instead, we consider a simpler strat-
egy, in which the samples obtained during an initialization period are used for
tuning the copula model parameters (including the parameters of the marginal
normals) only once.

Similar to [11] one can also approximate the marginal bivariate distribu-
tions using bivariate Gaussians with parameters estimated recursively from the
available samples. The recursive updating of the parameters can be performed
simultaneously while running the chain since parameters can be estimated in
closed form, thus minimizing the computational load. This approach is not
explored here.
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Remark 2.1. The construction used in (3) is in the same vein of composite
likelihood approximations based on bivariate marginals or conditional distri-
butions as discussed by [5] and [22]. However, here we seek an accurate ap-
proximation of the whole conditional bivariate distribution rather than just
around its mode.

Remark 2.2. It should be noted that recent developments in copula method-
ology allow more complicated models than (3). For instance one could allow
the copula parameter to vary with one or more of the variables we condition
on, using estimation approaches similar to [6] or [1]

3. Simulation study

We consider a scenario in which the initial M samples from π = Nd(µ, Σ)
are obtained using a Metropolis-within-Gibbs with a systematic scan in which
the chains updates one coordinate at a time. For a description of the Metropolis-
within-Gibbs sampler see [9] and [20]. The proposal for each coordinate is a
RWM with a conservatively chosen proposal distribution (to ensure a reason-
able acceptance rate). By integrating the information contained in the M
samples we also want to increase the efficiency of the algorithm. It is known
that updating blocks of coordinates in a Gibbs sampler increases the efficiency
of the algorithm [14]. Therefore, we use the information about π contained
in the M samples and construct a Metropolis-within-Gibbs algorithm which
uses an independent proposal to simultaneously update two coordinates at a
time. The proposal distribution for each pair of variables is obtained using
the copula-based approximation method proposed in Section 2. We consider
the case when d = 6 and use M = 3000. In Scenario I we assume µ = 0,
Σ = aaT + Id where a ∼ Nd(0, Id) is a random d-dimensional random vector
and Id is the d-dimensional identity matrix. We estimate the parameters µ1i,
µ2i, σ1i, σ2i and θi , for i = 1, 2, 3 corresponding to the joint distributions of
(x1, x2), (x3, x4) and (x5, x6). As a benchmark, we also consider obtaining the

estimators µ̂ and Σ̂ using the available sample of size M and using as the pro-
posal Nd(µ̂, Σ̂). Obviously, the latter approach is optimal when π is Gaussian
but may be inefficient otherwise. In Scenario II we keep the same Gauss-
ian marginals but the dependence structure is build upon a Clayton copula.
More precisely, we use Clayton copulas with parameters 4, 6, 8 to define the
dependence between X1, X2, X3, X4 and X5, X6, respectively.

The algorithms replicate 100 times the simulation of 10,000 samples (the
3000 samples generated using the RWM are also different across replicates) and
their performance is based on the MSE error as shown in Table 1. One can
see that while in Scenario I the copula-based tuning yields results that are
slightly inferior to the benchmark approach, under Scenario II the proposed
method performs better than the method using the normal approximation with
reduction in MSE by more than 50% for some of the coordinates.
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Table 1. Mean Squared Error (MSE) estimates for the mean
parameter of the 6-dimensional distribution using the normal ap-
proximation and the copula-based model.

Scenario I Normal proposal
0.022 0.016 0.017 0.019 0.018 0.019

Copula-based tuning
0.035 0.035 0.031 0.040 0.034 0.035

Scenario II Normal proposal
0.013 0.016 0.048 0.099 0.131 0.185

Copula-based tuning
0.005 0.010 0.028 0.048 0.125 0.126

In Figure 1 we use one of the replicated studies to illustrate another effect
of the copula-based model. Comparing the autocorrelation plots presented in
the first row for samples obtained using the RWM algorithm with the ones
obtained for samples after the copula-based tuning (bottom row plots), we can
see that the autocorrelations for all six parameters have decreased significantly
after the implementation of the method.

0 15 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

0 15 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

0 15 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

ACF using initialization samples

0 15 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

0 15 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

0 15 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

0 20 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

0 20 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

0 20 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

ACF after copula−based tuning

0 20 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

0 20 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

0 20 40

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

AC
F

Figure 1. Autocorrelation plots for all the variables constructed
from the samples obtained in the first stage with RWM (top row)
and for the samples obtained after using the copula-based approx-
imation of the proposal (bottom row). The reduced correlation
implies better mixing of the chain.
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4. Conclusions and Future work

We present a general framework for using copulas for tuning of MCMC
algorithms. Initial results show that the method can be useful in approximat-
ing bivariate marginal/conditional distributions of the target. However, much
remains to be done. In practice one would need a realistic copula selection
procedure which may allow for different copulas being used across different
marginals. The ideas presented here are related to adaptive MCMC and it
would be desirable to be able to update the copula parameters as the simu-
lation proceeds. However, this raises considerable the computational burden
since no iterative or sequential methods to update the copula parameters are
known. Further progress on this issues will be reported elsewhere.
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