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Abstract We introduce a new class of interacting Markov
chain Monte Carlo (MCMC) algorithms which is designed
to increase the efficiency of a modified multiple-try Metropo-
lis (MTM) sampler. The extension with respect to the ex-
isting MCMC literature is twofold. First, the sampler pro-
posed extends the basic MTM algorithm by allowing for
different proposal distributions in the multiple-try genera-
tion step. Second, we exploit the different proposal distribu-
tions to naturally introduce an interacting MTM mechanism
(IMTM) that expands the class of population Monte Carlo
methods and builds connections with the rapidly expanding
world of adaptive MCMC. We show the validity of the algo-
rithm and discuss the choice of the selection weights and of
the different proposals. The numerical studies show that the
interaction mechanism allows the IMTM to efficiently ex-
plore the state space leading to higher efficiency than other
competing algorithms.
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1 Introduction

Markov chain Monte Carlo (MCMC) algorithms are now
essential for the analysis of complex statistical models. In
the MCMC universe, one of the most widely used class of
algorithms is represented by the Metropolis-Hastings (MH)
(Metropolis et al. 1953; Hastings 1970) sampler and its vari-
ants. An important generalization of the standard MH for-
mulation is given by the multiple-try Metropolis (MTM)
(Liu et al. 2000). While in the MH formulation one accepts
or rejects a single proposed move, the MTM is designed so
that the next state of the chain is selected among multiple
proposals. The multiple-proposal setup can be used effec-
tively to explore the sample space of the target distribution
and subsequent developments have taken advantage of this
added flexibility. For instance, Craiu and Lemieux (2007)
and Bédard et al. (2010) propose to use antithetic and quasi-
Monte Carlo samples to generate the proposals and to im-
prove the efficiency of the algorithm while Pandolfi et al.
(2010a, 2010b) apply the multiple-proposal idea to a trans-
dimensional setup and combine Reversible Jump MCMC
with MTM.

This work further generalizes the MTM algorithm pre-
sented in Liu et al. (2000) in two directions. First, we show
that the original MTM transition kernel can be modified to
allow for different proposal distributions in the multiple-try
generation step while preserving the ergodicity of the chain.
The extension of the original MTM algorithm offers flexibil-
ity in constructing transition kernels for target distributions
that have a complex geometry or may require different pro-
posals across the sample space. Choosing the proposal dis-
tributions is an important challenge which is addressed here
by adapting ideas used within the population Monte Carlo
class of algorithms.

The population Monte Carlo procedures (Mengersen and
Robert 2003; Cappé et al. 2004; Del Moral et al. 2006;
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Del Moral 2004; Jasra et al. 2007; Campillo et al. 2009)
have been designed to address the inefficiency of classical
MCMC samplers in complex applications involving multi-
modal and high dimensional target distributions (Pritchard
et al. 2000; Heard et al. 2006). Its formulation relies on a
number of MCMC processes that are run in parallel while
learning from one another about the geography of the target
distribution.

A second contribution of the paper is finding reliable
generic methods for constructing the proposal distributions
for the MTM algorithm.We propose an interacting MCMC
sampling design for the MTM that preserves the Marko-
vian property. More specifically, in the proposed interact-
ing MTM (IMTM) algorithm, we allow the distinct proposal
distributions to use the information produced by a popula-
tion of auxiliary chains. We infer that the resulting perfor-
mance of the MTM is tightly connected to the performance
of the chains’ population. In order to maximize the latter, we
propose and compare via simulations a number of strategies
that can be used to tune the auxiliary chains.

In the next section we discuss the IMTM algorithm, pro-
pose a number of alternative implementations and prove
their ergodicity. In Sect. 3 we focus on some special cases
of the IMTM algorithm and in Sect. 4 the performance of
the methods proposed is demonstrated with simulations and
real examples. We end the paper with a discussion of future
directions for research.

2 Interacting Monte Carlo chains for MTM

We begin by describing the MTM and its extension for using
different proposal distributions.

2.1 Multiple-try Metropolis with different proposal
distributions

Suppose that of interest is sampling from a distribution π

that has support in Y ⊂ Rd and is known up to a normalizing
constant. Assuming that the current state of the chain is x,
the updating rule for the MTM algorithm of Liu et al. (2000)
is described in Algorithm 1.

Note that while the MTM uses the same distribution to
generate all the proposals, it is possible to extend this for-
mulation to different proposal distributions without altering
the ergodicity of the associated Markov chain.

Let Tj (·|x), with j = 1, . . . ,M , be a set of proposal dis-
tributions for which Tj (y|x) > 0 if and only if Tj (x|y) > 0.
Define

wj(x, y) = π(x)Tj (y|x)λj (x, y), j = 1, . . . ,M

where λj (x, y) is a nonnegative symmetric function in x and
y that can be chosen by the user. The only requirement is

Algorithm 1 Multiple-try Metropolis algorithm (MTM)
1. Draw M trial proposals y1, . . . , yM from the proposal

distribution T (·|x). Compute w(yj , x) for each j ∈
{1, . . . ,M}, where w(y,x) = π(y)T (x|y)λ(y, x), and
λ(y, x) is a symmetric function of x, y.

2. Select y among the M proposals with probability propor-
tional to w(yj , x), j = 1, . . . ,M .

3. Draw x∗
1 , . . . , x∗

M−1 variates from the distribution T (·|y)

and let x∗
M = x.

4. Accept y with generalized acceptance probability

ρ = min

{
1,

w(y1, x) + · · · + w(yM,x)

w(x∗
1 , y) + · · · + w(x∗

M,y)

}
.

Algorithm 2 MTM with different proposal distributions
1. Draw independently M proposals y1, . . . , yM such that

yj ∼ Tj (·|x). Compute wj(yj , x) for j = 1, . . . ,M .
2. Select Y = y among the trial set {y1, . . . , yM} with prob-

ability proportional to wj(yj , x), j = 1, . . . ,M . Let J

be the index of the selected proposal. Then draw x∗
j ∼

Tj (·|y), j �= J , j = 1, . . . ,M and let x∗
J = x.

3. Accept y with probability

ρ = min

{
1,

w1(y1, x) + · · · + wM(yM,x)

w1(x
∗
1 , y) + · · · + wM(x∗

M,y)

}

and reject with probability 1 − ρ.

that λj (x, y) > 0 whenever T (x, y) > 0. Then the MTM al-
gorithm with different proposal distributions is given in Al-
gorithm 2.

It should be noted that Algorithm 2 is a special case of the
interacting MTM presented in the next section and that the
proof of ergodicity for the associated chain follows closely
the proof given in Appendix for the interacting MTM and,
therefore, it is not given here.

2.2 General construction

Undoubtedly, Algorithm 2 offers additional flexibility in or-
ganizing the MTM sampler. This section introduces generic
methods for using a population of MCMC chains to define
the proposal distributions.

Consider a population of N chains, X(i) = {X(i)
n }n∈N and

i = 1, . . . ,N . For full generality we assume that the ith
chain has MTM transition kernel with Mi different pro-
posals {T (i)

j }1≤j≤Mi
(if we set Mi = 1 we imply that the

chain has a MH transition kernel). The interacting mecha-
nism allows each proposal distribution to possibly depend
on the values of the chains at the previous step. Formally,
if �n = {x(i)

n }Ni=1 is the vector of values taken at iteration
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Algorithm 3 Interacting multiple try algorithm (IMTM)
• For i = 1, . . . ,N

1. Let x = x
(i)
n ; for j = 1, . . . ,Mi draw yj ∼

T
(i)
j (·|f̃ (i)

n (x)) independently and compute

w
(i)
j (yj , x) = π(yj )T

(i)
j (x|f̃ (i)

n (yj ))λ
(i)
j (yj , x).

2. Select J ∈ {1, . . . ,Mi} with probability proportional
to w

(i)
j (yj , x), j = 1, . . . ,Mi and set y = yJ .

3. For j = 1, . . . ,Mi and j �= J draw x∗
j ∼

T
(i)
j (·|f̃ (i)

n (y)), let x∗
J = x

(i)
n and compute

w
(i)
j (x∗

j , y) = π(x∗
j )T

(i)
j (y|f̃ (i)

n (x∗
j ))λ

(i)
j (x∗

j , y).

4. Set x
(i)
n+1 = y with probability

ρi = min

{
1,

w
(i)
1 (y1, x) + · · · + w

(i)
Mi

(yMi
, x)

w
(i)
1 (x∗

1 , y) + · · · + w
(i)
Mi

(x∗
Mi

, y)

}
,

and x
(i)
n+1 = x

(i)
n with probability 1 − ρi .

n ∈ N by the population of chains, then we allow each pro-
posal distribution used in updating the population at iteration
n + 1 to depend on �n. The mathematical formalization is
used in the description of Algorithm 3. One expects that the
chains in the population are spread throughout and, thus, of-
fer a good representation of the sample space Y .

The first step in Algorithm 3 suggests that each proposal
distribution used in each parallel MTM chain is allowed to
depend on the current states of all the chains in the pop-
ulation. However, this general formulation for the IMTM,
though correct in theory, can be difficult to tune efficiently
in a given practical problem. Before we move to discuss im-
plementations that simplify and enhance the practical ap-
plication of the IMTM algorithm, we prove below that the
chain underlying Algorithm 3 is ergodic to π .

In order to give a representation of the IMTM
transition kernel let us introduce the following notation.
Denote the map f̃

(i)
n (z) = (x

(1:i−1)
n , z, x

(i+1:N)
n )T and let

T (i)(y1:Mi
|x) = ∏Mi

k=1 T
(i)
k (yk|f̃ (i)

n (x)) and T
(i)
−j (y1:Mi

|x) =∏Mi

k �=j T
(i)
k (yk|f̃ (i)

n (x)), where dy1:Mi
= ∏Mi

k=1 dyk

and dy−j = ∏Mi

k �=j dyk .
The transition kernel associated to the population of

chains is then

K(�n,�n+1) =
N∏

i=1

Ki(x
(i)
n , x

(i)
n+1), (1)

where

Ki(x, y) =
Mi∑
j=1

A
(i)
j (x, y)T

(i)
j (y|x)

+
⎛
⎝1 −

Mi∑
j=1

B
(i)
j (x)

⎞
⎠ δx(y) (2)

is the transition kernel used to run the ith chain of the popu-
lation and

A
(i)
j (x, y) =

∫
Y 2(Mi−1)

w̃
(i)
j (y, x)ρ

(i)
j (x, y)T

(i)
−j (x∗

1:Mi
|y)

× T
(i)
−j (y1:Mi

|x)dx∗−j dy−j ,

B
(i)
j (x) =

∫
Y 2(Mi−1)+1

ρ
(i)
j (x, y)T

(i)
−j (x∗

1:Mi
|y)

× T (i)(y1:Mi
|x)dx∗−j dy1:Mi

.

In the above equations w̃
(i)
j (yj , x) = w

(i)
j (yj , x)/

(w
(i)
j (y, x) + w̄

(i)
−k(y1:Mi

|x)), with j = 1, . . . ,Mi and

w̄
(i)
−j (y1:Mi

|x) = ∑Mi

k �=j w
(i)
k (yk, x), are the normalized

weights used in the selection step of the IMTM algorithm
and

ρ
(i)
j (x, y) = min

{
1,

w
(i)
j (y, x) + w̄

(i)
−j (y1:Mi

|x)

w
(i)
j (x, y) + w̄

(i)
−j (x

∗
1:Mi

|y)

}

is the generalized MH ratio associated to a MTM algorithm.
The validity of the IMTM algorithm relies upon the de-

tailed balance condition.

Theorem 1 The transition density Ki(x
(i)
n , x

(i)
n+1) associ-

ated to the ith chain of the IMTM algorithm satisfies the
conditional detailed balanced condition.

Proof See Appendix. �

Since each transition Ki(x
(i)
n , x

(i)
n+1), i = 1, . . . ,N ,

has π(x) as stationary distribution and satisfies the con-
ditional detailed balance condition, the joint transition
K(�n,�n+1) = ∏N

i=1 Ki(x
(i)
n , x

(i)
n+1) has π(x)N as a sta-

tionary distribution.

3 Practical implementation

Note that at each IMTM iteration the computational com-
plexity is O(

∑N
i=1 Mi). This can become burdensome when

the number of chains, N , and the number of proposals, Mi ,
are simultaneously large so one needs to decide on a strat-
egy for choosing the number of chains and proposals. We



Stat Comput

distinguish two possible tactics in designing the interaction
mechanism. The first one uses a small number of chains, say
5 ≤ N ≤ 20, and a number of proposals equal to the num-
ber of chains, i.e. Mi = N , for all 1 ≤ i ≤ N . In this way all
the chains can interact at each iteration of the algorithm and
many search directions can be included among the propos-
als.

A second strategy is to use a higher number of chains,
e.g. N = 100, in order to possibly have, at each iteration,
a good approximation of the target or a much higher num-
ber of search directions for a good exploration of the sample
space. This design is common in Population Monte Carlo
or Interacting MCMC methods. Clearly, when a high num-
ber of chains is used within IMTM, it is necessary to set
Mi < N , possibly Mi = 1 for each auxiliary chain.

Generally, while we would like to see the number of
chains, N , increase with the target’s dimension, it is rea-
sonable to assume that the choose of the number of chains
that are run in parallel depends on the available computa-
tional power (e.g., number of CPU’s, server memory, etc.).
The number of proposals, Mi , should not be too small com-
pared to N . Based on our experiments, we recommend using
Mi/N ∈ [5%,20%].

In this section we discuss a few strategies to built the Mi

proposals for each chain and in the simulation section we
compare the two strategies outlined above.

3.1 Parsing the population of auxiliary chains

When N is large, we may not want to use all the chains at
each iteration of the IMTM. One approach that turned out
to be successful in our applications produces the proposals
using a random subset of the chains’ population. For ease
of description, assume that Mi = M < N , for all chains,
1 ≤ i ≤ N . Then, when updating the i-th chain of the pop-
ulation, we sample the random indices I1, . . . , IM−1 from
the uniform distribution U {1, . . . ,N} and we let IM = i.
Then the M proposals used for chain i will be allowed to
depend only on the current states of those chains with in-
dices I1, . . . , IM . Using the notation introduced and letting
I

(i)
n = (I1, . . . , IM) then the M proposals used for chain i

at time n are sampled using T
(i)
j (y|x(I1)

n , . . . , x
(IM)
n ), for all

j = 1, . . . ,M . Our simulation experiments showed a good
performance when we used a relatively simpler version in
which the j th proposal depends only on the current state

of chain Ij , i.e., it is sampled using T
(i)
j (·|x(Ij )

n ), for all
j = 1, . . . ,M . One can see that the interweaving of the
chains is performed by allowing the proposals used in chain
i to be sampled conditional not only on the current state of
the chain, x

(i)
n , but also on the current states of those chains

whose indices are sampled at random and stored in I
(i)
n .

Another important issue directly connected to the practi-
cal implementation of the IMTM is the choice of λ

(i)
j (x, y).

Previously suggested forms for the function λ
(i)
j (x, y) (Liu

et al. 2000) are:

(a) λ
(i)
j (x, y) = 2{T (i)

j (x|y) + T
(i)
j (y|x)}−1,

(b) λ
(i)
j (x, y) = {T (i)

j (x|y)T
(i)
j (y|x)}−α , α > 0.

Little guidance is offered in the existent literature regarding
the choice of λ and, to our knowledge, in most applications
of the original MTM algorithm the default choice is λ = 1.

Here we propose to include in the construction of λ the
information provided by the population of chains. There-
fore, we suggest to modify the above functions to

(a′) λ
(i)
j (x, y) = 2νj {T (i)

j (x|y) + T
(i)
j (y|x)}−1,

(b′) λ
(i)
j (x, y) = νj {T (i)

j (x|y)T
(i)
j (y|x)}−α , α > 0,

where the factor νj is

νj = 1

N

[
1 +

N∑
i=1

1{j}(J (i)
n−1)

]
, j = 1, . . . ,M, (3)

and J
(i)
n−1 is the index of the proposal selected in the ith chain

update at iteration n − 1. It can be seen that the {νj }1≤j≤M

capture the behaviour of the auxiliary chains at the previ-
ous iteration. More precisely, νj will be relatively larger
for those proposal distributions Tj (·|·) whose samples have
been selected as the potential next states for the chains in the
population at iteration n−1. The modifications proposed for
λ(· , ·) would increase the use of those proposal distributions
favoured by the population of chains at previous iteration.
Since νj depends only on samples generated at the previous
step by the population of chains, the ergodicity of the IMTM
chain is preserved. In the simulation section we compare the
performance of IMTM coupled with either (a′) or (b′) when
α = 1.

3.2 Annealed IMTM

Our belief in IMTM’s improved performance is underpinned
by the assumption that the population of Monte Carlo chains
is spread throughout the sample space. This can be partly
achieved by initializing the chains using draws from a dis-
tribution overdispersed with respect to π (see also Jen-
nison 1993; Gelman and Rubin 1992; Craiu and Meng
2005) and partly by modifying the stationary distribution
for some of the chains in the population. Specifically, we
consider the sequence of annealed distributions πt = πt

with t ∈ {ξ1, ξ2, . . . , ξN }, where 1 = ξ1 > ξ2 > · · · > ξn,
for instance ξt = 1/t . When t, s are close temperatures,
πt is similar to πs , but π = π1 may be much harder to
sample from than πξN

, as has been long recognized in
the simulated annealing and simulated tempering literature
(see Marinari and Parisi 1992; Geyer and Thompson 1994;
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Neal 1994). Therefore, it is likely that some of the chains de-
signed to sample from π1, . . . , πN have good mixing prop-
erties, making them suitable candidates for the population of
MCMC samplers needed to run the IMTM. Recent theoret-
ical work by Atchadé et al. (2011) has build, in an adaptive
setup, connections between the temperature ladder and the
optimal scaling problem. While an extension of their study
to IMTM is beyond the scope of this paper, in the simulation
section we compare three different methods for constructing
the temperature ladder 1 = ξ1 > ξ2 > · · · > ξn.

We consider the Monte Carlo population made of the
N − 1 chains having {π2, . . . , πN } as stationary distribu-
tions. However, the use of MTM for each auxiliary chain
may be redundant since for smaller ξi ’s the distribution πi is
easy to sample from. For this reason, in our simulations we
shall use the AIMTM in which the chain that is ergodic to π

has an IMTM transition kernel and each auxiliary chain is a
MH chain (i.e., with M = 1) with target πi , 2 ≤ i ≤ N . The
AIMTM is described in Algorithm 4. In practice, we always
use the current state of the chain ergodic to π (ξ = 1) among
the states used for generating one of the proposals (e.g., in
Algorithm 4 we automatically set I1 = 1 and let I2, . . . , IM

be sampled at random). The recommended value of M for
the chain of interest is such that M/N ∈ [5%,20%].

An additional gain could be obtained if the auxil-
iary chains’ transition kernels are modified using adap-
tive MCMC strategies (see also Chauveau and Vandek-
erkhove 2002, for another example of adaption for inter-
acting chains). However, letting the auxiliary chains adapt
indefinitely results in complex theoretical justifications for
the IMTM which go beyond the scope of this paper and will
be presented elsewhere. Our recommendation is to use finite
adaptation for the auxiliary chains prior to the start of the
IMTM. One could take advantage of multi-processor com-
puting units and use parallel programming to increase the
computational efficiency of this approach.

The adaptation of λ
(i)
j , through the weights νj defined in

(3), should be used cautiously in this case. The aim of the an-
nealing procedure is to allow the higher temperatures chains
to explore widely the sample space and to improve the mix-
ing of the MTM chain. Using νj in the context of annealed
IMTM could arbitrarily penalize some of the higher temper-
ature proposals and reduce the effectiveness of the annealing
strategy. For this reason we do not consider using adaptive
λ’s for AIMTM.

Note that although the AIMTM requires additional com-
putation effort, one can take advantage of the samples pro-
duced by all the auxiliary chains in the population to obtain
a Monte Carlo approximation of a quantity of interest. For
example, suppose we are interested in computing

Algorithm 4 Annealed IMTM algorithm (AIMTM)
• For i = 1

1. Let x = x
(i)
n and sample I1, . . . , IM from U {1, . . . ,N}.

2. For j = 1, . . . ,M draw yj ∼ T
(i)
j (·|x(Ij )

n ) indepen-
dently and
(a) If Ij �= 1 set

w
(i)
j (yj , x) = π(yj )T

(i)
j (x|x(Ij )

n )λ
(i)
j (yj , x).

(b) If Ij = 1 set

w
(i)
j (yj , x) = π(yj )T

(i)
j (x|yj )λ

(i)
j (yj , x).

3. Select J ∈ {1, . . . ,M} with probability proportional to
w

(i)
j (yj , x), j = 1, . . . ,M and set y = yJ .

4. Let x∗
J = x

(i)
n and for j = 1, . . . ,M , j �= J ,

(a) If Ij �= 1 draw x∗
j ∼ T

(i)
j (·|x(Ij )

n ),

(b) If Ij = 1 draw x∗
j ∼ T

(i)
j (·|y).

5. Compute w
(i)
j (x∗

j , y) using the same rule as in 2.

6. Set x
(i)
n+1 = y with probability ρi , where ρi is the gen-

eralized MH ratio of the IMT algorithm and x
(i)
n+1 =

x
(i)
n with probability 1 − ρi .

• For i = 2, . . . ,N we perform the usual MH update using
proposal distribution T (i) for chain i.

1. Let x = x
(i)
n and update the proposal function

T (i)(·|x).
2. Draw y ∼ T (i)(·|x) and compute

ρi = min

{
1,

π(y)ξi T (i)(x|y)

π(x)ξi T (i)(y|x)

}
.

3. Set x
(i)
n+1 = y with probability ρi and x

(i)
n+1 = x

(i)
n with

probability 1 − ρi .

I =
∫

Y
h(x)π(x)dx,

where h is a test function. It is possible to approximate I
using

INT = 1

T

T∑
n=1

1

ζ̄

N∑
j=1

h(x
(j)
n )ζj (x

(j)
n ),

where x
(i)
n is the output of the i-th chain ergodic to target

πξi at time n, for all n = 1, . . . , T and all i = 1, . . . ,N ,
ζj (x) = π(x)/πξj (x) are the importance weights and ζ̄ =∑N

j=1 ζj (x
(j)
n ).
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4 Simulation results

4.1 Beta mixture model

Mixture models have been used to capture heterogeneity
in the data in many applications. The Bayesian inference
for such models presents computational challenges. Specifi-
cally, the Bayesian analysis of k-component mixture model
leads to a posterior distribution that is invariant with re-
spect to permutation of the parameter labels and exhibits
k! modes. Sampling from the posterior is therefore a chal-
lenging problem which rarely can be solved successfully by
the conventional single-chain MCMC methods. More effi-
cient sampling algorithms are thus needed. As emphasized
by Jasra et al. (2007) in the context of Bayesian mixture
models, population Monte Carlo methods allow to sample
efficiently from the posterior distribution.

We consider here a Bayesian mixture of normals that was
previously used by Jasra et al. (2005, 2007) for comparing
the performance of different population Monte Carlo meth-
ods. Let y1, . . . , yn be n i.i.d. samples with density

K∑
h=1

τhf (y|μh,η
−1
h ), (4)

where K is the number of mixture components and f (yi |μh,

η−1
h ) is the density of a normal distribution with location

parameter μh and precision parameter ηh. The weights
τh ≥ 0, h = 1, . . . ,K of the mixture are such that∑K

h=1 τh = 1. We assume the following priors (see also
Jasra et al. 2005; Richardson and Green 1997).

μj ∼ N (ξ, κ−1),

ηj ∼ Ga(α,β),

τ1:k−1 ∼ Dir(δ),
(5)

where N (ξ, κ−1), Ga(α,β) and Dir(δ) are, respectively,
the normal distribution with location ξ and precision κ , the
gamma distribution with shape parameter α and scale pa-
rameter β and the symmetric Dirichlet distribution, with pa-
rameter δ.

We will use the problem of sampling from the posterior
distribution defined by the model above as a benchmark for
comparing the IMTM methods proposed in this paper with
other population Monte Carlo algorithms based on MH ker-
nels. We assume we have available a dataset of 100 (simu-
lated) samples from an equally weighted, (i.e. τj = 1/K for
j = 1, . . . ,K) normal mixture with K = 4 components with
true means, (μ1,μ2,μ3,μ4)

T = (−3,0,3,6)T , and equal
standard deviations η

−1/2
j = 0.55, 1 ≤ j ≤ 4.

The algorithms being compared below are the follow-
ing:

MH A population of Monte Carlo algorithms in which all
the N parallel chains have random walk MH (RWMH)
kernels in which the j th Gaussian proposal distribution
has covariance σ 2

j I where σj = 0.01 + 0.59 ∗ j/N for
all 1 ≤ j ≤ N such that the acceptance rates obtained
for the population of chains are between 10–60%.

MH1 A population of Monte Carlo algorithms in which
each of the N parallel chains run a RWMH algorithm
whose proposal distribution is a mixture of 4 normal
densities. The standard deviations of the proposals are
divided equally between 0.01 and 0.3.

MH2 A population of Monte Carlo algorithms in which
each of the N transition kernels is a mixture of four
RWMH kernels with same standard deviations as those
defined for MH2.
The above algorithms do not allow interaction between
the parallel chains which is arguably less flexible than
the IMTM setup. Therefore we include in our compar-
ison the above three algorithms to which we apply the
cross-over interaction introduced by Liang and Wong
(2001). The different chains of the population have the
same target thus the acceptance-probability of the cross-
over move is one.

MH.c.o The MH algorithm described above with cross-
over moves.

MH1.c.o The MH1 algorithm described above with cross-
over moves.

MH2.c.o The MH2 algorithm described above with cross-
over moves.

The six algorithms described above are compared with
the following IMTM samplers:

IMTM-TA An IMTM algorithm with N chains defined
as in Sect. 3.1 and using λ

(i)
j (x, y) = 2{T (i)

j (x|y) +
T

(i)
j (y|x)}−1 weights. The j th proposal uses T

(i)
j (y|x) =

N(x,σ 2
j I) where σj = 0.01 + 0.59 ∗ j/M for all

1 ≤ j ≤ M , 1 ≤ i ≤ N .
IMTM-TA-a The same algorithm as IMTM-TA but with

adaptive weights λ
(i)
j (x, y) = 2νj {T (i)

j (x|y) +
T

(i)
j (y|x)}−1 where νj is defined as in (3).

IMTM-IS An IMTM algorithm identical to IMTM-TA but
using λ

(i)
j (x, y) = {T (i)

j (x|y)T
(i)
j (y|x)}−1 weights.

IMTM-IS-a The same algorithm as IMTM-IS but with
adaptive weights λ

(i)
j (x, y) = νj {T (i)

j (x|y)T
(i)
j (y|x)}−1

where νj is defined as in (3).

The comparison is made with respect to the estimation of
the marginal means μ1, . . . ,μ4. We consider T = 100,000
samples obtained with N = 100 parallel chains for the MH,
MH1, MH2, MH.c.o, MH1.c.o and MH2.c.o algorithms. For
all the IMTM algorithms we sampled T = 10,000 draws
from running N = 100 chains each with M = 10 proposals.

We observed from all the simulation experiments that
IMTM-TA and IMTM-IS have similar performances, so we
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Fig. 1 Top panel: Trace plots
generated using 9,000 samples
obtained for μ1, . . . ,μ4 from
one of the IMTM-TA chains.
Bottom panel: The dots
represent the projection of the
values sampled by the
IMTM-TA population of chains
on the (μi,μj ) planes, with
i �= j . The trajectory of one of
the chains is projected on the
plane (μ1,μ2)

present the graphical results only for IMTM-TA. A typical
output of the IMTM-TA algorithm is given in the top panel
of Fig. 1 which shows, for one of the chains in the popula-
tion, the traces for each of the four coordinates sampled, μ1,
μ2, μ3 and μ4. We notice that the chain is able to switch
frequently between the different modes of the posterior dis-
tribution and this compares favourably with the MH, MH1
and MH2 algorithms, with and without cross-over. The MH
chains rarely switch between modes as can be seen also in
Fig. 1 of Jasra et al. (2007).

In order to give an alternative representation of the raw
output of the population of chains we follow Früwirth-
Schnatter (2006) and present in Fig. 2 the samples pro-
duced by each algorithm. The bottom panel in Fig. 2 has
been produced by projecting the samples on all the planes
(μi,μj ) with i �= j (in total we have K(K − 1) = 12 such
planes) and then superimposing all the plots into a single
one. As discussed in Früwirth-Schnatter (2006) the number
of simulation clusters in this graphical representation, for a
K-components mixture, is K(K − 1) = 12, that is equal to

12 in our example. In the same panel sthe solid line shows
one of the chains’ trajectory.

In Fig. 2 we show samples produced by the other algo-
rithms considered in the comparison. The six populations
of chains, MH, MH1, MH2, with and without cross-over,
are able to visit different modes of the posterior. Note that
the samples from the population of MH chains are usually
not evenly distributed across the different posterior modes.
Moreover the single chains of the population of the MH al-
gorithms usually visit only one of the clusters and are not
able to visit the other clusters. In each panel the line repre-
sents the path followed by one of the chains. One can easily
notice the difficulty of the MH, MH1 or MH2 chains without
cross-over to explore the posterior surface. The lines shown
in the right-side panels crystallize the effect of the cross-
over moves on the mixing property of the population of in-
teracting chains. Each chain is now able to visit many modes
and this results in improved efficiency for the class of MH
algorithms considered here. However, one can notice the su-
periority of the IMTM-TA algorithm from the paths shown
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Fig. 2 The dots represent the
projection of the values sampled
by the population of MH chains
considered in the simulation on
the (μi,μj ) planes, with i �= j .
The plots illustrate the samples
obtained without cross-over (left
column) and with cross-over
(right column) for the MH (top
row), MH1 (middle row) and
MH2 (bottom row). The lines
show the trajectory of one of the
chains

in the bottom panel of Fig. 1 where it is clear that the chain
visits many modes of the posterior distribution.

The efficiency improvement is also obvious from the au-
tocorrelation functions (ACF) shown in Fig. 3. For each
method included in the comparison, the curves shown are
obtained by averaging the ACF estimates over the N chains
of the population and over 10 replicates. The MH with cross-
over are more efficient then the parallel MH algorithms but
still less efficient than the IMTM algorithms.

The results in Table 1 show that the IMTM algorithms are
generally able to produce more efficient estimates than the
MH class of algorithms considered in the comparison. The
cross-over moves bring the efficiency of the MH, MH1 and
MH2 closer to that of the IMTM samplers, especially when
the number of parallel chains is large (N = 100). However

Fig. 3 Autocorrelation functions for the methods considered. The
curves are obtained by averaging over the population of chains used
for each algorithm and over the 10 replicated runs of each algorithm
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Table 1 Estimates of μ1, . . . ,μ4 and the corresponding standard er-
rors (between brackets). For the parallel MHs, without and with cross-
over (c.o.), we considered alternatively N = 20 and N = 100 chains
for a total of T = 100,000 samples. For the IMTMs, without and with
adaptation (IMTM-TA-a and IMTM-IS-a), we consider T = 10,000

draws obtained from N = 100 chains and M = 10 different proposals.
Reported values are obtained by averaging over 10 replicated runs for
each algorithms. The Mean Square Error (MSE), averaged over the
parameters, is reported for each algorithm

N = 100 N = 20

1 2 3 4 MSE 1 2 3 4 MSE

MH 0.81 0.42 2.08 1.06 18.83 0.39 0.69 0.67 2.28 26.76

(4.22) (4.37) (4.39) (4.10) (5.35) (5.16) (6.02) (3.15)

MH1 0.72 0.21 0.62 0.91 5.42 0.10 0.17 0.66 0.78 7.35

(2.12) (2.09) (2.14) (2.19) (2.47) (1.89) (2.49) (2.91)

MH2 0.99 1.89 1.47 1.01 3.30 0.11 2.80 0.42 0.37 5.09

(1.57) (1.73) (1.87) (1.89) (1.99) (1.71) (1.98) (1.85)

MH c.o. 1.87 1.09 1.91 1.66 7.89 1.74 1.11 1.01 1.75 11.02

(2.52) (2.79) (2.88) (2.92) (3.14) (3.12) (3.58) (3.33)

MH1 c.o. 0.65 0.21 1.59 1.46 2.77 0.51 0.22 1.83 1.12 3.51

(1.86) (1.35) (1.24) (1.35) (1.48) (1.91) (1.27) (1.91)

MH2 c.o. 1.11 1.69 1.27 1.26 2.17 0.59 1.68 0.97 1.14 2.26

(1.33) (1.34) (1.76) (1.29) (1.43) (1.16) (1.36) (1.58)

IMTM-IS 1.40 1.52 1.37 1.42 1.05 1.36 1.39 1.61 1.69 1.42

(1.01) (0.98) (1.22) (0.87) (0.98) (1.20) (1.12) (1.42)

IMTM-IS-a 1.37 1.44 1.58 1.54 0.49 1.31 1.71 1.35 1.72 1.18

(0.83) (0.56) (0.71) (0.64) (0.81) (0.97) (1.23) (1.24)

IMTM-TA 1.31 1.46 1.53 1.61 0.52 1.29 1.21 1.70 1.32 0.89

(0.38) (1.06) (0.48) (0.73) (1.34) (1.05) (0.31) (0.59)

IMTM-TA-a 1.56 1.39 1.60 1.37 0.47 1.63 1.75 1.61 1.44 0.85

(0.48) (0.91) (0.76) (0.42) (0.76) (0.86) (1.02) (0.97)

when we reduce the number of chains (e.g. N = 20) the per-
formance of the MH algorithms (with and without cross-
over) is clearly inferior to that of the IMTM algorithms. In-
terestingly, the IMTM-TA and IMTM-IS perform similarly
whether we choose to adapt the weights λj or not.

4.1.1 Comparison in the presence of annealing

The performance of the MH, MH1 and MH2 populations
can be improved by combining them with an annealing pro-
cedure. Our interest, here, lies in comparing AIMTM with
the algorithms MH, MH1, MH2 which are modified to in-
corporate an annealing-based strategy. We consider once
again two variants of the AIMTM defined by the choice
of weights λj . Specifically, we consider AIMTM-TA and
AIMTM-IS which use Algorithm 4 with, respectively, the
same λ’s as IMTM-TA and IMTM-IS.

We also consider the uniform, logarithmic and power
tempering schemes that were also suggested by Jasra et al.
(2007):

ξi = ξi−1 − 1

N
,

ξi = log(ξi−1 + 1)/ log(Q), Q > 0,

ξi = (ξi−1 − Q)ψ, ψ > 0, Q ∈ (0,1),

where ξ1 = 1 and i = 2, . . . ,N . The three tempering
schemes are denoted, respectively, M1, M2 and M3. For
the logarithmic scheme M2 we consider Q = 2.25 and for
the power scheme M3 we set Q = 0.001 and ψ = 3/2 as
suggested in Jasra et al. (2007).

For the MH algorithms we build chain i ergodic to πξi

and construct different scales for the chains of the popula-
tion as in Jasra et al. (2007). For the ith chain the proposal
variance σi = σ1/(1 + γi) with σ1 = 0.5.

We report the estimates for each mean μi in Table 2. The
AE column shows the maximum bias (over the four means).
One can see easily that, on average, the AIMTM yields the
smallest errors within each tempering scheme. Note that the
results are not directly comparable with the ones in Table 1
because in the experiments without tempering all the chains
of the population have the same target and all samples are
used to estimate the parameters of the mixture. In the exper-
iments with the different tempering schemes we consider,
for each algorithm, the output of the chain with ξi = 1,



Stat Comput

Table 2 Estimates of
μ1, . . . ,μ4. For the MHs we
have sampled T = 100,000
draws using N = 100 chains.
The AIMTM results are based
on T = 10,000 samples
obtained using N = 100
auxiliary chains and M = 10
proposals within the chain
ergodic to π . The maximum
absolute bias (AE) is reported
for each algorithm and
tempering scheme

1 2 3 4 AE

M1

MH 1.81 0.73 1.02 1.79 0.97

MH1 0.64 1.62 0.91 1.59 0.86

MH2 0.81 1.75 1.12 1.99 0.69

AIMTM-IS 1.83 1.43 1.98 1.37 0.48

AIMTM-TA 0.89 1.15 1.92 1.81 0.61

M2

MH 0.84 0.72 1.41 0.93 0.78

MH1 1.67 1.57 1.06 1.84 0.54

MH2 1.71 1.32 1.52 1.01 0.49

AIMTM-IS 1.44 1.91 1.37 1.26 0.41

AIMTM-TA 1.86 1.19 1.51 1.49 0.36

M3

MH 0.82 1.25 0.83 0.97 0.68

MH1 1.79 1.42 1.33 0.98 0.52

MH2 0.99 1.27 1.63 1.69 0.51

AIMTM-IS 1.19 1.97 1.16 1.12 0.47

AIMTM-TA 1.37 1.04 1.86 1.77 0.46

Fig. 4 Autocorrelation functions obtained by averaging over 10 inde-
pendent runs of each algorithm for the population of MH and AMTM
chains

which has the target π . The results in Table 2 show that the
AIMTM algorithms outperform the population of MH, MH1
and MH2 chains for the three different tempering schemes.
The logarithm and power decay schemes seem to give the
best result when combined with the AIMTM.

The gain in efficiency with respect to the populations of
MH-type algorithms is evident also from the ACF functions
presented in Fig. 4. The ACF have been obtained by averag-
ing over 10 independent runs of the algorithms considered
in the comparison.

4.1.2 Multivariate normal mixture

We compare, for a high-dimensional target distribution, the
population Monte Carlo MH with cross-over algorithm and

the IMTM-TA. The target considered is the multivariate
mixture of two normals with a sparse variance-covariance
structure

1

3
N20(μ1,�1) + 2

3
N20(μ2,�2) (6)

with μ1 = (3, . . . ,3)′, μ2 = (10, . . . ,10)′ and �j , with
j = 1,2, generated independently from a Wishart distribu-
tion �j ∼ W20(ν, I20) where ν = 21 is the degrees of free-
dom parameter.

The comparison is based on T = 100,000 samples ob-
tained from N = 20 parallel MH chains with cross-over in-
teractions and on T = 10,000 samples obtained from N =
20 IMTM-TA chains, each using M = 10 proposal distribu-
tions. The j th proposal distribution for the ith IMTM chain,
T

(i)
j (y|x(i)

n ), is Gaussian with variance-covariance matrix
�i = (0.1 + 5i)I20 for all j = 1, . . . ,M . For MH, MH1 and
MH2 populations of chains, we consider Gaussian random
walk proposals with scales in the same range as the IMTM
proposals.

The autocorrelation functions given in Fig. 5 are averaged
over the 20 dimensions of the target, the different chains of
the population and over 10 replicates of the experiment. One
can see that the population of MTM chains outperforms, in
terms of estimation efficiency, the populations of MHs with
cross-over.

We use this example to report on the trade-off between
computing time and root mean square error (RMSE) im-
provement for different dimensions of the target’s support.
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Fig. 5 Autocorrelation function (ACF) for the MH with cross-over
and the IMTM algorithm. The ACF is obtained by averaging over the
20 components of the multivariate chain, the different chains of the
population and over 10 replicates

Fig. 6 Comparison of efficiency for the MH with cross-over and the
IMTM-TA for different dimensions of the target distribution. Results
are based on T = 10,000 samples obtained using the IMTM-TA with
N = 20 chains and M = 3 (solid line), M = 6 (dashed line) and
M = 10 (dotted line) proposals and T = 30,000 iterations of N = 20
parallel MH chains with cross-over (MHc). Top panel: Computing time
in minutes. Bottom panel: Percentage of relative RMSE reduction per
minute of added running time as defined in (7)

The comparison is based on the IMTM-TA and parallel MH
with cross-over. More specifically we run the IMTM-TA
for T = 10,000 iterations with N = 20 chains and with a
different number of proposals, M ∈ {3,6,10} and we run
the MH with cross-over for T = 30,000 iterations with
N = 20 chains. The algorithms are implemented in R and
run on a machine with a Xeon X3430 2.40 GHz CPU and a

Linux system. In the top panel of Fig. 6 we show the CPU
times (in minutes) of each algorithm for target dimension
ranging from 2 to 100. In each dimension d = 2, . . . ,100,
μ1 = 3 × 1d , μ2 = 10 × 1d (1d is the d-dimensional vector
with all components equal to 1) and �1,�2 are indepen-
dently generated from the Wishart distribution with d + 1
degrees of freedom and scale matrix Id . In the bottom panel
of Fig. 6 we also provide an estimate of the relative RMSE
reduction (in percentage) per additional minute of computa-
tion brought in by IMTM-TA over the MH with cross-over,
i.e. we report

RF = 100 × �RMSE/RMSEMH

TimeIMT M-T A − TimeMH

, (7)

where �RMSE = RMSEIMT M-T A − RMSEMH . One may
be tempted to conclude, based on the bottom part of Fig. 6,
that it is always advantageous to use a small number of pro-
posals. However, the astute reader may have noticed that the
number of chains is fixed throughout this study at N = 20
and it would be difficult to generalize these results to other
values of N or other target distributions. The interplay be-
tween the dimension of the target, the number of chains and
the number of proposals is more subtle and based on our ex-
periments with IMTM we recommend using a large number
of chains, i.e. N ≥ 100 and M/N ∈ [5%,20%].
4.2 Stochastic volatility

The estimation of the stochastic volatility (SV) model due
to Taylor (1994) still presents challenging issues in both off-
line (Celeux et al. 2006) and sequential (Casarin and Marin
2009) inference contexts. First, the nonlinear structure of
the model makes parameter estimation difficult. Second, the
high dimension of the sampling space hinders the use of the
data-augmentation and prevents the reliable joint estimation
of the parameters and the latent variables. As highlighted
in Casarin et al. (2009) using multiple chains with a chain
interaction mechanism could lead to a substantial improve-
ment in the MCMC method for this kind of model. We con-
sider the SV model given in Celeux et al. (2006)

yt |ht ∼ N
(

0, eht

)
,

ht |ht−1, θ ∼ N
(
α + φht−1, σ

2
)

,

h0|θ ∼ N
(

0, σ 2/(1 − φ2)
)

,

with t = 1, . . . , T and θ = (α, φ, σ 2). For the parameters
we assume the noninformative prior (see Celeux et al. 2006)

π(θ) ∝ 1/(σβ)I(−1,1)(φ),

where β2 = exp(α). In order to simulate from the poste-
rior we consider the full conditional distributions and ap-
ply a Gibbs algorithm. If we define y = (y1, . . . , yT ) and



Stat Comput

h = (h0, . . . , hT ) then the full conditionals for β and φ are
the inverse gamma distributions

β2|h,y

∼ I G
(

(T − 1)/2,

T∑
t=1

y2
t exp(−ht )/2

)
,

σ 2|φ,h,y

∼ I G
(

(T − 1)/2,

T∑
t=2

(ht − φht−1)
2/2 + h2

1(1 − φ2)

)

and φ and the latent variables have non-standard full condi-
tionals

π(φ|σ 2,h,y)

∝ (1 − φ2)1/2 exp

(
− φ2

2σ 2

T −1∑
t=2

h2
t − φ

σ 2

T∑
t=2

htht−1

)

× I(−1,+1)(φ),

π(ht |α,φ,σ 2,h,y)

∝ exp

{
− 1

2σ 2
[(ht − α − φht−1)

2

− (ht+1 − α − φht )
2] − 1

2
[ht + y2

t exp(−ht )]
}
.

In order to sample from the posterior we use the IMTM-
IS within Gibbs algorithm. Particularly, in the IMTM step
for φ, we follow Celeux et al. (2006), and use as proposal,
a truncated normal distribution on (−1,1) with mean and
variance

T∑
t=2

htht−1

/ T −1∑
t=2

h2
t and σ 2

/ T −1∑
t=1

y2
t .

One of the most difficult issues is related to the choice
of the proposal distribution for ht . In this paper we follow a
standard approach based on the second-order Taylor approx-
imation of the term exp{ht }, in the full conditional of ht ,
around the mean μt of the distribution of ht |ht−1, φ,σ 2.
The approach has been introduced by Shephard and Pitt
(1997) and has been adapted to the context of iterated im-
portance sampling by Celeux et al. (2006). The proposal dis-
tribution for ht , 1 ≤ t ≤ T is N (At ,Bt ) where

A1 = φh2σ
−2 + 0.5 exp(−φh2)y

2
1(1 + φh2)β

−2 − 0.5

σ−2 + 0.5 exp(−φh2)y
2
1β−2

,

At = (1 + φ2)μtσ
−2 + 0.5 exp(−μt)y

2
t (1 + μt)β

−2 − 0.5

(1 + φ2)σ−2 + 0.5 exp(−μt)y
2
t β−2

,

∀t = 2, . . . , T − 1,

AT = φhT −1σ−2 + 0.5 exp(−φhT −1)y2
T

(1 + φhT −1)β−2 − 0.5

σ−2 + 0.5 exp(−φhT −1)y2
T

β−2

and

B1 = (σ−2 + 0.5 exp(−φh2)y
2
1β−2)−1,

Bt = (1 + φ2)μtσ
−2 + 0.5 exp(−μt)y

2
t (1 + μt)β

−2 − 0.5

(1 + φ2)σ−2 + 0.5 exp(−μt)y
2
t β−2

,

∀t = 2, . . . , T − 1,

BT =
[
σ−2 + 0.5 exp(−φhT −1)y

2
T β−2

]−1
.

The IMTM implementation uses M different indepen-
dent proposals which are obtained from the population of
chains according to the design outlined in Algorithm 3.

It has been recognized that the single-move Gibbs sam-
pler updates sequentially the latent variables and is ineffi-
cient. A possible remedy (see Shephard and Pitt 1997) con-
sists in simulating jointly groups of latent variables (this ap-
proach is henceforth referred to as blocking). The IMTM
algorithms proposed here can be extended to accommo-
date the blocking procedure. Implementation of the classi-
cal MTM (Algorithm 1) for this example was proposed by
So (2006) who discussed three types of MTM multi-move
Gibbs samplers: the autoregressive MTM, the independent
kernel MTM (IKMTM) and the posterior mode direction
sampling for the Bayesian analysis of state space models.
The algorithms extend in the MTM context the block sam-
pling strategy for state space models introduced by Shep-
hard and Pitt (1997). Since the three algorithms are based
on a single chain and use the same distribution for generat-
ing the proposals of the MTM, at each iteration they are able
to explore only one direction of the state space. A combina-
tion of our IMTM strategy with one of the algorithms in So
(2006) can use at each iteration different proposal distribu-
tions with different directions. In our paper we consider the
IKMTM algorithm that relies on an independent proposal
distribution for the block of latent variables and generates
multiple draws from the proposal distribution to explore the
state space. We propose to combine the blocking strategy of
the IKMTM with our interacting kernel strategy thus obtain-
ing an IMTM-IS algorithm with blocking which is denoted
IMTM-IS-b.

We consider in our simulations two parameter settings,
(α, φ, σ 2) = (0,0.99,0.01) and (α, φ, σ 2) = (0,0.9,0.1),
which correspond, in a financial stock market context, to
daily and weekly frequency data, respectively. Note that, as
reported in Casarin and Marin (2009), inference in the daily
example is more difficult. We compare the IMTM-within-
Gibbs algorithms with a population of MH-within-Gibbs in
terms of Mean Square Error (MSE) for the parameters and
of cumulative RMSE for the latent variables. We carry out
the comparison based on the MSE and the SD by running
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Table 3 Mean square error (MSE) and standard deviation (in paren-
thesis) for the parameter estimation with IMTM-IS, IMTM-IS-b and
MH within Gibbs algorithms. Top panel: daily data. Bottom panel:
weekly data

θ Value MSE

IMTM-IS IMTM-IS-b MH

Daily data

α 0 0.00541 0.001289 0.01520

(0.00121) (0.000946) (0.000782)

φ 0.99 0.05979 0.008735 0.083013

(0.00266) (0.001283) (0.004432)

σ 2 0.01 0.00069 0.000315 0.005318

(0.00029) (0.000195) (0.000389)

Weekly data

α 0 0.000608 0.000243 0.000839

(0.000249) (0.000929) (0.000722)

φ 0.9 0.00724 0.006273 0.04096

(0.00038) (0.000291) (0.00423)

σ 2 0.1 0.00077 0.000717 0.00716

(0.00033) (0.000989) (0.00106)

the algorithms on 20 independent simulated datasets of 1000
observations. In our comparison we account for the compu-
tational cost by sampling T = 50,000 draws from the pos-
terior using the population of MH with N = 20 chains, and
only T = 10,000 samples using the IMTM-IS and IMTM-
IS-b within Gibbs, each with N = 20 interacting chains and
M = 5 proposals. For IMTM-IS-b we use blocks of size 5
(see Shephard and Pitt 1997, for a discussion on the choice
of the block size). We left the study of the optimal block
size for further research as the main goal of our simula-
tion study is to demonstrate the IMTM algorithm’s ability to
break down the dependence in the single-move sampler and
thus to improve the efficiency of the Monte Carlo sample.
We also expect that, due to the degeneracy of the selection
weights, the efficiency of our algorithm will deteriorate as
the size of the block increases.

The results for the parameter estimation when applying
IMTM-IS and IMTM-IS with blocking (IMTM-IS-b) are
presented in Table 3 and show an effective improvement in
the estimates, both for weekly and daily data, when com-
pared to the results of a MH algorithm with an equivalent
computational load.

Figure 7 shows the estimated maximum ACF for the 1000
components associated to the latent process {ht }t=1,...,T

with T = 1000. The maximum ACF is evaluated over the
chains in the Monte Carlo population and over 10 indepen-
dent replicates for the population MH (dashed line), IMTM-
IS (solid black line) and IMTM-IS-b (solid grey line) al-
gorithms. Figure 7 shows the results for the daily data (top
panel) and for the weekly data (bottom panel). In both se-

Fig. 7 Maximum value of the ACF associated with the 1000 latent
process {ht }t=1,...,T , for daily (top) and weekly (bottom) datasets. The
maximum value of the ACFs for the IMTM-IS (solid black line), MH
(dashed line) and IMTM-IS-b (solid gray line) and the 90%HPD re-
gions (gray areas) are estimated from different chains of the population
and independent replicates

tups IMTM-IS and IMTM-IS-b outperform the population
MH in terms of estimation efficiency. We should notice that
there is an efficiency improvement when using block sam-
pling and that the improvement is larger for the daily dataset
than for the weekly dataset.

These results are similar to the results obtained for SV
models in Celeux et al. (2006), Casarin and Marin (2009)
and Casarin et al. (2009) for population Monte Carlo algo-
rithms. We can conclude that while the IMTM shares some
of its properties with other population Monte Carlo algo-
rithms it has the advantage that the convergence of the algo-
rithm relies upon the detail balance condition and no further
theoretical results are needed.

Figure 8 show the HPD region at the 90% (grey areas)
and the mean (black lines) of the cumulative RMSE of each
algorithm for the weekly (top panel) and daily data (bot-
tom panel). The statistics have been estimated from 10 in-
dependent experiments. The average RMSE shows that in
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Fig. 8 Cumulative RMSE for the IMTM-IS (solid black line), MH
(dashed line) and ITMT-IS-b (solid gray line) and the 90% HPD re-
gions for the thre algorithms (gray areas) estimated on 20 independent
experiments for both the daily (top) and weekly (bottom) datasets

both settings considered here, IMTM-IS (solid black line)
and IMTMT-IS-b (solid grey line) are more efficient than
the standard MH algorithm (dashed line).

4.3 Loss of heterozygosity application

We consider here the problem of the genetic instability of
esophageal cancers. During a neoplastic progression the
cancer cells undergo a number of genetic changes and pos-
sibly lose entire chromosome sections. The loss of a chro-
mosome section containing one allele by abnormal cells is
called Loss of Heterozygosity (LOH). The LOH can be de-
tected using laboratory assays on patients with two different
alleles for a particular gene. Chromosome regions contain-
ing genes which regulate cell behavior, are hypothesized to
have a high rates of LOH. Consequently the loss of these
chromosome sections disables important cellular controls.

Chromosome regions with high rates of LOH are hypoth-
esized to contain Tumor Suppressor Genes (TSGs), whose
deactivation contributes to the development of esophageal

cancer. Moreover the neoplastic progression is thought to
produce a high level of background LOH in all chromosome
regions.

In order to discriminate between “background” and TSGs
LOH, the Seattle Barrett’s Esophagus research project (Bar-
rett et al. 1996) has collected LOH rates from esophageal
cancers for 40 regions, each on a distinct chromosome arm.
The labeling of the two groups is unknown so Desai (2000)
suggest to consider a mixture model for the frequency of
LOH in both the “background” and TSG groups.

We consider the hierarchical Beta-Binomial mixture
model proposed in Warnes (2001)

f (x,n|η,π1,π2, γ )

= η

(
n

x

)
πx

1 (1 − π1)
n−x

+ (1 − η)

(
n

x

)
�(1/ω2)

�(π2/ω2)�((1 − π2)/ω2)

× �(x + π2/ω2)�(n − x + (1 − π2)/ω2)

�(n + 1/ω2)
(8)

with x number of LOH sections, n the number of ex-
amined sections, ω2 = exp{γ }/(2(1 + exp{γ })). Let x =
(x1, . . . , xm) and n = (n1, . . . , nm) be a set of observations
from f (x,n|η,π1,π2, γ ) and let us assume the following
priors

η ∼ U [0,1], π1 ∼ U [0,1],
π2 ∼ U [0,1] and γ ∼ U [−30,30] (9)

with U the uniform distribution on [a, b]. Then the posterior
distribution is

π(η,π1,π2, γ |x,n) ∝
m∏

j=1

f (xj , nj |η,π1,π2, γ ). (10)

The parametric space is of dimension four: (η,π1,π2, γ ) ∈
[0,1]3 × [−30,30] and the posterior distribution has two
well-separated modes making it difficult to sample using
generic methods.

We apply the IMTM-IS algorithm M = 4 proposal func-
tions selected between a population of N = 100 chains. The
values of the population of chains (dots) at the last iteration
on the subspace (π1, π2) is given in Fig. 9. The IMTM-IS
is able to visit both regions of the parameter space and con-
firms the analysis of Craiu et al. (2009) and Warnes (2001).

5 Conclusions

In this paper we propose a new class of interacting multiple-
try Metropolis algorithms that extends the existing literature
in two directions. First , the multiple try transition kernel has
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Fig. 9 Values of the population of chains (dots) at the last iteration
on the subspace (π1, π2). The interaction is given by M = 4 proposal
functions randomly selected between the population of N = 100 chains

been extended to allow to use of different proposal distribu-
tions and second, we propose a new interacting Monte Carlo
algorithm for increasing the efficiency of MTM. We give
a proof of validity of the algorithm and show on real and
simulated examples the effective efficiency improvement.
We have compared our IMTM with population MH and left
for future research a comparison with importance sampling
based methods such as the Population Monte Carlo methods
or Sequential Monte Carlo methods described in Jasra et al.
(2007). We note here that the use of antithetic and stratified
sampling discussed by Craiu and Lemieux (2007) can be ex-
tended to the current setting. When implementing the IMTM
sampler in practice one has to tune a number of simulation
parameters. We are confident that some, if not all, these pa-
rameters can be changed “on the fly” based on principles
developed within the class of adaptive MCMC. Future work
will focus on building stronger ties between IMTM and the
emerging area of adaptive MCMC.
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Appendix: Proof

Without loss of generality, we can set Mi = N , ∀i and
x

(i)
n = x. Fixed the ith chain, the conditional detailed bal-

ance is proved. This ensures the ergodicity of the chain.

Following the notations in Algorithm 3, let us define the
following quantities

w̄(i)(y1:N |x) =
N∑

j=1

w
(i)
j (yj , x),

w̄
(i)
−k(y1:N |x) =

N∑
j �=k

w
(i)
j (yj , x)

and

SN(J ) = 1

w̄(i)(y1:N |x)

N∑
j=1

δj (J )w
(i)
j (yj , x)

with J ∈ J = {1, . . . ,N} the empirical measure gener-
ated by different proposals and by the normalized selection
weights.

Let T (i)(dy1:N | x) = ⊗N
j=1 T

(i)
j (dyj | f̃

(i)
n (x)) the joint

proposal for the multiple try and define T
(i)
−k (dy1:N | x) =⊗N

j �=k T
(i)
j (dyj | f̃

(i)
n (x)). Let A(x,y) be the actual transi-

tion probability for moving from x to y in the IMTM (Algo-
rithm 3). Suppose that x �= y, then the transition is a results
two steps. The first step is a selection step which can be writ-
ten as y = yJ and x∗

J = x with the random index J sampled
from the empirical measure SN(J ). The second step is a ac-
cept/reject step based on the generalized MH ratio which
involves the generation of the auxiliary values x∗

j for j �= J .
Then

π(x)A(x, y)

= π(x)

∫
Y N

T (i)(dy1:N | x)

∫
J

SN(dJ )

×
∫

Y N−1×Y 2
T

(i)
−J (dx∗

1:N | y)

× δx(dx∗
J )δyJ

(dy)min

{
1,

w̄(i)(y1:N |x)

w̄(i)(x∗
1:N |y)

}

= π(x)

N∑
j=1

∫
Y N−1

T
(i)
−j (dy1:N | x)T

(i)
j (y | f̃ (i)

n (x))

×
∫

Y N−1
T

(i)
−j (dx∗

1:N | y)

× w
(i)
j (y, x)

w
(i)
j (y, x) + w̄

(i)
−j (y1:N |x)

× min

{
1,

w
(i)
j (y, x) + w̄

(i)
−j (y1:N |x)

w
(i)
j (x, y) + w̄

(i)
−j (x

∗
1:N |y)

}

=
N∑

j=1

w
(i)
j (x, y)w

(i)
j (y, x)

λ
(i)
j (y, x)

∫
Y 2(N−1)

T
(i)
−j (dy1:N | x)
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× T
(i)
−j (dx∗

1:N | y)min

{
1

w
(i)
j (y, x) + w̄

(i)
−j (y1:N |x)

,

1

w
(i)
j (x, y) + w̄

(i)
−j (x

∗
1:N |y)

}

which is symmetric in x and y.
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