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Abstract The joint modeling of longitudinal and survival data has received extraor-
dinary attention in the statistics literature recently, with models and methods becom-
ing increasingly more complex. Most of these approaches pair a proportional hazards
survival with longitudinal trajectory modeling through parametric or nonparametric
specifications. In this paper we closely examine one data set previously analyzed
using a two parameter parametric model for Mediterranean fruit fly (medfly) egg-lay-
ing trajectories paired with accelerated failure time and proportional hazards survival
models. We consider parametric and nonparametric versions of these two models, as
well as a proportional odds rate model paired with a wide variety of longitudinal tra-
jectory assumptions reflecting the types of analyses seen in the literature. In addition
to developing novel nonparametric Bayesian methods for joint models, we empha-
size the importance of model selection from among joint and non joint models. The
default in the literature is to omit at the outset non joint models from consideration.
For the medfly data, a predictive diagnostic criterion suggests that both the choice of
survival model and longitudinal assumptions can grossly affect model adequacy and
prediction. Specifically for these data, the simple joint model used in by Tseng et al.
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(Biometrika 92:587–603, 2005) and models with much more flexibility in their lon-
gitudinal components are predictively outperformed by simpler analyses. This case
study underscores the need for data analysts to compare on the basis of predictive
performance different joint models and to include non joint models in the pool of
candidates under consideration.

Keywords Mixture of Polya trees · Model selection · Predictive inference · Survival
analysis · Time dependent covariates

1 Introduction

Studies designed to relate event times to covariates often involve the incorporation
of measurements on one or more longitudinal processes (e.g. repeated measurements
taken on biomarkers or exposure histories) that are thought to be associated with the
time to event occurrence. Statistical models for such data have been termed “joint
longitudinal/survival” models and in this paper they are referred to as joint models.
In general, the primary inferential objectives of joint modeling are to characterize
trends in the time course of relevant longitudinal processes, to determine which covar-
iate processes or variables are predictive of time to event occurrence, and to assess
the magnitude of such associations, while adjusting for confounder processes and/or
covariables. We subsequently use the terminology longitudinal process, covariate pro-
cess, and time dependent covariate (TDC), interchangeably.

Traditionally, these objectives were achieved by disjoint analysis of the longitudinal
data (e.g. using mixed models or other standard analytic methods for temporal data to
obtain point estimates of longitudinal trajectories) and the event time data (e.g. the Cox
model with known TDC’s). However, conducting a separate longitudinal data analysis
may provide biased inferences in the Cox model when a TDC is associated with event
occurrence, resulting in longitudinal data that are subject to informative missingness.
Moreover, a separate or raw survival analysis that simply conditions on a TDC y(t) can
also produce biased parameter estimates when the “true” process, say x(t), is measured
with error or is subject to random biological variability (Prentice 1982; Bycott and
Taylor 1998). In the absence of measurement error the process y(t) = x(t) is observed.
Sometimes the longitudinal process can be accurately characterized by a piecewise
constant function with changes at discrete time points; Hanson et al. (2009) considered
several flexible Bayesian semiparametric models in this context. However, when event
times are modeled as dependent on a continually varying, but finitely sampled x(t)
only through the last observed value, this approach is akin to last observation carried
forward (LOCF) imputation, which can also be prone to biased parameter estimates
(Prentice 1982).

Alternatively, two-stage procedures attempt to improve upon the simplicity of
LOCF methods by imputing unobserved values of x(t) by first modeling the lon-
gitudinal process and then treating the imputed trend as a known TDC in a survival
model. This approach has the potential for biased estimates when x(t) is informa-
tively censored at the event time. Although the introduction of estimation bias in Cox
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Semiparametric joint longitudinal-survival modeling 5

model regression coefficients has been well-documented in the literature, it is unclear
whether naive approaches such as LOCF reduce the predictive ability of a model.

Drawbacks of separate analyses and two-stage procedures motivated the re-
cent flourish of research on joint models for longitudinal and survival data
(see Tsiatis and Davidian 2004 for a review). Joint modeling directly accounts for
the relationship between event time and the implicit censoring of the corresponding
repeated measures sequence. Moreover, it is expected that, with joint modeling, there
is opportunity for increased statistical efficiency due to using all of the data simulta-
neously in a single model, as well as appropriate assessment of estimator variability
obtained by correctly treating the longitudinal process as random rather than incor-
rectly assuming there is no uncertainty attached to imputed values from a separate
longitudinal model.

Joint modeling links the longitudinal and survival data by factoring the joint like-
lihood into a conditional survival component in which event times are modeled to be
dependent on a latent process x(t), which is itself modeled appropriately. There are
now several published Bayesian approaches to joint analysis, including methods devel-
oped by Faucett and Thomas (1996), Wang and Taylor (2001), and Brown and Ibrahim
(2003). Frequentist approaches were developed by Wulfsohn and Tsiatis (1997), Song
et al. (2002), and Law et al. (2002), among others. Ibrahim et al. (2001, Chap. 7) and
Tsiatis and Davidian (2004) provide overviews of research on statistical methodology
for joint longitudinal/survival models. The initial development of joint models was
largely motivated by data from AIDS clinical trials that were designed to evaluate the
therapeutic effects of treatments on the development of AIDS or death, where CD4
count and viral loads were used as markers for disease escalation (see, for example,
Wang and Taylor 2001 and references therein).

In this paper we develop several Bayesian semiparametric joint models that achieve
flexibility through arbitrary baseline survival functions, which are modeled with mix-
tures of finite Polya trees (MFPT) priors (Lavine 1992; Hanson and Johnson 2002;
Hanson 2006). This approach generalizes standard parametric survival regression anal-
ysis, including log-normal, Weibull, and log-logistic regression. The survival models
we consider include the Cox (1972) model, a generalization of the proportional odds
(PO) model (Sundaram 2006), and a generalization of the accelerated failure time
(AFT) model (Cox and Oakes 1984), which we refer to as the CO model. Details
about these models are provided in Sect. 2.

A prominent feature that sets the current study apart from other published joint
modeling applications is our detailed treatment of model comparison according to
prediction accuracy. We compare models (Cox, PO and CO) using the predictive
approach of Geisser and Eddy (1979), which employs conditional predictive ordi-
nates in its calculation. They propose what they call the pseudo marginal likelihood,
which is an approximation to the usual marginal likelihood (sometimes called the prior
predictive) that is used in calculating Bayes factors. The ratio of pseudo marginal like-
lihoods corresponding to two distinct models, for instance the PO and CO, is called a
pseudo Bayes factor for comparing these models. We are not aware of any other papers
that have made such comparisons across semiparametric families for joint modeling.
Instead, generally, a single joint model is developed without regard to model selection
or fit. We also use pseudo marginal likelihoods to compare raw versus two-stage versus
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joint modeling to decide if, for a given data set, joint or two stage methods predictively
outperform a simpler raw analysis. We also compare semiparametric models to their
parametric counterparts.

Model development for the three semiparametric approaches is presented in the next
section. In Sect. 3 we detail Bayesian semiparametric methods for joint modeling, dis-
cuss approaches to Markov chain Monte Carlo (MCMC) simulation to enable posterior
and predictive inference, and develop predictive model selection in this context. Novel
aspects of our work include extending the CO model to a Bayesian joint specification,
extending the PO model to a joint specification, and comparison of competing joint
models from a predictive standpoint. Of particular interest to us is the recent develop-
ment of frequentist joint modeling methodology for the CO semiparametric survival
model in conjunction with longitudinal data by Tseng et al. (2005). Their methodology
was applied to an analysis of female Mediterranean fruit fly (called “medfly” for short)
lifetimes modeled as a function of reproductive fertility, which was measured daily
over the lifespan by the number of eggs laid per day. They implemented a Monte Carlo
EM algorithm to obtain a point estimate of the regression coefficient in conjunction
with a bootstrap standard error. We follow up with an analysis of these data in Sect. 4,
only with a direct comparison of the Cox, CO and PO models. Our methods allow for
broader inferences since, due to MCMC methodology, it is simple to make inferences
about any quantity of interest, for example, a hazard function, or a ratio of hazard func-
tions, if desired. With regard to our model selection criterion, we establish the futility of
joint or two-stage modeling for these data. Concluding remarks are provided in Sect. 5.

2 Model development

Consider the following situation. One or more longitudinal processes are observed on
individual i until either the individual experiences an event of interest, leaves the study,
or the study is terminated. The latter two scenarios correspond to censoring. Censor-
ing mechanisms are assumed independent of event times. For simplicity of exposition,
we only consider a single covariate process since there is no conceptual or practical
difficulty in our approach associated with having additional ones. Thus, consider a
single longitudinal process for the i th experimental unit, xi (t), that is measured with
non-negligible error so that the observed process is yi (t) = xi (t)+ εi (t), t > 0. The
full longitudinal model is developed later in this section. Note that time dependent
covariates that are not observed with error are also readily handled within the model
(Hanson et al. 2009).

Next, let Ti denote either the event time or the censoring time, whichever is observed
first, and let δi be an indicator of event occurrence. We subsequently model the condi-
tional for Ti | xi (·) according to Cox, CO and PO models. Since the process yi (·) is only
observed at a fixed vector of times, say ti = (ti1, . . . , timi ), we define the observed
value to be the vector yi = (yi (ti1), . . . , yi (timi )). The time vectors will generally vary
from individual to individual. In our application, the trajectory xi (t)will be described
fully by a finite-dimensional vector bi in a random coefficient regression model with
precision τ . The model for the data can be represented generically as a joint probability
density
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Semiparametric joint longitudinal-survival modeling 7

f (yi ,bi , Ti |τ,π) = f (yi |bi , τ ) f (bi |π l) f (Ti |bi ,π s).

Here, π l is the parameter vector corresponding to the longitudinal component of the
model, and π s is comprised of all parameters associated with the semiparametric sur-
vival component. The likelihood contribution for a non-censored individual is given
by the integral of the above joint density with respect to bi . For the models we consider
it is not necessary to do the integration explicitly.

To summarize, the data for n independently sampled subjects are denoted by
{(Ti , δi , yi , zi , ti )}n

i=1. The vector yi contains observed sequential values of the pro-
cess yi (·), which is subject to inherent biological variability and/or measured with
error at times ti . The vector zi denotes the collection of baseline covariates, thus their
values are known and fixed through time. We assume that events and censoring are
independent of the process measurement schedule. Assessment and quantification of
the association between the potentially latent biological process xi (t) and event time
Ti is the primary inferential objective.

2.1 Survival component

Several regression models associating survival time with a covariate process have
been proposed in the literature, including models due to Cox (1972), Prentice and
Kalbfleisch (1979), Aalen (1980), Cox and Oakes (1984), and Sundaram (2006). We
consider Bayesian joint analysis with three of these models. Define Xt = {x(s) :
s ≤ t} to be the history of the process x(·) up to time t , and let h0(t) and S0(t) =
exp{− ∫ t

0 h0(s)ds} denote the baseline hazard and survival functions, respectively.
Finally, let the parameter β represent the regression effect of the true process on event
time. The Cox (1972) model as defined through the hazard function is

h(t |Xt ) = ex(t)βh0(t). (1)

The generalization of the accelerated failure time model due to Cox and Oakes (1984)
is defined by

S(t |Xt ) = S0

(∫ t

0
ex(s)βds

)

, (2)

and the generalization of the proportional odds model due to Sundaram (2006) is given
by

d

dt

[
1 − S(t |Xt )

S(t |Xt )

]

= ex(t)β d

dt

[
1 − S0(t)

S0(t)

]

. (3)

There is no published work that we are aware of involving joint model specifications
for (3) or Bayesian joint models for (2). The Bayesian joint models we develop here
extend the work of Hanson et al. (2009), who presented Bayesian semiparametric
methods with fixed TDC’s for the Cox and CO models, and for another generalization
of the AFT model due to Prentice and Kalbfleisch (1979).
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8 T. E. Hanson et al.

The vast majority of Bayesian and frequentist approaches to joint modeling use the
Cox model defined in (1) for the survival component. This model, however, incor-
porates a potentially unrealistic assumption for time-varying predictors, namely that
the risk of event at time t depends only on the current value of x(t) and not on its
history. Although this assumption might be valid in some cases, a cumulative effect
of exposure or treatment history will be biologically appropriate in other cases. To
address this limitation, Cox and Oakes (1984) generalized the AFT model by relating
the hazard of failure at time t to a measure of the “average” time-dependent covariate
effect up to time t , defined by c̄(t) = t−1

∫ t
0 ex(s)βds. The following representation of

the CO model indicates that an individual with TDC x(·) exhausts their lifetime at a
rate of ex(t)β relative to their (counterfactual) baseline rate:

T0 =
∫ T

0
ex(s)βds, T0 ∼ S0.

The corresponding hazard function is h(t |Xt ) = ex(t)βh0(c̄(t)t), with survival func-
tion defined in (2). The hazard function reflects both immediate (ex(t)β ) and cumulative
(c̄(t)) effects of the covariate process x(·) on risk. Note that the CO hazard reduces to
h(t |x) = exβh0(exβ t), the hazard for a standard AFT model, when the covariate does
not vary over time (x(t) ≡ x).

Our Bayesian analysis requires a prior probability model for S0(·) and β. We dis-
cuss a nonparametric prior for S0(·) in Sect. 2.3. Our model will assume independence
of these parts, and we use an improper uniform prior for β. However, because of our
prior on the baseline survivor function, it is straightforward to incorporate the infor-
mative priors for β that are discussed in Bedrick et al. (2000) for fixed (or averaged)
covariates.

2.2 Longitudinal component

Laird and Ware (1982) popularized the linear mixed model, a tool especially useful for
modeling longitudinal data. A generalization of their model for the process associated
with subject i is

yi (t) = xi (t)+ εi (t); xi (t) = f (t)+ gi (t)+ z′
iα + v′

i ci , (4)

where εi (t)
i id∼ N (0, 1/τ) are random and independent normal errors, f (t) is a fixed

function of time and gi (t) represents random deviation from f for individual i . The
ci ’s are random effects, zi and vi are design/baseline covariate vectors, and α is a
vector of regression coefficients. The functions f (·) and/or gi (·) have been modeled
in joint analysis applications with polynomials (Wang and Taylor 2001; Brown and
Ibrahim 2003), Gaussian processes (Wang and Taylor 2001), and B-splines (Brown et
al. 2005).

It is common in longitudinal data analysis to represent f (·) and gi (·) in terms of
finite basis function expansions (e.g. polynomials, fractional polynomials, splines,
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Semiparametric joint longitudinal-survival modeling 9

wavelets, Fourier expansions, et cetera) and to thus write each as a linear combi-
nation, e.g. f (t) = ∑K

k=1 μkψk(t) and gi (t) = ∑K
k=1 bikψk(t) with coefficients

μ = (μ1, . . . , μK )
′ for f and random effects bi = (bi1, . . . , bi K )

′ for gi . In these
instances, model (4) can be represented as a linear mixed model. Standard distribu-
tional assumptions posit the vectors bi as iid multivariate normal with mean 0 and
unknown covariance matrix �. In the case of a penalized spline, there is an additional
smoothing parameter that can be viewed as a variance component (Li et al. 2009).
The number and placement of knots can also be regarded as smoothing parameters.
Random effects, ci , are generally modeled with multivariate normal distributions with
mean zero and an unknown covariance.

The mixed model can approximate a Gaussian process by taking ψ1(·), . . . , ψK (·)
to be kernel functions over a set of equispaced knots, much like B-splines. For example,
assuming bi ∼ NK (0, σ 2I), the process

x(t) =
K∑

k=1

bikφ{(t − lk)/κ}/κ

where φ(x) = exp(−0.5x2) and l = (l1, . . . , lK ) are knots, approximates a Gaussian
process with a Gaussian covariance function (Higdon 2001). The covariance depends
on (σ, κ); the full conditional for κ is typically sampled using a Metropolis-Has-
tings step, or the prior for κ can be discrete on a grid of reasonable values relative to

 = lk+1 − lk . Unlike partially sampling a Gaussian process over a mesh, the con-
volution approach obviates taking the inverse of a large dimensional matrix at each
MCMC iteration. Thus, this approach is able to “. . . write the stochastic process . . .
as a ‘random effects model’ and thereby develop new joint model implementations
. . .” as suggested by Tsiatis and Davidian (2004) as an avenue of unexplored research.
See also Kneib (2006) and Banerjee et al. (2008) for related ideas. We consider this
approach in Sect. 4.

Our focus in the current study is use of joint modeling for making appropriate infer-
ences about the effect of a longitudinal process on survival. While we do allow for
considerable generality in modeling the longitudinal part along with associated detail,
it is beyond the scope of this article to attempt to cover the myriad of possible imple-
mentations beyond what we consider here. There are many possible choices and going
into these issues would distract from our main purpose. Our illustrations give details
including prior specification for the specific longitudinal models employed herein.

2.3 Prior for baseline survival

All three semiparametric models that were introduced above in (1), (2), and (3) involve
a baseline survivor function S0(·). Our approach is to place competing survival models
on “equal ground” in terms of prior specification, partly for parsimony and partly since
we plan to compare these models. We thus propose to place a single nonparametric
prior on S0 for all three models.
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10 T. E. Hanson et al.

We have chosen to model S0(·) with a (finite) mixture of Polya trees prior in
each instance because, in addition to other attractive properties (Hanson 2006), with
this prior it is possible to embed a parametric family of survivor functions within
a broader class of survival models defined by it. This is termed centering on the
parametric family since the prior expectation of S0(·) includes all survival functions
from the specified family. In our illustrations, all three baseline survivor functions
are modeled with a single MFPT prior that has a log-logistic centering family. In
addition to representing a nonparametric generalization of certain standard paramet-
ric survival models, a further benefit is the relative ease of implementing MCMC
computing algorithms for model fitting (e.g. Hanson and Yang 2007; Branscum and
Hanson 2008) that comes from directly making use of output from parametric analy-
ses in constructing efficient proposal distributions for Metropolis steps within Gibbs
samplers. Inferences for survival and hazard functions based on an MFPT analysis
are directly available because S0 is not marginalized; it is sampled at each MCMC
iteration.

Foundational work on Polya trees was presented by Ferguson (1974), Lavine (1992),
Lavine (1994), and Mauldin et al. (1992). Mixtures of Polya trees were developed by
Berger and Guglielmi (2001), Hanson and Johnson (2002), and Hanson (2006). See
also Paddock et al. (2003) for related work. Briefly, a realization of a simple Polya
tree is determined by (i) a tree that has been created through the successive binary
partitioning of sets in the sample space, and (ii) a corresponding tree of conditional
probabilities. The sample space for survival analysis corresponds to [0,∞); the first
split on the tree corresponds to a number in this set. The first “branch” probabilities
are S0(B0) and S0(B1), where [0,∞) = B0 ∪ B1; these probabilities must add to
one. The second level of the tree involves splitting B0 and B1, each into two addi-
tional mutually exclusive and exhaustive sets. We similarly define the next set of
branch probabilities as S0(B00|B0), S0(B01|B0), and S0(B10|B1), S0(B11|B1), where
each pair also add to one. The next level entails splitting each of these sets, and
so on ad infinitum. If a member of each pair of conditional branch probabilities is
modeled independently with its own beta distribution, we have constructed a (ran-
dom) Polya tree that places prior probability on a broad class of probability distribu-
tions.

Suppose the centering family is {Gθ (·) : θ ∈ �}. Then, if the beta priors on the
branch probabilities have mean 0.5, and if, for fixed θ , the mth level partition of the tree
is determined by the 1/2m quantiles of Gθ (·), it follows that E(S0(·)) = Gθ (·). Finally,
a common choice for the beta distribution at level m of the tree is beta(cm2, cm2),
where c is a positive constant. With this choice, we say that S0(·) ∼ PT (c,Gθ (·)). The
resulting Polya tree will be absolutely continuous with probability one. In addition,
if c is large, then the random S0(·) is approximately equal to the fixed Gθ (·); a small
value of c provides for greater flexibility.

Hanson (2006) argues that a good approximation to a full mixture of Polya trees
involves truncation at level M , where M is selected so that 2M ≈ n/N and N is a typi-
cal number falling into each set at level M . Selecting M in this manner is based on the
premise that going beyond this level would yield very weakly identified conditional
probabilities on the highest levels. For fixed θ , the corresponding prior is denoted as
a finite Polya tree. Define the collection of pairs of branch probabilities up to level
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Semiparametric joint longitudinal-survival modeling 11

M as XM = {
(Xe0, Xe1) : e ∈ {0, 1}M−1

}
. For example, X101 = S0(B101|B10). A

mixture of finite Polya trees prior for S0 obtains by placing a prior on θ and/or c. This
is hierarchically written S0|c, θ ∼ F PT (c,Gθ ), (c, θ) ∼ p(θ)p(c), which implies
for any binary number e ∈ {0, 1}M−1 that at level m < M, Xe0 ∼ beta(cm2, cm2),
i.e. (Xe0, Xe1) ∼ Dirichlet(cm2, cm2). The prior is constructed so that sets beyond
level M have S0-probability coinciding with Gθ . With this construction, the centering
family can be chosen from among commonly used parametric models such as lognor-
mal, log-logistic, or Weibull. The log-logistic, which we subsequently use in Sect. 4,
is indexed by θ = (θ1, θ2), with

Gθ (t) = 1

1 + t1/θ2 e−θ1/θ2
.

The MFPT model is ultimately not nonparametric due to the truncation, but rather
is a richly parametric model because of having a total of 2M − 1 branch probabilities.
The nature of a nonparametric MFPT analysis can be visualized as an underlying
parametric family Gθ capturing overall data shape and trend, refined by conditional
branch probabilities that provide latitude for local, data-driven fluctuations about the
parametric family.

3 Inference, implementation, and model choice

In this section we discuss some of the types of inferences imagined for this setting,
some details about MCMC sampling from the joint posterior, which includes sam-
pling the latent processes xi (t), under the joint model, and methods for predictive
comparison of models (1–3) for survival. We also ultimately compare models based
on traditional TDC’s versus imputation of the longitudinal process versus joint anal-
ysis.

3.1 Inference

Standard inferences will involve the usual point and interval estimates for the regres-
sion parameter β, although β is only interpretable relative to baseline for the CO
model. We are also interested in estimating the predictive lifetime density for individ-
uals with given longitudinal trajectories. For raw (LOCF) data we assume xi (t) = 0
for t > Ti ; alternatives would be to set xi (t) at the last value recorded or impute values
using time-series methods. For this reason, the density estimates from the raw analysis
are only known up to the last observation time before death. Beyond this value, there
is a fixed amount of probability mass left, but it is unknown how that mass will be
spread out because the (internal) trajectory vanishes.

For two-stage analysis based on a longitudinal model of the form xi (t) =∑K
k=1 bikψk(t), we use the posterior mean x̂i (t) = E{xi (t |bi )|y1, . . . , yn} =

∑K
k=1 b̂ikψk(t) based on the longitudinal model only for bi ; here b̂i = E{bi |y1, . . . ,

yn}. For the medfly data, these estimates are remarkably close to the posterior Bayes
estimates from the full joint models (Figs. 1, 2, 3, 4, 5, 6), and we see no loss of

123



12 T. E. Hanson et al.

5 10 15 20 25

1

2

3

4

20 40 60 80 100

0.02

0.04

0.06

0.08

20 40 60 80 100

0.02

0.04

0.06

0.08

0.1

Fig. 1 Fly 247 (event time 29 days). Top panel is raw and estimated trajectories, second panel is predictive
densities from parametric imputed analyses, and bottom panel is predictive densities from parametric LOCF
analyses. PO, Cox, and CO (Thin solid, dashed, and thick solid, respectively)

information in this much more tractable estimation method. As x(·) is completely
defined given b under the joint model, the predictive density is:

f (t |b) =
∫

f (t |b,π s)p(π s |y1, . . . , yn, T1, . . . , Tn)dπ s .
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Fig. 2 Fly 22 (event time 80 days). Top panel are raw and estimated trajectories, second panel are predic-
tive densities from parametric and MFPT imputed analyses, and bottom panel is predictive densities from
MFPT LOCF analyses. PO, Cox, and CO (Thin solid, dashed, and thick solid, respectively)

Our final aim is to compare models using a predictive model selection criterion. The
MCMC samples obtained from the full conditionals discussed in the next subsection
make it possible to obtain numerical approximations for predictive inference. Details
are in Sect. 3.3.

123



14 T. E. Hanson et al.

10 20 30 40 50
t

1

2

3

4

y

20 40 60 80 100
t

0.01

0.02

0.03

0.04

0.05

0.06

0.07
f

Fig. 3 Fly 38 (event time 58 days). Left panel is raw and estimated trajectories, right panel is predictive
densities from parametric CO analyses. Imputed (solid) and raw (dashed)

10 20 30 40 50
t

1

2

3

4

y

20 40 60 80 100
t

0.01

0.02

0.03

0.04

f

Fig. 4 Fly 45 (event time 57 days). Left panel is raw and estimated trajectories, right panel is predictive
densities from parametric CO analyses. Imputed (solid) and raw (dashed)
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Fig. 5 Fly 6 (event time 45 days). Left panel is raw and estimated trajectories, right panel is predictive
densities from parametric raw CO, Cox, and PO analyses (thin solid, dashed, and thick solid, respectively)

3.2 MCMC implementation

Under our model assumptions, including an MFPT prior for the baseline survivor
distribution, the likelihood augmented with b1, . . . ,bn is

n∏

i=1

f (Ti |bi ,π s)
δi S(Ti |bi ,π s)

1−δi f (yi |bi , τ ) f (bi |π l).
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Fig. 6 Fly 111 (event time 51 days). Left panel is raw and estimated trajectories, right panel is predictive
densities from parametric raw CO, Cox, and PO analyses (thin solid, dashed, and thick solid, respectively)

The survival parameters are π s = (β, θ ,XM ), the longitudinal parameters are π l =
(μ,�), and τ is the precision of yi (ti j ). The pdf’s, f (Ti |bi ,π s), and survivor func-
tions, S(Ti |bi ,π s), were discussed by Hanson et al. (2009) for the Cox and CO models,
and are developed in Appendix A for the PO model.

In our applications the parameters μ and � are updated from their full conditional
normal and inverted Wishart distributions. The bi are updated independently using
either independence or random walk Metropolis-Hastings steps based on the full con-
ditionals under the longitudinal model. Much more general longitudinal processes
xi (t), such as Gaussian processes and B-splines, can also be accommodated. Details
are given in Appendix B.

3.3 Model choice

Following theoretical considerations presented in Prentice (1982), Bycott and Taylor
(1998) used simulations to show that LOCF and two-stage imputation by fitting a
mixed model can lead to biased parameter estimates. However, when regression mod-
els are built as tools for characterizing future patient prognosis as they often are in
joint analysis, selection criteria should target the identification of a predictively viable
model. We consider model selection according to prediction accuracy by comparing
parametric and semiparametric joint analysis to survival analysis with fixed TDC’s
and to two-stage models.

The cross-validated, pseudo marginal likelihood criterion (Geisser and Eddy 1979)
is used here to quantify a model’s ability to predict survival,

∏n
i=1 p(Ti |T−i , y1:n).

On the log scale this becomes

LPML =
n∑

i=1

log(CPOi )

where CPOi = p(Ti |T−i , y1:n) denotes the conditional predictive ordinate of event
time Ti based on the remaining T−i = {Tj : j 
= i} and the full longitudinal data
y1:n = {y1, . . . , yn}. The CPOi statistic measures the amount of support the observed
trajectory yi gives the observed survival time Ti = ti through the model and the
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remaining medflies. For predictive optimality the goal is to maximize LPML, and
therefore, among the models under consideration, the one with the largest LPML is
deemed superior. A corresponding pseudo Bayes factor comparing two models can be
calculated as the ratio of their pseudo marginal likelihoods. Note that p(Ti |T−i , y1:n)
is computed as either the pdf or the survival function depending on whether Ti is an
event time or a censoring time.

The predictive LPML criterion has been recently promoted for use in Bayesian
nonparametric model selection in part because it is straightforward to calculate CPO
statistics from MCMC output. An identity tailored to the joint modeling setting is
presented in Appendix C. Either within a given model or in comparing competing
models, CPO statistics can highlight individuals with longitudinal profiles that are
highly predictive of survival. We make extensive use of CPO statistics in contrasting
the PO, Cox, and CO models in Sect. 4.

We stress that it would be inappropriate for us to use an LPML that was based
on the joint distribution of longitudinal and survival time data since our inferential
goal is completely focused on survival analysis. Joint modeling serves the purpose of
handling time dependent processes appropriately. Moreover, we also compare models
based on raw trajectories, making our choice of LPML all the more clear. An alterna-
tive method of (frequentist) prediction based model selection in survival analysis with
TDCs was developed in Schoop et al. (2008).

4 Longevity of medflies

The data used for illustration came from a study reported in Carey et al. (1998) and
further analyzed by Chiou et al. (2003) where the reproductive patterns of 1000 Medi-
terranean fruit flies were obtained by recording the number of eggs produced each day
throughout their lifespan. The scientific goal was to examine the association between
temporal trend in egg production and lifetime. A frequentist joint modeling approach
based on the CO model (2) was used to analyze the most prolific egg-layers by Tseng
et al. (2005), and like these authors we excluded from our analysis the flies whose
lifetime production was less than 1145 eggs. We also removed the first two days from
each trajectory, which have zero counts for all flies, to correspond to Fig. 2 in Tseng
et al. (2005). This gave a sample size of 251 flies with lifetimes ranging from 22 to
99 days (24 to 101 days in the original data).

A survival analysis that treated egg production as a known TDC was implemented
using a piecewise constant function with days representing changepoints. For compar-
ison with the analysis by Tseng et al. (2005), we use the same longitudinal model they
did (also used in Hsieh et al. 2006), and we also consider more flexible alternatives.
They noted that scatterplots of temporal profiles of egg production suggested the non-
linear form that corresponds to a gamma kernel, namely tb1eb2(t−1), with different b1
and b2 for each medfly. They transformed this nonlinear structure into a linear mixed
model by considering yi (t) = log{Ni (t)+ 1}, the natural log of one plus the number
of eggs laid on day t . With this transformed longitudinal response, the trajectories are
modeled as
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Semiparametric joint longitudinal-survival modeling 17

yi (t)|bi , τ ∼ N
(

bi1 log t + bi2(t − 1), τ−1
)
, bi |μ,� i id∼ N2(μ,�). (5)

Since there are no additional covariates for survival, a single regression coefficient β
connects the survival model to the longitudinal process xi (t) = bi1 log t + bi2(t − 1).
The MFPT models used here set M = 4 and c = 1, with flat priors otherwise. About
16 observations fall into each of the 16 sets at level M = 4 if the log-logistic family
is approximately correct. We also considered the prior c ∼ �(5, 1) for a subset of
models, obtaining LPML values slightly smaller than with fixed c = 1.

Posterior propriety of the full models under a flat or Jeffreys’ prior is not immedi-
ately obvious. However, Theorem 4.4 (p. 296) in Yang and Chen (1995), and results
in Chen et al. (2002) indicate that posterior propriety for the longitudinal model under
flat priors holds, at least for fixed τ . The longitudinal posterior is also proper under
various reference priors. Fahrmeir and Kneib (2009) discuss posterior propriety for
the Cox model with additive regression effects modeled via penalized B-splines; see
also Chen et al. (2006). Establishing full posterior propriety under the additional flat
prior p(β) ∝ 1 could be done separately for each model, but we are unconcerned
with this for our analyses since placing vague but proper priors produces essentially
identical results for the medfly data. This is likely due to a relatively large amount of
data going into each fly’s trajectory, and that the survival times are uncensored.

4.1 Broad comparison across models

First, we fitted the models (1–3) with both the MFPT (c = 1) and parametric log-
logistic model (c → ∞). Each model was used in conjunction with: (i) raw trajecto-
ries only; (ii) the two-stage approach where longitudinal profiles are estimated from a
mixed model, and then a survival analysis is performed treating the imputed processes
as fixed TDC’s; and (iii) a joint analysis. According to the LPML statistics presented
in Table 1, the CO model performs the worst in this data analysis, regardless of the
method used to incorporate the longitudinal predictor (e.g. raw versus modeled) or
whether parametric versus MFPT S0 was assumed. For the two types of raw anal-
ysis, the flexibility obtained from an MFPT generalization of the log-logistic model
improves predictive performance, though not dramatically so. Moreover, it is also clear
that imputation and joint methods predict almost identically but are inferior to simple
raw analysis in this setting. Observe from Table 2 that point estimates of β under the
PO model are similar across types of analysis and that they are different for the CO
model.

Tseng et al. (2005) rejected the Cox model based on a test involving Schoenfeld
residuals and proposed the CO model as a plausible alternative. However, the LPML
criterion suggests the Cox model has increased predictive ability over the CO model,
at least in the Bayesian framework considered here. Furthermore, slightly improved
prediction under the PO model was seen (explored further in Sect. 4.2), and in Sect. 4.3
we tie this to a Cox model with time-weighted trajectories that satisfies the propor-
tional hazards assumption. From Table 1, the general conclusions about predictive
model comparison drawn for this data set are that a raw LOCF analysis is preferred
over imputed or joint methods, the PO model is preferred over the CO and Cox models,
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18 T. E. Hanson et al.

Table 1 LPML across models (larger is better)

Survival model Longitudinal trajectory PO Cox CO

Log-logistic Raw (LOCF) −867 −870 −937

Polya tree Raw (LOCF) −865 −866 −938

Polya tree Imputed −947 −959 −973

Log-logistic Mixed model −947 −959 −973

Polya tree Mixed model −945 −956 −973

Table 2 Posterior estimates across models

Method PO Cox CO

Parametric/raw −0.75 (−1.02,−0.53) −0.65 (−0.74,−0.56) −0.36 (−0.44,−0.27)

MFPT/raw −0.74 (−0.85,−0.64) −0.64 (−0.73,−0.55) −0.37 (−0.45,−0.29)

MFPT/imputed −0.74 (−0.97,−0.52) −0.37 (−0.52,−0.24) 0.16 (−0.01,0.30)

Parametric/joint −0.78 (−1.02,−0.53) −0.39 (−0.54,−0.25) 0.19 (0.01,0.33)

MFPT/joint −0.79 (−1.00,−0.52) −0.40 (−0.54,−0.24) 0.19 (0.01,0.32)

and the CO model might be excluded from further consideration, given the assump-
tions that were made going into the analysis.

It is worth noting that these data might not provide an ideal setting to advocate for
joint analysis. First, with egg counts of this type, it might not be expected that there is
much error in observation. Hence, a fundamental reason for performing a joint analysis
is absent. Moreover, the observed processes might be more predictive of death since
not all of the egg count trajectories fit the log gamma structure that is posited for these
data. Figures 1 and 2 illustrate two distinct patterns of egg production. The fitted tra-
jectories from PO, CO and Cox joint models are presented in these figures, along with
the plot obtained from analysis of the longitudinal data by itself. The four estimates
are virtually identical for both flies (they were also similar for all other flies). The
log-gamma shape fits the data from fly 247 (Fig. 1) much better by any of the survival
models and approaches compared to fly 22 (Fig. 2), where the simple {log(t), t − 1}
basis oversmooths the trajectory.

Finally, we calculated predictive densities for flies 247 and 22 under all of the mod-
els and methods (Figs. 1 and 2, panels 2 and 3). Observe for fly 247 that the actual
death time is highly plausible under both PO and Cox analysis with modeled trajec-
tories, while considerably less so under the CO model; all three survival approaches
fare similarly with raw LOCF. None of the approaches predict fly 22’s death well, a fly
that lived quite long and laid a large number of eggs relative to many other flies; see
also Sect. 4.4. In general, data from flies with long lifetimes are not fit well by any of
the models considered here. Insight was provided by Carey (2003, p. 63) who writes
“. . . females that exhibit high levels of lifetime reproduction must necessarily live long
enough to lay eggs over a sustained period. However, this relationship becomes pro-
gressively weaker at older ages because (i) egg laying decreases at older ages thus
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reducing the rate at which lifetime totals accumulate; and (ii) inasmuch as there is
no cost of reproduction, some long-lived females continue to lay eggs well into their
advanced ages while others lay few or no eggs at the oldest ages. This increases the
variance in lifetime reproduction of long-lived flies and therefore reduces its correla-
tion with longevity.”

4.2 Proportional odds rate

As noted in the previous section, the PO model predictively outperforms the other sur-
vival specifications, as measured by LPML, across a variety of analysis types. Also,
estimates of the survival regression coefficient were similar across PO models and
approaches. Both the Cox model and the Sundaram (2006) PO model have interpre-
tations in terms of rates. Let Oi (t) = 1−Si (t)

Si (t)
be the odds of an event at time t > 0 for

a subject with covariate xi (t). The PO model stipulates

O ′
i (t) = d

dt
Oi (t) = exi (t)βO ′

0(t), O0(t) = 1 − S0(t)

S0(t)
.

Thus,

O ′
1(t)

O ′
2(t)

= exp[{x1(t)− x2(t)}β].

For example, if x1(t) = x2(t) + 
, then the time-to-event odds are increasing by
a factor of eβ
 for x1(t) relative to x2(t), for all t . In terms of the hazard, O ′

i (t) =
hi (t)/Si (t); for either the hazard or the odds rate, larger values indicate more life
is being “used up.” For the medfly data, Ô ′

i (t) = [Ni (t) + 1]−0.74 O ′
0(t) under the

best-predicting MFPT model. A larger egg count indicates relatively less life is being
used up at time t ; i.e. the odds of survival increase faster with more eggs.

The hazard under the PO model is hi (t) = exi (t)βh0(t)/[S0(t){1 + Ri (t, β, S0)}].
The ratio of hazards is therefore

h1(t)

h2(t)
= exp[{x1(t)− x2(t)}β]1 + R2(t, β, S0)

1 + R1(t, β, S0)
,

where, for i = 1, 2, Ri (t, β, S0) = ∫ t
0 exi (s)βO ′

0(s)ds. Consider the situation where an
individual permanently changes a covariate trajectory by a constant amount
 at time
t ′. For example an individual might get an organ transplant, change medication, start
running, or take up recreational chainsaw juggling. We can consider two hypothetical
individuals, one who did not make the change, with covariate x1(t), and one who did,
with covariate

x2(t) =
{

x1(t) for t < t ′
x1(t)+
 for t ≥ t ′ .

123



20 T. E. Hanson et al.

For these covariate processes, the hazard ratio jumps from unity to h1(t ′)/h2(t ′) =
e−
β at t = t ′ but decays back to unity over time: limt→∞ h1(t)/h2(t) = 1. The PO
model has an immediate change in hazard in the same way that the Cox model does,
but this change is mediated towards one as time progresses. That is, in terms of risk,
the PO model eventually ‘forgets’ the behavioral change whereas the Cox model does
not.

As noted in Sect. 4.1, many estimated trajectories from a joint analysis with a
gamma kernel random effects model are oversmoothed for the medfly data. A more
flexible longitudinal model that represents a compromise between this approach and
using the empirical egg counts (LOCF) might provide better predictive ability. There-
fore, we consider penalized and unpenalized B-spline longitudinal models with PO
for survival since it has the largest LPML among the three competing survival models.
Specifically, K = 20 quadratic B-spline basis functions {ψ1(·), . . . , ψK (·)} on 19
knots equispaced from zero to 100 days, roughly the span of lifetimes in the med-
fly data set, define each trajectory through coefficients bi = (bi1, . . . , bi K ). Each
egg-laying trajectory has a B-spline representation, namely xi (t) = ∑20

k=1 bikψk(t)
with bi |μ,� ∼ N20(μ,�) and prior μ ∼ N20(0, 1000I) independent of �−1 ∼
Wish(20, 0.05I) so that E(�−1) = I. Most log-egg count trajectories vary between 0
and 5, and so assuming var(bi j ) ≈ 1 a priori is rather generous in terms of allowing for
sudden jumps in basis function coefficients. This specification yields LPML = −879
for the parametric joint model, a bit worse than LOCF but much better than using the
basis {log(t), t − 1}.

An interesting phenomenon was observed in the PO, B-spline setting with priors
that supported very large coefficients: the LPML values exceeded those obtained from
using raw trajectories. With �−1 ∼ Wish(20, 0.5(10− j )I) for j = 1, 2, 3, 4, 5, 6, the
following LPML values were obtained: −879,−868,−849,−834,−828 and −826.
An examination of the estimated trajectories indicates that this prior sequence increas-
ingly results in modeled profiles that dipped markedly below the last observed count,
and often below zero (the lower bound for the trajectory) at the event time. This has
the effect of increasing the density near the observed event time and hence increasing
the CPO for an individual fly, thereby increasing the overall aggregate LPML. For
the two-parameter gamma kernel model, the survival portion of the model modifies
trajectories negligibly (Figs. 1–6). However, for this set of rich profile classes, there
are many parameters for which there is little or no egg laying data providing informa-
tion, and therefore the spline coefficients near the event time can be disproportionately
affected by the survival portion of the model. That is, only a few days worth of egg-
laying information is going into the spline parameter for those basis functions near
the event time; see Appendix B for how this relates to posterior sampling.

To tame this anomalous behavior of the egg-laying trajectory near death, we fur-
ther considered a penalized B-spline expansion for each trajectory, with all medflies
sharing the same penalty, or smoothness term λ; i.e. λ is estimated from the whole of
the data and so all trajectories more or less have the same level of “smoothness.” Spe-
cifically, xi (t) = μi + ∑20

k=1 bikψk(t) where p(bi |λ) ∝ λ(K−1)/2 exp(−0.5λb′
i�bi ).

The matrix � obtains from a first order difference penalty, see Lang and Brezger
(2004) and Appendix B. The prior λ ∼ �(aλ, bλ) was assumed with aλ = bλ = 0.1.
The posterior median of λ is 0.19 and a 95% posterior interval (0.18–0.20) is highly
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Fig. 7 Fly 19 (event time 42 days). Raw egg laying counts (dots), and log-gamma kernel basis (overs-
moothed, thin solid). Unpenalized splines are solid, short, and long-dashed; penalized spline is thick solid

concentrated relative to the prior, for both the parametric and MFPT analysis. The
resulting LPML statistics are −869 for MFPT and −872 for parametric, only slightly
worse than using the raw trajectories, and an improvement over the unpenalized spline
with the (reasonable) prior specified above. Increasing to K = 40 gives LPML values
of −868 for the MFPT and −874 for the parametric model. It would seem that the
added penalized B-spline flexibility does not provide better predictive performance
over simply using LOCF, but it comes close.

Consider the data for fly 19 in Fig. 7. Plotted are the estimated trajectories from
the parametric PO model using the log-gamma kernel basis, the unpenalized spline
basis with parameters 20−1I, 2000−1I, and 200000−1I, and penalized B-spline with
K = 40. These yield CPO19 values of −3.2 (log-gamma kernel), −2.3 (raw), −2.2
(penalized), and −2.5,−2.1,−1.9 for the unpenalized splines. The CPO statistics are
ordered according to where the trajectories hit the vertical line at t = 42, the death
time for this fly. Clearly, trajectory behavior near the event time can greatly impact
prediction accuracy of the event time, and thus a “correct” model for trajectories in the
joint setting is extremely important in developing a predictive model for these data.

4.3 Cox model

Although proportional hazards is rejected for the raw trajectories according to the
test proposed by Therneau and Grambsch (2000), the Cox model better predicts sur-
vival for these data than the CO model. Given β and S0, the Cox model specifies
h(t) = (N (t) + 1)βh0(t). The negative regression estimate (β̂ = −0.65; Table 2)
indicates decreased hazard of death with increasing egg production. The baseline haz-
ard for the Cox model is essentially zero until about 20 days, so the decreased hazard
is practically interpretable only beyond 20 days.

The Cox model is the ‘default’ choice for many joint modeling applications, being
used in almost all papers devoted to the subject. Therefore, it is of interest to see if a
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modified version of the Cox model can predictively outperform the PO model. To this
end, we considered various ‘fixes’ in an attempt to improve prediction and remedy the
apparent rejection of proportional hazards.

Almost half the trajectories (120) have one or more zeros right before death. Perhaps
simply having a function indicating zero eggs laid, for instance I {yi (t) > 0}, might
better predict mortality. Or perhaps it’s the size of a drop or increase, yi (t)− yi (t −1),
from one day to the next, or a lagged count, yi (t − L), that better predicts death times.
We looked at the following transformed trajectories: (a) a first difference, y∗

i (t) =
yi (t)−yi (t−1), which approximates the derivative y′

i (t) gives LPML = −963; (b) the
trajectory lagged by one day, y∗

i (t) = yi (t−1), gives LPML = −908; (c) a simple indi-
cator of whether the fly produces eggs, y∗

i (t) = I {yi (t) > 0}, gives LPML = −974;
(d) the integrated trajectory y∗

i (t) = ∫ t
0 yi (s)ds gives LPML = −975, worse than

not including covariates at all; and (e), the integrated trajectory standardized to have
volume one, y∗

i (t) = [∫ t
0 yi (s)ds]/[∫ Ti

0 yi (s)ds], gives LPML = −971.
None of these approaches provide better prediction than the untransformed ver-

sion; most have LPML values close to −974, the value obtained by removing covari-
ates altogether. However, a plot of the scaled Schoenfeld residuals roughly indicates
a larger initial (negative) effect due to yi (t) = log{Ni (t) + 1} attenuating to zero
somewhat linearly by 100 days. Correspondingly, we also fit the weighted trajectory
y∗

i (t) = [1− t/100]yi (t). With this weighted transformation, the proportional hazards
assumption is not violated according to the test suggested by Therneau and Grambsch
(2000) (p = 0.474 with g(t) = t on p. 131), and improves prediction slightly beyond
PO: LPML = −864 for both parametric and MFPT. Note that the weighted trajec-
tory yields the same qualitative result as the PO model: the ratio of any two hazard
functions approaches one as t → 100, giving further evidence that fecundity is more
predictive early on.

A natural approach here would be to consider a Cox model with time-varying
regression effects in the raw setting (Martinussen and Scheike, 2006, Sect. 6.3). A
joint modeling specification allowing time-varying coefficients was considered by
Song and Wang (2008). For completeness, we fit a varying-coefficient model assum-
ing LOCF

hi (t) = eβ(t)yi (t)h0(t), where β(t) =
20∑

k=1

ciκ
−1φ

{
−0.5(lk − t)2/κ2

}
.

We assumed c = (c1, . . . , c20)
′ ∼ N20(0, I 102) and log(κ) ∼ N (3.0, 0.25), yielding

LPML=−865 for both the parametric and MFPT models. This prior on κ reflects a be-
lief in the smoothness of β(t) that the standard deviation of the Gaussian kernel ranges
from 7 to 55 days with 95% probability. This implies a correlation corr{β(t), β(t +
)}
of approximately 0.9, 0.6, 0.4, 0.3 for 
 = 10, 20, 30, and 40 days. The number of
local extrema of β(t) over t ∈ (0, 100) ranges from one to about six, and a 99% prior
probability interval for β(t) includes (−3, 3) at the edges t = 0 and t = 100 days,
and (−4, 4) in the middle. Different priors, including a hyperprior on var(ci ), yielded
LPML values in the range −865 to −876. The vector (c′, θ1, θ2) was updated in one
large M-H step; κ was updated in a separate M-H step. The knots lk = (k − 1)100/19
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Fig. 8 Posterior mean β̂(t) and 95% CI versus days for the MFPT Cox model

were equispaced, ranging from l1 = 0 to l20 = 100. The time-varying coefficient
model predicts about as well as using time-weighted trajectories dying to zero by time
100. Correspondingly, Fig. 8 shows roughly a linear increase in β̂(t) over time, with
much greater variability near 100 days. Only 10 flies lived past 70 days, 4 of these
lived past 80 days.

Müller et al. (2001) find for a different subset of flies (n = 531) that it is not
the height of the trajectory, but rather its shape that is associated with survival. They
considered imputed trajectories

yi (t) = I {t ≥ bi1}bi3 exp{−bi2(t − bi1)}

in the Cox model. This function is zero until the changepoint bi1, at which point it
decays exponentially from height bi3 with rate bi2. The changepoint bi1 was taken to
be the time at which egg-laying was a maximum, with (bi2, bi3) estimated via least-
squares. The predictor was standardized to have maximal height one, and these authors
found this changepoint model, which measures “reproductive exhaustion,” to fit better
than other predictors the authors considered, under the AIC criterion. Along these lines,
we looked at normalized raw trajectories, y∗

i (t) = yi (t)/max{yi (t) : t = 1, . . . , Ti },
obtaining LPML = −867 from the parametric model. The normalized trajectory
improves prediction, confirming findings from Müller et al. (2001). Note that such
trajectories may be useful for explaining survival, but cannot be used for prediction
unless one has prior knowledge of the maximum.

A related model introduced by De Blasi and Hjort (2007) posits proportional haz-
ards but with a logistic link:

h(t) = ex(t)β

(1 + ex(t)β)κ
h0(t).

The traditional Cox model with log-link obtains for κ = 0, and a logistic link, imply-
ing bounded risk, obtains when κ = 1. We fit this model with κ = 1 using raw TDC’s
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in a parametric log-logistic survival model and obtained LPML = −870, the same as
the Cox model with an exponential link; the MFPT model gave LPML = −867.

4.4 Cox and Oakes AFT model

The log-logistic model with no predictors has LPML = −974. This indicates that
for our analysis, the CO model with imputed or jointly modeled TDC’s has about the
same predictive capacity as not including the covariates at all. We examine specific
flies with the greatest ratio of CPO values to infer the types of trajectories that are best
supported under each model.

Fly 38 (Fig. 3) and fly 225 both support the jointly modeled CO model over the
raw trajectories, and these flies have similar trajectories and density estimates. In both
cases there are a large number (>15) of zero counts before initial egg production starts.
Although this causes the simple gamma kernel basis to “shoot off into space” in esti-
mating the longitudinal profile, the joint model predicts these survival times relatively
well. It may be that these types of trajectories are the driving force for a positive
estimate of the joint model regression coefficient. In contrast, the death time of fly 45
(Fig. 4) is better predicted by the empirical egg counts. Here, only a few days of no
egg production occur before egg-laying starts, and there is one day with no eggs just
prior to death. This one day, not captured by the gamma kernel basis, causes a dra-
matic spike in the predictive density for the raw analysis right before death, therefore
increasing the predictive ability of the raw model.

Flies 22 (Fig. 2) and 111 (Fig. 6) support the Cox over the CO model when raw
trajectories are used. Both of these flies initially have a large number of days with
no eggs, followed by egg-laying activity, but they have at least one zero count right
before death. The large number of initial zeroes causes the CO model to “eat up” a
large amount of survival time relative to baseline, leaving little probability mass past
20 days. Fly 6 (Fig. 5) and fly 66 support the CO model over Cox under LOCF. Both
have an initial flurry of egg-laying in the first 25 days, followed by 10–20 days of no
egg production, followed by one or two days of egg production right before death. For
both models most probability mass has been eaten up near the time of death, but less
so for the CO analysis; thus more of a probability ‘spike’ caused by these few zero
counts is allowed under the CO model. Neither model predicts either event time well,
and both have similarly shaped predictive densities.

Flies 38 (Fig. 3) and 111 (Fig. 6) are better predicted by the PO versus the CO
model when using raw trajectories. Fly 38, not fit well by either model, has an increas-
ing estimated trajectory over the lifespan. The spike at the event time is due to fixing
y38(t) = 0 for t ≥ 58, the event time; i.e. the spike occurs after death due to assuming
y38(t) = 0. Both the PO and Cox density estimates are similar for fly 111, with a spike
corresponding to one day with no eggs produced right before death. Flies 6 and 146
support the CO model over the PO model. The story is identical to that for the Cox
analysis above.

Finally, comparing PO to Cox; fly 14 supports PO the most, but is ill-fit by both
models with an event time of 65. Fly 23 supports Cox over PO, and has the largest
event time in the data set at 99 days. No model reasonably supports flies with the
longest lifetimes.
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Tseng et al. (2005) conducted a frequentist joint CO analysis of the medfly data and
obtained a statistically significant negative regression coefficient with β̂ = −0.434. In
contrast, we obtained a significantly positive effect (β̂ = 0.19) from the joint model.
A possible source for this difference appears to lie in the longitudinal data used by
Tseng et al., who added two additional zero counts at the end of each fly’s egg-laying
profile and shifted the remaining counts two days into the past (as seen in their Fig. 3,
representing flies 6, 7, 15, 10 in the original data, clockwise from upper left; flies 5,
6, 9, and 7 in reduced data set of size n = 251). These two additional zeroes cause a
relatively steeper dip in each trajectory near the observed survival time, and allow the
modeled trajectories to more closely mirror the raw data. When we shift the egg-laying
trajectory one day into the future we obtain LPML = −949 and β̂ = −0.66 for the
jointly modeled parametric approach, and LPML = −696 with β̂ = −1.76 for the
parametric approach with raw covariates. Shifting by two days drops the LPML and
decreases β̂ further in both cases.

Clearly, from a predictive point of view, the longitudinal basis is very important.
The nonlinear bases chosen for use with these data allow for negative trajectory values,
which is not possible for the response log{Ni (t) + 1}. The basis {log(t), t − 1} also
allows for trajectories that continue to increase for all time. When we fit the joint CO
model with the simple linear basis {1, t}, the regression coefficient β was significantly
positive with LPML = −900 for the MFPT and parametric models, considerably
better than the nonlinear basis.

5 Discussion

A major deficiency to date in the joint modeling literature as we see it is the lack of
comparison among semiparametric models. Our analysis of the medfly data illustrates
the potential utility of considering parametric and alternative semiparametric families
of models in addition to the Cox model, and different modes of incorporating TDC’s
in survival analysis.

The Bayesian modeling process taken here involves the use of a single nonpara-
metric prior for the baseline survival distribution in CO, PO, and Cox models, which
enabled, with relative ease, a means of comparing these approaches in terms of predic-
tion accuracy. The particular choice of an MFPT prior has a number of nice features,
including the embedding of a standard parametric family of survival models within
the nonparametric class. This Bayesian approach is quite flexible, both in terms of the
ability to center a nonparametric prior that is used in a variety of survival models on the
same parametric family, and allowing for a robust longitudinal model with a relatively
large dimension for bi . In this paper the dimension of bi ranged from two to forty. A
flexible non Bayesian approach to survival analysis was recently developed by Zhang
and Davidian (2008), who introduced a family of distributions based on a class of
polynomials and fit Cox, PO, and AFT models using this ‘quasi-parametric’ approach
allowing for ease of model comparison. In their supplementary online material, they
also fit the CO model with TDC’s.

For the most fertile medflies, the PO model provided better prediction than the Cox
model, but marginally so. The CO model was ruled out under all scenarios. When
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the effect of fecundity on survival was allowed to taper off in time, either through
varying coefficients or by using time-weighted raw coefficients, the Cox model pro-
vided prediction about as good as or a bit better than PO. Regardless, the effect of
egg-laying on survival decreases as the fly ages. Of additional interest was the impact
of jointly modeling the egg-laying trajectories, either through the basis {log(t), t − 1}
used in Tseng et al. (2005) or richer bases. For these data, the raw trajectories using
LOCF provided the best prediction, although splines did almost as well. Surprising
to us was the rather large impact the unpenalized spline basis had on LPML when
using relatively flat priors. Highly flexible bases should be carefully used for lon-
gitudinal modeling in the joint setting as the survival portion of the model could
have an unrealistic impact in the absence of some sort of penalty or smoothness con-
straint.

Our analysis of the medfly data makes perhaps the obvious point that joint model-
ing may not always be necessary, even if the longitudinal process under consideration
is decidedly stochastic. Rice (2004) conducted an exploratory analysis of the medfly
data using nonparametric smoothing techniques for functional and longitudinal data.
One method he used to assess the predictiveness of egg production on lifespan was
to smooth the first 30 days of egg laying and subsequently predict lifetime using the
mean of nearest neighbor lifetimes. This approach to forecasting medfly death times
was deemed by Rice to have limited predictive accuracy. Müller and Stadtmüller
(2005) considered a similar task only their goal was to use egg-laying productivity
in early life (first 30 days) to predict whether a fly will have a short or long lifespan
(binary response). They also smoothed the predictor process, which was then used
in a nonparametric functional binomial regression model. Similar to Rice (2004), the
predictive capacity of their approach was found to be relatively low (cross-valida-
tion prediction errors between 35 and 48%), due in large part to an overall lack of
transparent differences in predictor processes for short and long lived flies. However,
their analysis concluded that the single most important predictor of longevity in med-
flies was high egg productivity in later life. In studies like these, more research to
determine when it is desirable to do joint modeling versus a raw or two-stage anal-
ysis, perhaps based on smoothed trajectories, would be a welcome addition to the
literature. In particular, incorporating functional data analysis methods that can nat-
urally identify many aspects of trajectory shape may improve prediction of survival
times.

In terms of predictive performance, for this particular data set, within a model-
ing paradigm (LOCF, imputed, modeled, and MFPT versus parametric) the choice
of PO, Cox, or CO changed the LPML measure drastically. The survival model rep-
resents gross, overarching assumptions about the data-generating mechanism. Using
either jointly modeled trajectories, or imputed values based on the longitudinal model
greatly reduced the predictive utility of the models. The MFPT generalization is akin
to adding detail to an initially washed canvas, for these data the MFPT generalization
apparently adds little in the way of prediction.
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