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a b s t r a c t

Parametric conditional copulamodels allow the copula parameters to vary with a set of co-
variates according to an unknown calibration function. Flexible Bayesian inference for the
calibration function of a bivariate conditional copula is introduced. The prior distribution
over the set of smooth calibration functions is built using a sparse Gaussian process (GP)
prior for the single index model (SIM). The estimation of parameters from the marginal
distributions and the calibration function is done jointly via Markov Chain Monte Carlo
sampling from the full posterior distribution. A new Conditional Cross Validated Pseudo-
Marginal (CCVML) criterion is used to perform copula selection and is modified using a
permutation-based procedure to assess data support for the simplifying assumption. The
performance of the estimation method and model selection criteria is studied via a series
of simulations using correct and misspecified models with Clayton, Frank and Gaussian
copulas and a numerical application involving red wine features.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Copulas are useful in modeling the dependent structure in the data when there is interest in separating it from
the marginal models or when none of the existent multivariate distributions are suitable. For continuous multivariate
distributions, the elegant result of Sklar (1959) guarantees the existence and uniqueness of the copula C : [0, 1]p → [0, 1]
that links the marginal cumulative distribution functions (cdf) and the joint cdf. Specifically,

H(Y1, . . . , Yp) = C(F1(Y1), . . . , Fp(Yp)),

where H is the joint cdf, and Fi is the marginal cdf for variable Yi, for 1 ≤ i ≤ p, respectively. This paper’s focus is on copula
models used in a regression setting in which covariate values are expected to influence the responses Y1, . . . , Yp through the
marginal models and the interdependence between them through the copula. The extension to conditional distributions via
the conditional copulawas used by Lambert and Vandenhende (2002) and subsequently formalized by Patton (2006) so that

H(Y1, . . . , Yp|X) = CX(F1|X(Y1|X), . . . , Fp|X(Yp|X)), (1)

where X ∈ Rq is a vector of conditioning variables, CX is the conditional copula that may change with X and Fi|X is the
conditional cdf of Yi given X for 1 ≤ i ≤ p. A parametric model for the conditional copula assumes CX = Cθ (X) belongs to
a parametric family of copulas and only the parameter θ ∈ Θ varies as a function of X. Throughout the paper uppercase
letters identify random variables, while their realizations are denoted using lowercase. In the remaining of this paper we
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assume that there exists a known one-to-one function g : Θ → R such that θ (X) = g−1(η(X)) with the calibration function
η : R → R in the inferential focus.

There are a number of reasons one is interested in estimating the conditional copula. First, in regression models with
multivariate responses, which is the main focus of this paper, one may want to determine how the dependence structure
among the components of the response varies with the covariates. Second, the copula model will ultimately impact the
performance of model-based prediction. For instance, for a bivariate response, (Y1, Y2), in which one component is predicted
given the other, the conditional density of Y1, given X = x and Y2 = y2, takes the form

h(y1|y2, x) = f (y1|x)cθ (x)(F1|x(y1|x), F2|x(y2|x)), (2)

where cθ (x) is the density of the conditional copula Cθ (x) and f (y1|x) is the marginal conditional density of y1 given X = x.
Hence, in addition to the information contained in the marginal model, in Eq. (2) we use for prediction also the information
in the other responses.

Third, when specifying a general multivariate distribution, the conditional copula is an essential ingredient. For instance,
if U1,U2,U3 are three Uniform(0, 1) variables, when applying a vine decomposition using bivariate copulas (e.g., Czado,
2010) their joint density is

c(u1, u2, u3) = c12(u1, u2)c23(u2, u3)cθ (u2) (P(U1 ≤ u1|u2), P(U3 ≤ u3|u2)) ,

where cij is the density of the copula between variables Ui and Uj and cθ (u2) is the density of the conditional copula of
U1,U3|U2 = u2. Finally, a conditional copula with predictor values X ∈ Rq in which η(X) is constant, may exhibit non-
constant patternswhen some of the components ofX are not included in themodel. This pointwill be revisited in Section 6.1.

When estimation for the conditional copula model is contemplated, one must consider that there are multiple sources
of error and each will have an impact on the model. Even in the simple case in which the estimation of the marginals and
copula suffers from errors that depend only on x one obtains via Taylor expansion:

cθ (x)+δ3(x)(F1|x(y1|x) + δ1(x), F2|x(y2|x) + δ2(x)) = cθ (x)(F1|x(y1|x), F2|x(y2|x)) (3)

+ c(1,0,0)θ (x) (F1|x(y1|x), F2|x(y2|x))δ1(x) (4)

+ c(0,1,0)θ (x) (F1|x(y1|x), F2|x(y2|x))δ2(x) (5)

+ c(0,0,1)θ (x) (Fx(y1), Fx(y2))δ3(x) + O(∥δ(x)∥2), (6)

where c(1,0,0), c(0,1,0) and c(0,0,1) are the partial derivatives of cz(x, y) w.r.t. x, y and z, respectively, and δi(x), 1 ≤ i ≤ 3, denote
various estimation error terms due to model misspecification, e.g. δ3(x) is the error in estimation of the copula parameter at
a given covariate value x. The right hand term in Eq. (3) marks the correct joint likelihood while (4)–(6) show the biases
incurred due to errors in estimating the first and second marginal conditional cdfs and the copula calibration function,
respectively. It becomes apparent that in order to keep the estimation error low, one must consider flexible models for
the marginals and the copula.

Depending on the strength of assumptions we are willing to make about η(x), a number of possible approaches are
available. The most direct is to assume a known parametric form for the calibration function, e.g. constant or linear, and
estimate the corresponding parameters by maximum likelihood estimation (Genest et al., 1995). This approach relies on
knowledge about the shape of the calibration function which, in practice, can be unrealistic. A more flexible approach
uses non-parametric methods (Acar et al., 2011; Veraverbeke et al., 2011) and estimates the calibration function using
smoothing methods. Recently, we have seen a number of developments using nonparametric Bayesian techniques for
estimating a multivariate copula using an infinite mixture of Gaussian copulas (Wu et al., 2014), or via flexible Dirichlet
process priors (Wu et al., 2015; Ning and Shephard, 2017). The infinite mixture approach in Wu et al. (2014) was extended
to estimate any conditional copula with a univariate covariate by Dalla Valle et al. (2017), while an alternative Bayesian
approach based on a flexible cubic spline model for the calibration functions was built by Craiu and Sabeti (2012). For
multivariate covariates, Sabeti et al. (2014), Chavez-Demoulin and Vatter (2015) and Klein and Kneiß (2015) avoid the curse
of dimensionality that appears even for moderate values of q, say q ≥ 5, by specifying an additive model structure for
the calibration function. Few alternatives to the additive structure exist. One exception is Hernández-Lobato et al. (2013)
who used a sparse Gaussian Process (GP) prior for estimating the calibration function and subsequently used the same
construction for vine copulas estimation in Lopez-Paz et al. (2013). However, when the dimension of the predictor space is
even moderately large the curse of dimensionality prevails and it is expected that the q-dimensional GP used for calibration
estimation will not capture important patterns for sample sizes that are not very large. Moreover, the full efficiency of the
method proposed in Hernández-Lobato et al. (2013) is difficult to assess since their model is build with uniform marginals,
which in a general setup is equivalent to assuming exact knowledge about the marginal distributions. In fact, when the
marginal distributions are estimated it is of paramount importance to account for the resulting variance inflation due to
error propagation in the copula estimation as reflected by Eqs. (3)–(6). The Bayesian model in which joint and marginal
components are simultaneously considered will appropriately handle error propagation as long as it is possible to study the
full posterior distribution of all the parameters in the model, be they involved in the marginals or copula specification.

Great dimension reduction of the parameter space is achieved under the so-called simplifying assumption (SA) that
assumes Cθ (X) = C , i.e. the conditional copula is constant (Gijbels et al., 2015). The SA condition can significantly simplify the
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vine copula estimation (for example, see Aas et al., 2009), but it is known to lead to bias when it is wrongly assumed (Acar et
al., 2012). Therefore, for conditional copula models it is of practical interest to assess whether the data supports SA or not. A
first step towards a formal test for SA can be found in Acar et al. (2013). The reader is referred to Derumigny and Fermanian
(2017) for an excellent review of work on SA, and ideas for future developments.

This paper’s contribution is two-fold: on one handwe consider Bayesian joint analysis of themarginal and copulamodels
using flexible GP models. Our emphasis is placed on the estimation of the calibration function η(X) which is assumed to
have a GP prior that is evaluated at βTX for some normalized β , thus coupling the GP-prior construct with the single index
model (SIM) of Choi et al. (2011) and Gramacy and Lian (2012). The GP-SIM is more flexible than a canonical linear model
and computationally more manageable than a full GP with q variables. The proposed model can be used for large covariate
dimension q and for large samples. Both marginal means will be fitted using sparse GP approaches so that large data sets
can be computationally manageable. The dimension reduction of the SIM approach has been noted also by Fermanian and
Lopez (2015) who used two-stage semiparametric methods to estimate the calibration function. In contrast to Fermanian
and Lopez (2015), we use a Bayesian approach and estimate marginals and copula parameters jointly. So far, GP-SIMs have
been used mostly in regression settings where the algorithm of Gramacy and Lian (2012) can be used to efficiently sample
the posterior distribution. However, the GP-SIM model for conditional copulas involves a non-Gaussian likelihood which
requires important modifications of their algorithm.

A second contribution of the paper deals with model selection issues that are particularly relevant for the conditional
copula construction. We consider of importance the choice of copula family and identifying whether the simplifying
assumption (SA) is supported by the data. For the former task we develop a conditional cross-validated marginal likelihood
(CCVML) criterion and also examine its relation with the Watanabe Information Criterion (Watanabe, 2010), while for
determining the data support for SA we construct a permutation-based variant of the CVML that shows good performance
in our numerical experiments. Finally, we identify an important link between SA and missing covariates in the conditional
copula model. To our knowledge, this connection has not been reported elsewhere.

In the next section we review the GP-SIM formulation and introduce the notation. The construction of the conditional
copulamodel, the computational algorithm and themodel selection procedures are covered in Sections 3 and 4, respectively.
In Section 5 we illustrate the efficiency of the method via simulation and a numerical analysis of wine data. All the
contributions relevant to the important issue of SA are included in Section 6. The paper ends with conclusions and directions
for future work.

2. Brief review of Bayesian inference for sparse GP

Assume we observe n independent realizations, y1, . . . , yn, of a random variable Y ∈ R and that each observation yi
corresponds to a covariatemeasurement xi ∈ Rq. Henceforth, we assume that x1, . . . , xn are fixed by design. The distribution
of Yi has a known form and depends on xi through some unknown function f and parameter σ so that the joint distribution
of the data is

P(Y|x1, . . . , xn, σ ) = P(Y|f (x1), . . . , f (xn), σ ) =

n∏
i=1

P(Yi|f (xi), σ ). (7)

Usually, the main inferential goal is to estimate the unknown smooth function f : Rq
→ R, while σ is a nuisance parameter.

If we let x = (x1, . . . , xn)T denote the n covariate values, then a Gaussian Process (GP) prior on the function f implies

f = (f (x1), f (x2), . . . , f (xn))T ∼ N (0, K (x, x;w)), (8)

whereN (µ, Σ) denotes a normal distributionwithmeanµ and variancematrixΣ and K is a variancematrixwhich depends
on x and additional parametersw. In this paper we use the squared exponential kernel tomodel thematrix K (x, x;w), i.e. its
(i, j) element is

k(xi, xj;w) = ew0 exp

[
−

q∑
s=1

(xis − xjs)2

ews

]
, (9)

where xis is the sth coordinate value for ith covariate measurement xi. The unknown parameters w = (w0, . . . , wq) that
determine the strength of dependence in (9) are inferred from the data. Of interest is predicting the values of the nonlinear
predictor at new observations x∗

= (x∗

1, . . . , x
∗
m)

T , which we denote as f∗ = (f (x∗

1), . . . , f (x
∗
m))

T . In the case in which the
covariate dimension, q, is moderately large, an accurate estimation of f∗ will require a large sample size, n. Unfortunately,
this desideratum is hindered by the computational cost of fitting a GPmodelwhen n is large. For example, if Yi ∼ N (f (xi), σ 2)
then Eqs. (8) and (7) yield a joint Gaussian distribution of Y = (Y1, . . . , Yn) and f∗. If y = (y1, . . . , yn) denotes the observed
response, then the conditional distribution of f∗|Y is N(µ∗, Σ∗) where

µ∗
= K (x∗, x;w)[K (x∗, x;w) + σ 2In]−1y, (10)

Σ∗
= K (x∗, x∗

;w) − K (x∗, x;w)[K (x, x;w) + σ 2In]−1K (x, x∗
;w), (11)

and K (x∗, x∗
;w), K (x∗, x;w) and K (x, x∗

;w) have their elements defined using (9).
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With the Gaussian sampling model it is clear from (10) and (11) that the MCMC sampling of the posterior requires at
each iteration the calculation and inversion of the matrix K (x, x;w) + σ 2In ∈ Rn×n which becomes prohibitive when
n is large. To make GP models applicable for larger data we refer to the literature on sparse GP (Quiñonero Candela and
Rasmussen, 2005; Snelson and Ghahramani, 2005; Naish-Guzman and Holden, 2007) in which it is assumed that learning
about f can be achieved using a smaller sample of m latent variables, called inducing variables, which may be a subsample
of the original data or can be built using other considerations as further discussed. The intuitive idea is to use the inducing
variables to channel the information contained in the covariate values x = {x1, . . . , xn}. We denote the inducing values as
x̃ = (x̃1, . . . , x̃m)T ∈ Rm×q and K (x, x̃;w) ∈ Rn×m the matrix

K (x, x̃;w) =

⎡⎢⎣k(x1, x̃1;w) · · · k(x1, x̃m;w)
...

. . .
...

k(xn, x̃1;w) · · · k(xn, x̃m;w)

⎤⎥⎦ , (12)

where k(xi, x̃j;w) is defined as in (9). The ratiom/n influences the trade-off between computational efficiency and statistical
efficiency, as a smaller m will favor the former and a larger m will ensure no significant loss of the latter. If the function
values for the inducing points are defined as f̃ = (f (x̃1), . . . , f (x̃m))T then the joint density of the response vector Y, the
latent variable f̃ and the parameterw can be expressed only in terms of them-dimensional vector f̃ since

P(y, f̃,w|x, x̃) = P(y|A(x, x̃;w)f̃)pN (f̃; 0, K (x̃, x̃;w))p(w), (13)

where pN (x; µ, Σ) is the normal density with mean µ and covariance Σ , p(w) is the prior probability for the parameters w
and

A(x, x̃;w) = K (x, x̃;w)K (x̃, x̃;w)−1. (14)

The form of P(y|A(x, x̃;w)f̃) is derived under the assumption that f = A(x, x̃;w)f̃ and depends on form of the samplingmodel
P(Y|f, σ ), e.g., when the latter is N(f, σ In) we obtain P(y|A(x, x̃;w)f̃) = N(A(x, x̃;w)f̃, σ In).

The posterior distributionπ (f̃,w|y, x) is not tractable, but sampling from itwill bemuch less expensive since K (x, x̃;w) ∈

Rn×m and K (x̃, x̃;w) ∈ Rm×m. While the inducing inputs x̃ can be selected from the samples collected, we will use an
alternative approach where we group the covariate values observed, x, into m clusters, and choose the cluster-specific
covariate averages as x̃1, . . . , x̃m. For instance, given a specific value k, one can use a simple k-means algorithm (Bishop,
2006) to classify x into k clusters and estimate clusters’ means using an iterative method. Intuitively, it makes sense to have
more inducing points in regions that exhibit more variation in covariate values.

Finally, in order to reduce the dimensionality of the parameter space, we assume that

f (xi) = f (xTi β), (15)

and we set f̃ = (f (z̃1), . . . , f (z̃m))T , where (z̃1, . . . , z̃m) are inducing variables in R, f : R → R is an unknown function that
is of interest and β ∈ Rq is normalized, i.e. ∥β∥ = 1. Note that without normalization the parameter β is not identifiable.
Here {z̃1, . . . , z̃m} play the same role as {x̃1, . . . , x̃m} for general sparse GP. They help sample the posterior latent variables
much faster and should be spread in the range of {xT1β, . . . , xTnβ}. In the next section we show how to choose the positions
of these inducing inputs. The single index model (SIM) defined by (15) coupled with the sparse GP approach (henceforth
denoted as GP-SIM) has the advantage that it casts the original problem of estimating a general function f in q dimensions
based on n observations into the estimation of q-dimensional parameter vector β and of the one-dimensional map f based
on m ≪ n inducing points. The GP-SIM approach was successfully implemented for mean regression problems (Choi et al.,
2011; Gramacy and Lian, 2012) and quantile regression (Hu et al., 2013). It can be used for large covariate dimension and is
much more flexible than the simple linear model.

3. GP-SIM for conditional copula

We consider a bivariate response variable (Y1, Y2) ∈ R2 together with covariate measurement x ∈ Rq. Hence, the data
D = {(y1i, y2i, xi), i = 1 . . . n} consist of triplets (y1i, y2i, xi) where y1i, y2i ∈ R and xi ∈ Rq. For notational convenience, let
y1 = (y11, . . . , y1n)T , y2 = (y21, . . . , y2n)T and x = (x1, . . . , xn)T . We assume that the marginal distribution of Yj (j = 1, 2) is
Gaussian with mean fj(x) and constant variance σ 2

j . If we let Yj = (Yj1, . . . , Yjn)T , j = 1, 2, and fj = (fj(x1), . . . , fj(xn))T we
can compactly write:

Yj ∼ N (fj, σ 2
j In) j = 1, 2. (16)

Generally, it is difficult to discern whether the copula structure varies with covariates or not, so we consider a conditional
copula to account for the more general situation. Therefore, the likelihood function is

L(ω) =

n∏
i=1

1
σ1

φ

(
y1i − f1i

σ1

)
1
σ2

φ

(
y2i − f2i

σ2

)
×

× cθ (xi)

(
Φ

(
y1i − f1i

σ1

)
, Φ

(
y2i − f2i

σ2

))
,

(17)
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where c denotes a parametric copula density function, ω denotes all the parameters in the model, while Φ and φ are the
cumulative probability function and density function of a standard normal distribution, respectively. The parameter of a
copula depends on the unknown function θ (xi) = g−1(f (xi)), where f is assumed to take the form given in (15) and g is a
known invertible link function that allows an unrestricted parameter space for f. Note that the form of the GP-SIM model
used for estimating the copula parameter is invariant to non-linear transformations. This implies that the formulation of the
model is the samewhetherwe directly estimate the copula parameter, θ (x), Kendall’s τ (x), or othermeasures of dependence.
However, this is not true if we use an additivemodel for θ (x), since additivity is not preserved by non-linear transformations.

The GP-SIM is fully specified once we assign the GP priors to f1, f2, f and the parametric priors for the remaining
parameters, as follows:

f1 ∼ GP(w1), f2 ∼ GP(w2), f ∼ GP(w),

w1 ∼N (0, 5Iq+1), w2 ∼ N (0, 5Iq+1), w ∼ N (0, 5I2),

β ∼U(Sq−1), σ 2
1 ∼ IG(0.1, 0.1), σ 2

2 ∼ IG(0.1, 0.1).

(18)

The GP(w) is a Gaussian Process prior with mean zero, squared exponential kernel with parametersw, U(Sq−1) is a uniform
distribution on the surface of the q-dimensional unit sphere and IG(α, β) denotes the inverse gammadistribution. The above
prior forw captures verywiggly functions for small values ofw and almost constant functions for large values ofw. The priors
formarginal variances are vague andwould be conjugate in the absence of the copula term. In our experience, the results are
not sensitive to the choice of hyperparameter values. Because the focus of the paper is on inference for the copula, we allow
f1 and f2 to be evaluated on Rq while f is on R. In order to avoid computational problems that affect the GP-based inference
when the sample size is large, the inference will rely on the Sparse GP method that was described in the previous section.
Suppose x̃1 are m1 inducing inputs for function f1, x̃2 are m2 inducing inputs for function f2 and z̃ are m inducing inputs for
function f . The number of inducing inputs m1, m2 and m can all be different, but in our applications we will choose their
values equal and significantly smaller than the sample size, n. The choice is motivated by imperative computational time
restrictions, given the large number of numerical simulations we perform to investigate the performance of the approach
in terms of estimation and model selection. In practice, the analyst should ideally use the largest number of inducing points
supported by the computing environment. As suggested earlier, we define x̃1 and x̃2 as centers of m1 and m2 clusters of x.
If m1 = m2 then the inducing inputs are the same. We cannot use the same strategy for z̃, since then we would need the
centers for the clusters of the variable xTβ which are unknown. If we assume that each covariate xis is between 0 and 1 (this
can be achieved easily if we subtract theminimumvalue and divide by range) then following the Cauchy–Schwarz inequality
we obtain

∥xTi β∥ ≤

√
∥xi∥2∥β∥2 ≤

√
q ∀xi, β.

Hence we can choose z̃ to bem equally spaced points in the interval [−
√
q,

√
q].

Let f̃1 be f1 evaluated at x̃1, f̃2 be f2 evaluated at x̃2 and f̃ be f evaluated at z̃. Then the joint density of the observed data
and parameters is proportional to:

P(y1, y2, f̃1,f̃2, f̃,w1,w2,w, σ 2
1 , σ 2

2 , β|x, x̃1, x̃2, z̃) ∝ pN (y1; f1, σ 2
1 In)pN (y2; f2, σ

2
2 In)×

×

n∏
i=1

cg−1(fi)

(
Φ

(
y1i − f1i

σ1

)
, Φ

(
y2i − f2i

σ2

))
pN (f̃1; 0, K (x̃1, x̃1;w1))×

× pN (f̃2; 0, K (x̃2, x̃2;w2))pN (f̃; 0, K (z̃, z̃;w))pN (w1; 0, 5Iq+1)×

× pN (w2; 0, 5Iq+1)pN (w; 0, 5I2)pIG(σ 2
1 ; 0.1, 0.1)pIG(σ 2

2 ; 0.1, 0.1),

(19)

where f1 = A(x, x̃1;w1)f̃1, f2 = A(x, x̃2;w2)f̃2, f = A(xTβ, z̃;w)f̃ and pN and pIG are multivariate normal and inverse gamma
densities, respectively. Although here we adopt a full GP prior for the marginal models, the approach can be easily adapted
to consider GP-SIM models for the marginals too.

The contribution of the conditional copulamodel to the joint likelihood breaks the tractability of the posterior conditional
densities and complicates the design of an efficient MCMC algorithm that can sample efficiently from the posterior
distribution. The conditional joint posterior distribution of the latent variables (f) and parameters (w) given the observed
data D does not have a tractable form and its study will require the use of Markov Chain Monte Carlo (MCMC) sampling
methods. Specifically, we use Random Walk Metropolis (RWM) within Gibbs sampling for w (Craiu and Rosenthal, 2014;
Rosenthal, 2009; Andrieu et al., 2003) while for fwe will use the elliptical slice sampling (Murray et al., 2010) that has been
designed specifically for GP-based models and does not require tuning of free parameters.

3.1. Computational algorithm

Inference is based on the posterior distribution π (ω|D, x̃1, x̃2, z̃) where ω = (f̃1, f̃2, f̃,w1,w2,w, σ 2
1 , σ 2

2 , β) ∈ Rk

represents the vector of parameters and latent variables in the model, with k = 3m + 3q + 7. Since the posterior is not
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mathematically tractable, its properties will be explored via Markov chainMonte Carlo (MCMC) sampling. In this section we
provide the detailed steps of the MCMC sampler designed to sample from π . The general form of the algorithm falls within
the class of Metropolis-within-Gibbs (MwG) samplers in which we update in turn each component of the chain by sampling
from its conditional distribution, given all the other components. The presence of the copula in the likelihood breaks the
usual conditional conjugacy of the GPmodels so none of the components have conditional distributions that can be sampled
directly.

Suppose we are interested in sampling a target π (ω). A generic MwG sampler proceeds as follows:

Step I Initialize the chain at ω
(1)
1 , ω

(1)
2 , . . . , ω

(1)
k .

Step R At iteration t + 1 run iteratively the following steps for each j = 1, . . . , k:

1. Sample ω∗

j ∼ qj(·|ω
(t)
j , ω

(t+1;t)
−j ) where ω

(t+1;t)
−j = (ω(t+1)

1 , . . . , ω
(t+1)
j−1 , ω

(t)
j+1, . . . , ω

(t)
k ) is the most recent

state of the chain with the first j − 1 components updated already (hence the supraindex t + 1), the jth
component removed and the remaining n − j components having the values determined at iteration t (hence
the supraindex t).

2. Compute r = min
{
1,

π (ω(t+1)
1 ,...,ω

(t+1)
j−1 ,ω∗

j ,ω
(t)
j+1,...,ω

(t)
k )qj(ω

(t)
j |ω∗

j ,ω
(t+1;t)
−j )

π (ω(t+1)
1 ,...,ω

(t+1)
j−1 ,ω

(t)
j ,ω

(t)
j+1,...,ω

(t)
k )qj(ω

(∗)
j |ω

(t)
j ,ω

(t+1;t)
−j )

}
.

3. With probability r accept proposal and set ω
(t+1)
j = ω∗

j and with 1 − r reject proposal and let ω
(t+1)
j = ω

(t)
j .

The proposal density qj(·|·) corresponds to the transition kernel used for the jth component. Our algorithm uses a number
of proposals corresponding to Random Walk Metropolis-within-Gibbs (RWMwG), Independent Metropolis-within-Gibbs
(IMwG) and Elliptical Slice Sampling within Gibbs (SSwG) moves.

At the t + 1 step we use the following proposals to update the chain:

wj: Use a RWM transition kernel: w∗
∼ N (w(t)

j , cwj Iq+1). The constant cwj is chosen so that the acceptance rate is about
30%, j = 1, 2.

w: Use the RWM:w∗
∼ N (w(t), cwI2). The constant cw is chosen so that the acceptance rate is about 30%.

σ 2
j : Without the copula, the conditional posterior distribution of σ 2

j would be IG(0.1+n/2, 0.1+ (yj−Aj f̃
(t)
j )T (yj−Aj f̃

(t)
j )),

where Aj = A(x, x̃j;w
(t+1)
j ) for all j = 1, 2. We will use this distribution to build and independent Metropolis (IM)

type of transition for σ 2
j , j = 1, 2. The acceptance rate is usually in the range of [0.25, 0.60] and the chainmixes better

than it would under a RWM.
β: Since β is normalized we will use RWM on unit sphere using ‘Von-Mises–Fisher’ distribution (henceforth denoted as

VMF). The VMF distribution has two parameters,µ (normalized to have norm one) representing themean direction
and κ , the concentration parameter. A larger κ implies that the distribution will be more concentrated around µ. The
density is symmetric in µ and the argument and is proportional to fVMF (x; µ, κ) ∝ exp(κxTµ). The proposals are
generated using β∗

∼ VMF(β (t), κ), where κ is chosen so that the acceptance rate is around 30%.
f̃’s: For f̃j, j = 1, 2 and f̃we use the elliptical slice sampling proposed by Murray et al. (2010) which does not require the

tuning of simulation parameters. Although not needed in our examples, we note that if the chain’s mixing is sluggish,
one can improve it using the parallelization strategy proposed by Nishihara et al. (2014).

In our experience the efficiency of the algorithm benefits from initial values that are not too far from the posterior mode.
Therefore we propose first to roughly estimate the parameters in the two independent regressions for y1 and y2 to get
(f̃1,w1, σ

2
1 )

(1) and (f̃2,w2, σ
2
2 )

(1). Then run another MCMC fixing the marginal parameters and only sampling (f̃,w). This
procedure estimates (f̃,w)(1). These 3 short chains (100–200 iterations each) provide good initial values for the joint MCMC
sampler. This simple approach shortens the time it would take for the original chain to find the regions of high mass under
the posterior. We have also found that the chain’s mixing is accelerated when initial value of the second component ofw is
small, thus allowing for more variation in the calibration function.

Remark. In our numerical experiments, we will fit the GP-SIMmodel to data with constant calibration, i.e., with true values
βi = 0 for all 1 ≤ i ≤ q. The constraint ∥β∥ = 1 forbids sampling null values for all the components of β simultaneously,
and instead the MCMC draws for β ’s components are spread randomly in the support. However, the shape of the calibration
function is correctly recovered since the sampled values for the second component of w were large reflecting the perfect
dependence between f (xTi β) and f (xTj β) for any 1 ≤ i ̸= j ≤ n. This led to difficulties in identifying the SA as discussed
below, and compelled us to develop a new SA identification procedure that is described in Section 6.2.

4. Model selection

The conditional copula model involves two types of selection. First one needs to choose the copula family from a set
of possible candidates. Second, it is often of interest to determine whether a parametric simple form for the calibration
is supported by the data. For instance, a constant calibration function indicates that the dependence structure does not
vary with the covariates, a conclusion that may be of scientific interest in some applications. Let ω(t) denote the vector
of parameters and latent variables drawn at step t from the posterior corresponding to model M. We investigate the
performance of three measures of fit that can be estimated from the MCMC samples ω(t), t = 1 . . .M .
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4.0.1. Cross-validated pseudo marginal likelihood

The cross-validated pseudo marginal likelihood (CVML) (Geisser and Eddy, 1979; Hanson et al., 2011) calculates the
average (over parameter values) prediction power for model M via

CVML(M) =

n∑
i=1

log (P(y1i, y2i|D−i,M)) , (20)

where D−i is the data set from which the ith observation has been removed. An estimate of (20) can be obtained using
posterior draws for all the parameters and latent variables in the model (see, for example, Gelfand et al., 1992). Specifically,
if the latter are denoted by ω, then

E
[
P(y1i, y2i|ω,M)−1]

= P(y1i, y2i|D−i,M)−1, (21)

where the expectation is with respect to conditional distribution of ω given full data D and the model M. Based on the
posterior samples we can estimate the CVML as

CVMLest (M) = −

n∑
i=1

log

(
1
M

M∑
t=1

P(y1i, y2i|ω(t),M)−1

)
. (22)

The model with the largest CVML is selected.

4.0.2. Conditional CVML criterion

The conditional copula construction is particularly useful in predicting one response given the other ones.We exploit this
feature by computing the predictive distribution of one response given the rest of the data. The resulting conditional CVML
(CCVML) is derived from the P(y1i|y2i,D−i) and P(y2i|y1i,D−i) via

CCVML(M) =
1
2

{
n∑

i=1

log [P(y1i|y2i,D−i,M)] +

n∑
i=1

log [P(y2i|y1i,D−i,M)]

}
. (23)

Note that when the marginal distributions are uniform, CCVML is the same as CVML. One can easily show that

E
[
P(y1i|y2i,ω,M)−1]

= E
[

P(y2i|ω,M)
P(y1i, y2i|ω,M)

]
= P(y1i|y2i,D−i,M)−1,

E
[
P(y2i|y1i,ω,M)−1]

= E
[

P(y1i|ω,M)
P(y1i, y2i|ω,M)

]
= P(y2i|y1i,D−i,M)−1.

(24)

Based on (24) CCVML is estimated from MCMC samples using

CCVMLest (M) = −
1
2

n∑
i=1

{
log

[
1
M

M∑
t=1

P(y2i|ω(t),M)
P(y1i, y2i|ω(t),M)

]
+ log

[
1
M

M∑
t=1

P(y1i|ω(t),M)
P(y1i, y2i|ω(t),M)

]}
. (25)

4.0.3. Watanabe–Akaike Information Criterion

The Watanabe–Akaike Information Criterion (WAIC, Watanabe, 2010) is an information-based criterion that is closely
related to the CVML, as discussed in Watanabe (2013), Gelman et al. (2014) and Vehtari et al. (2017).

The WAIC is defined as

WAIC(M) = −2fit(M) + 2p(M), (26)

where the model fitness is

fit(M) =

n∑
i=1

log E [P(y1i, y2i|ω,M)] (27)

and the penalty

p(M) =

n∑
i=1

Var[log P(y1i, y2i|ω,M)]. (28)
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Table 1
Parameter’s range, Inverse-link functions and the functional relationship between Kendall’s τ and the copula parameter.

Copula Range of parameter (θ ) Inv-Link function Kendall’s τ formula

Clayton (−1, ∞) \ {0} θ = exp(f ) − 1 τ =
θ

θ+2
Frank (−∞, ∞) \ {0} θ = f No closed form
Gaussian, T (−1, 1) θ =

exp(f )−1
exp(f )+1 τ =

2
π
arcsin θ

Gumbel (1, ∞) θ = exp(f ) + 1 τ = 1 −
1
θ

The expectation in (27) and the variance in (28) are with respect to the conditional distribution of ω given the data and can
be computed using Monte Carlo samples from π . For instance, the Monte Carlo estimate of the fit is

f̂it(M) =

n∑
i=1

log

(∑M
t=1 P(y1i, y2i|ω

(t),M)
M

)
, (29)

and p(M) can be estimated similarly using the posterior samples. The model with the smallest WAIC is preferred. In the
next section we also investigate via simulations the performance of CVML, CCVML and WAIC criteria when identifying data
support for a constant calibration function.

In Watanabe (2013) it was demonstrated that CVML and WAIC are asymptotically equivalent, so that CVML(M) ≈

WAIC(M)/(−2) for a large sample size n. This connection can be extended to CCVML using the following two conditional
WAICs:

CWAIC1(M) = − 2
n∑

i=1

log E [P(y1i|y2i,ω,M)] + 2
n∑

i=1

Var[log P(y1i|y2i,ω,M)], (30)

CWAIC2(M) = − 2
n∑

i=1

log E [P(y2i|y1i,ω,M)] + 2
n∑

i=1

Var[log P(y2i|y1i,ω,M)], (31)

where expectation and variance are with respect to the conditional distribution of ω given the observed data. An argument
that follows directly the one in Vehtari et al. (2017) shows that CCVML and 1

2 {CWAIC1 + CWAIC2} are also asymptotically
equivalent.

5. Performance of the algorithms

5.1. Simulations

The purpose of the simulation study is to assess empirically: (1) the performance of the estimation method under the
correct and misspecified models, as well as (2) the ability of the model selection criteria to identify the correct copula
structure, i.e. the copula family and the parametric form of the calibration function. For the former aim we compute the
integrated mean square for various quantities of interest, including the Kendall’s τ . In order to facilitate the assessment of
the estimation performance across different copula families, we estimate the calibration function on the Kendall’s τ scale.
The latter is given by

τ (x) = 4
(∫∫

C(u1, u2|x)c(u1, u2|x)du1du2

)
− 1.

We will compare 3 copulas: Clayton, Frank and Gaussian under the general GP-SIM model and the Clayton with constant
calibration function. To fit the model with constant copula, we still use MCMC but instead of f, f̃,w and β in calibration we
have a constant scalar copula parameter, θ . The RWMwG transition is used to sample θ , as the proposal distributions for
marginals’ parameters and latent variables remain the same.

Table 1 provides inverse-link functions g−1 used for calibration, the functional relationship between Kendall’s τ and
copula parameters and parameter ranges for every copula family used in the paper.

In addition to Kendall’s τ we use also the conditional mean of Y1 given y2 and x for assessing the estimation. Such
conditional means can be useful in prediction when one of the responses is more expensive to measure than the other.
The calculation is mathematically straightforward

E(Y1|Y2 = y2, x) = f1(x) + σ1

∫ 1

0
Φ−1(z)c

(
z, Φ

(
y2 − f2(x)

σ2

)
; θ (x)

)
dz. (32)

The integral in (32) is usually not tractable, but can be easily estimated via numerical integration since it is one-dimensional
and defined on the closed interval [0, 1].
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5.2. Simulation details

We generate samples of size n = 400 from each of the next 6 scenarios using the Clayton copula. The covariates are
generated independently fromUniform(0, 1) distribution. The covariate dimension q in Scenario 3 is 10, in all other scenarios
it is 2.

Sc1 f1(x) = 0.6 sin(5x1) − 0.9 sin(2x2),
f2(x) = 0.6 sin(3x1 + 5x2),
τ (x) = 0.7 + 0.15 sin(15xTβ)
β = (1, 3)T/

√
10, σ1 = σ2 = 0.2

Sc2 f1(x) = 0.6 sin(5x1) − 0.9 sin(2x2)
f2(x) = 0.6 sin(3x1 + 5x2)
τ (x) = 0.3 sin(5xTβ)
β = (1, 3)T/

√
10, σ1 = σ2 = 0.2

Sc3 β = (1, 10, −3, 6, 1, −6, 3, 7, −1, −5)T/
√
267, σ1 = σ2 = 0.2

f1(x) = cos(xTβ)
f2(x) = sin(xTβ)
τ (x) = 0.7 + 0.20 sin(5xTβ)

Sc4 f1(x) = 0.6 sin(5x1) − 0.9 sin(2x2)
f2(x) = 0.6 sin(3x1 + 5x2)
τ (x) = 0.5
σ1 = σ2 = 0.2

Sc5 f1(x) = 0.6 sin(5x1) − 0.9 sin(2x2)
f2(x) = 0.6 sin(3x1 + 5x2)
η(x) = 1 + 0.7 sin(3x31) − 0.5 cos(6x22)
σ1 = σ2 = 0.2

Sc6 f1(x) = 0.6 sin(5x1) − 0.9 sin(2x2)
f2(x) = 0.6 sin(3x1 + 5x2)
η(x) = 1 + 0.7x1 − 0.5x22
σ1 = σ2 = 0.2

Sc1 and Sc2 have calibration functions for which the SIMmodel is true for Kendall’s τ and, consequently, also for the copula
parameter. Sc1 corresponds to large dependence (τ greater than 0.5) while Sc2 has small dependence (τ is between −0.3
and 0.3). Sc3 also has SIM form for calibration function but the covariate dimension is q = 10, so this scenario is important in
our effort to evaluate how well the algorithms scale up with dimension. Sc4 corresponds to the covariate-free dependence
(τ = 0.5) and allows us to verify the power to detect simple parametric forms for the calibration. Scenarios Sc5 and Sc6 do
not have SIM form, but have additive calibration function (as in Sabeti et al., 2014). They are used to evaluate the effect of
model misspecification on the inference. Note that Sc6 has almost SIM calibration when x2 ∈ [0, 1]. Additional simulation
scenarios with larger sample size (n = 1000) and different β values are included in the online supplemental material.
From our experiments we found that when the number of inducing points is m = 30 for marginals and we use calibration
sparse GPs,we obtain a reasonable CPU time that allows us to perform the desired number of replicationswhile capturing the
general form of the estimated functions. On average oneMCMC iteration (n = 400) with GP-SIM calibration takes 0.02 s, one
iteration with constant calibration (and GP for marginals) takes 0.015 s. The MCMC samplers were run for 20,000 iterations
for all scenarios.

The first half of the MCMC sample is discarded as burn-in and the second half is used for inference. As noted earlier,
starting values were found by running two GP regressions separately to estimate marginal parameters and one MCMC
sampler was run in order to estimate calibration parameters. All three samplers were run for only 100 iterations.

5.2.1. Proof of concept based on one replicate
In the absence of computable convergence bounds, we used the Gelman–Rubin (Gelman and Rubin, 1992) diagnostic

statistics to decide the length of the chain’s run. To illustrate using Sc1, we ran 10 independent MCMC chains, each for
20,000 iterations, that were started from different initial values. The trace plots for the potential scale reduction factor (PSRF),
computed up to 10,000 iterations for β , σ 2

1 and σ 2
2 are displayed in Fig. 1. The plots show that the multivariate PSRF after

10,000 iterations is 1.1. The subsequent 10,000 samples were used for inference.

Parameter Estimation
The simulation results show that inferences performed under Sc1 and Sc2 are similar. Since the calibration function in

Sc1 is more complicated, for the sake of reducing the paper’s lengthwe present only results for that scenario. The trace-plots,
autocorrelation functions and histograms of posterior samples of β , σ 2

1 and σ 2
2 are shown in Fig. 2 when the fitted copula

belongs to the correct Clayton family (the horizontal solid red line is the true value). Next we show predictions for the
marginals means with 95% credible intervals. Since these are 2-dimensional we estimate ‘slices’ of this surface at values
0.2 and 0.8, so that we first fix x1 = 0.2 then x1 = 0.8 and similarly for x2. The results are in Fig. 3 (black is true, green is
estimation, red are credible intervals).
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Fig. 1. Sc1: Clayton copula, Gelman–Rubin MCMC diagnostic for beta and two variances.

Fig. 2. Sc1: Trace-plots, ACFs and histograms of parameters based on MCMC samples generated under the true Clayton family.

Fig. 3. Sc1: Estimation of marginal means. The leftmost 2 columns show the accuracy for predicting E(Y1) and the rightmost 2 columns show the results
for predicting E(Y2). The black and green lines represent the true and estimated relationships, respectively. The red lines are the limits of the pointwise 95%
credible intervals obtained under the true Clayton family. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 4. Sc1: Estimation of Kendall’s τ one-dimensional projections when x1 = 0.2 or 0.8 (top panels) and when x2 = 0.2 or 0.8 (bottom panels).
The black and green lines represent the true and estimated relationships, respectively. The red lines are the limits of the pointwise 95% credible intervals
obtained under the true Clayton family. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Fig. 5. Sc1: Histogram of predicted Kendall’s τ values obtained under the true Clayton copula.

One of the inferential goals is the prediction of calibration function or, equivalently, Kendall’s τ function.
As with conditional marginal means we estimate one dimensional slices at values 0.2 and 0.8 and the results, shown in

Fig. 4, confirm the accuracy of the fit.
The predictive power of the model was assessed by fixing 4 covariate points and estimating the corresponding Kendall’s

τ values: τ̂ (0.2, 0.2), τ̂ (0.2, 0.8), τ̂ (0.8, 0.2), τ̂ (0.8, 0.8). At each MCMC iteration these predictions are calculated and
histograms (Fig. 5) are constructed (red lines are true value of τ ). The same estimates are presented in Fig. 6 when the
Gaussian copula is used for inference. One can notice that the estimates are biased in this instance, thus emphasizing the
importance of identifying the right copula family. Similar patterns have been observed when using the Frank copula.

We also show howwell the algorithm estimates calibration function when covariate dimension is large. Fig. 7 shows one
dimensional slices of Kendall’s τ function for Sc3 which is estimated by the Clayton GP-SIM model. Each plot is produced
by varying one coordinate from 0 to 1 while fixing all other coordinates at x = 0.5. We observe that even in this case the
estimated curves are very close to true Kendall’s τ function.
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Fig. 6. Sc1: Histogram of predicted τ s with Gaussian copula model.

Fig. 7. Sc3: Estimation of Kendall’s τ one-dimensional projections for each coordinate fixing all other coordinates at 0.5 levels. The black and green lines
represent the true and estimated relationships, respectively. The red lines are the limits of the pointwise 95% credible in intervals obtained under the true
Clayton family. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Model Selection
Finally, we focus on the accuracy of CVML, CCVML andWAIC in selecting the correct model. Table 2 shows the values for

each scenario and model. Bold values indicate largest CVML/CCVML and smallest WAIC values for each scenario. Observe
that all bold values for Sc1, Sc2, Sc3, Sc5, Sc6, point to the Clayton family, while for Sc4 they indicate the Clayton family with
a constant calibration. We note that the correct copula is selected even when the generative calibration model is additive.

5.2.2. Simulation results based on multiple replicates
So far, the results reported were based on a single implementation of the method. In order to facilitate interpretation, we

perform 50 independent replications under each of the six scenarios described previously.
The MCMC sampler was run for 20,000 iterations for all scenarios. As before, the first half of iterations was ignored as a

burn-in period. For each data set, 4 estimations were done with Clayton, Frank, Gaussian and constant Clayton copulas. For
Sc5 and Sc6 we also fitted the Clayton copula with an additive model for the calibration function, as in Sabeti et al. (2014).
The marginal distributions models have the general GP form throughout the paper. In order to produce overall measures of
fit, we report the integrated squared Bias (IBias2), Variance (IVar) and mean squared error (IMSE) of Kendall’s τ evaluated
at covariates x = (x1, . . . , xn)T . The calculation requires finding points estimates for τ̂r (xi) for 1 ≤ r ≤ Nrep independently
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Table 2
CVML, CCVML and WAIC values for each Scenario and Model.

CVML CCVML WAIC CVML CCVML WAIC

Scenario 1 Scenario 4

Clayton 532 458 −1065 Clayton 322 254 −644
Frank 422 365 −844 Frank 277 209 −549
Gaussian 397 326 −801 Gaussian 276 207 −547
Clayton-Const 503 433 −1007 Clayton-Const 323 255 −647

Scenario 2 Scenario 5

Clayton 166 103 −333 Clayton 324 277 −650
Frank 144 82 −289 Frank 256 216 −513
Gaussian 146 84 −293 Gaussian 260 214 −520
Clayton-Const 121 60 −243 Clayton-Const 299 257 −600

Scenario 3 Scenario 6

Clayton 613 536 −1237 Clayton 286 242 −573
Frank 562 491 −1126 Frank 216 179 −432
Gaussian 494 417 −1002 Gaussian 205 165 −410
Clayton-Const 537 462 −1076 Clayton-Const 283 238 −567

Table 3
Estimated

√

Bias2 ,
√
IVar and

√
IMSE of Kendall’s τ for each Scenario and Model.

Scenario Clayton Frank Gaussian Clayton constant
√

IBias2
√
IVar

√
IMSE

√

IBias2
√
IVar

√
IMSE

√

IBias2
√
IVar

√
IMSE

√

IBias2
√
IVar

√
IMSE

Sc1 0.0393 0.0575 0.0697 0.0357 0.0657 0.0748 0.0679 0.0734 0.1 0.1046 0.0208 0.1066
Sc2 0.0492 0.0665 0.0827 0.0695 0.1 0.1218 0.0509 0.0692 0.0859 0.2314 0.0242 0.2327
Sc3 0.0327 0.0744 0.0813 0.041 0.0858 0.0951 0.0846 0.1069 0.1363 0.123 0.0134 0.1237
Sc4 0.0061 0.0355 0.036 0.0133 0.0584 0.0599 0.0205 0.0493 0.0534 0.0016 0.0258 0.0258
Sc5 0.0723 0.0777 0.1061 0.0703 0.0881 0.1127 0.0842 0.0857 0.1202 0.1589 0.024 0.1607
Sc6 0.0147 0.0384 0.0411 0.0175 0.05 0.0529 0.0338 0.0559 0.0654 0.0849 0.021 0.0874

replicated analyses and each i = 1, . . . , n. The formulas for IBias2, IVar and IMSE are given by:

IBias2 =
1
n

n∑
i=1

(∑Nrep
r=1 τ̂r (xi)
Nrep

− τ (xi)

)2

,

IVar =
1
n

n∑
i=1

Varr (τ̂r (xi)),

IMSE = IBias2 + IVar.

(33)

We will apply these concepts not only for Kendall’s τ but also for E(y1|Y2 = y2, x) for different combinations (x, y2).

Estimation
IBias2, IVar and IMSE for each scenario and each model are shown in Table 3 (bold values show smallest IMSE for each

scenario). Note that the smallest IMSE is produced when fitting the correct model and copula family. The Clayton model
with GP-SIM calibration has smallest IMSE in all scenarios with the exception of Sc4. We note that models with constant
calibration have much smaller IVar than models with GP-SIM but have much larger IBias and, consequently, IMSE. Not
surprisingly, for Sc4, the Clayton copula model with constant calibration yields the smallest IMSE. For each simulated data
set and each model, E(y1|Y2 = y2, x) were estimated. For all scenarios except for Sc3 we let each x1, x2 take values in
the set {0.2, 0.4, 0.6, 0.8} and y2 in {−0.6, −0.2, 0.2, 0.6} making a total of 64 combinations. For Sc3, y2 takes values in
{−0.5, 0.0, 0.5, 1.0}, while x can take 33 values scattered in [0, 1]10, making a total of 132 combinations. The results are
presented in Table 4 and largely mimic the patterns found in Table 3, thus showing that the predictive power of the model
and the accuracy of dependence estimation are linked.

The results for scenarios Sc5 and Sc6 in which the true calibration has an additive form are shown in Table 5. Shown are
the global measures of fit for Kendall’s τ and E(y1|Y2 = y2, x) when the true Clayton copula is coupled with the GP-SIM
and the additive model for representing the calibration function. An astute reader should not be exceedingly surprised to
observe that GP-SIM outperforms the additive model under Sc6 since the calibration function is not far from having a SIM
form in this case (due to 0 ≤ u− u2

≤ 1/4 for any u ∈ [0, 1]). This is not observed in Sc5where GP-SIM performs worse for
Kendall’s tau estimation than the true additive model.

Model Selection
Finallywe showhowwell CVML, CCVML andWAIC perform in choosing the correctmodel. For selecting betweendifferent

copula families or to check whether dependence is covariate-free we just pick the model with largest CVML/CCVML or



128 E. Levi, R.V. Craiu / Computational Statistics and Data Analysis 122 (2018) 115–134

Table 4
Estimated

√

Bias2 ,
√
IVar and

√
IMSE of E(Y1|y2, x) for each Scenario and Model.

Scenario Clayton Frank Gaussian Clayton constant
√

IBias2
√
IVar

√
IMSE

√

IBias2
√
IVar

√
IMSE

√

IBias2
√
IVar

√
IMSE

√

IBias2
√
IVar

√
IMSE

Sc1 0.0231 0.0531 0.0579 0.1264 0.0322 0.1304 0.1434 0.0557 0.1539 0.0416 0.0579 0.0713
Sc2 0.0293 0.0464 0.0549 0.0802 0.0475 0.0932 0.1098 0.0593 0.1247 0.1213 0.0407 0.128
Sc3 0.0364 0.0707 0.0795 0.214 0.0363 0.217 0.1042 0.0708 0.1259 0.0483 0.0572 0.0749
Sc4 0.0174 0.042 0.0454 0.1023 0.0325 0.1074 0.1379 0.0449 0.145 0.0179 0.041 0.0447
Sc5 0.0144 0.0413 0.0437 0.0909 0.0347 0.0973 0.14 0.051 0.149 0.0355 0.04 0.0534
Sc6 0.0202 0.0456 0.0498 0.1046 0.0298 0.1087 0.1367 0.0448 0.1439 0.0237 0.0442 0.0501

Table 5
Estimated

√

Bias2 ,
√
IVar and

√
IMSE of Kendall’s τ and E(Y1|y2, x) for GP-SIM and Additive models.

Scenario Clayton GP-SIM Clayton Additive
√

IBias2
√
IVar

√
IMSE

√

IBias2
√
IVar

√
IMSE

Kendall’s Tau

Sc5 0.0723 0.0777 0.1061 0.0573 0.0516 0.0771
Sc6 0.0147 0.0384 0.0411 0.0063 0.0458 0.0462

E(Y1|y2, x)
Sc5 0.0144 0.0413 0.0437 0.0207 0.0428 0.0475
Sc6 0.0202 0.0456 0.0498 0.0236 0.0483 0.0538

Table 6
The percentage of correct decisions for each selection criterion when comparing the correct Clayton model with a non-constant calibration with all the
other models: Frank model with non-constant calibration, Gaussian model with non-constant calibration, Clayton model with constant calibration.

Scenario Frank Gaussian Clayton constant

CVML CCVML WAIC CVML CCVML WAIC CVML CCVML WAIC

Sc1 100% 100% 100% 100% 100% 100% 94% 94% 94%
Sc2 100% 100% 100% 100% 100% 100% 100% 100% 100%
Sc3 98% 96% 98% 100% 100% 100% 100% 98% 100%
Sc5 100% 100% 100% 100% 100% 100% 100% 100% 100%
Sc6 100% 100% 100% 100% 100% 100% 98% 100% 98%

Table 7
The percentage of correct decisions for each selection criterion when comparing the correct Clayton model with a constant calibration with three models:
Clayton, Frank and Gaussian, all of them assuming a GP-SIM calibration.

Scenario Clayton Frank Gaussian

CVML CCVML WAIC CVML CCVML WAIC CVML CCVML WAIC

Sc4 58% 62% 58% 100% 100% 100% 100% 100% 100%

Table 8
The percentage of correct decisions for each selection criterion when
comparing the correct additive model with GP-SIM with non-constant
calibration.

Scenario Clayton GP-SIM

CVML CCVML WAIC

Sc5 92% 94% 90%
Sc6 30% 34% 28%

smallest WAIC. Table 6 shows how often Clayton model is selected over other models using CVML, CCVML and WAIC for
Sc1, Sc2, Sc3, Sc5 and Sc6. Similarly, Table 7 shows how often Clayton-constant is selected over other models for Sc4.

We can conclude that all selection measures perform quite similarly across scenarios. Also, the numerical study shows
that the choice of a copula family is considerably more accurate than correctly determining that the calibration function is
constant. The latter difficulty has been reported elsewhere (e.g., Craiu and Sabeti, 2012). In part, this is due to the fact that
the models are flexible enough to capture the constant calibration and produce estimates that mislead a cross-validation-
based method. In Section 6.2 we return to this problem and develop a new permutation-based procedure that exhibits
a drastically improved performance in numerical experiments. Since Sc5 and Sc6 were simulated with Clayton additive
calibration, we show how often Clayton Additive model is selected over Clayton GP-SIM using different criteria (Table 8).
The poor performance for Sc6 is not that surprising since the additive calibration in this scenario has almost SIM form.
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Table 9
Red Wine data: CVML, CCVML and WAIC criteria values different models.

Clayton Frank Gaussian Gumbel T-3

CVML −1858 −1816 −1788 −1829 −1810
CCVML −582 −547 −522 −558 −534
WAIC 3713 3634 3572 3656 3621

Table 10
Wine data: Posterior means and quantiles of β .

Variable Posterior mean 95% credible interval

Xva 0.274 [0.154, 0.389]
Xca −0.336 [−0.413, −0.254]
Xrs −0.076 [−0.278, 0.271]
Xch 0.060 [−0.246, 0.259]
Xfs 0.276 [0.106, 0.410]
Xts 0.402 [0.248, 0.608]
Xph 0.155 [0.054, 0.286]
Xsu 0.501 [0.342, 0.601]
Xal 0.463 [0.382, 0.517]

Table 11
Wine data: CVML, CCVML and WAIC criteria values for variable selection in
conditional copula.

Variables CVML CCVML WAIC

ALL −1788 −522 3572
Xva, Xca, Xfs, Xts, Xph, Xsu, Xal −1805 −532 3608
Xva −1823 −552 3646
Xca −1815 −541 3629
Xrs −1849 −582 3698
Xch −1842 −578 3688
Xfs −1852 −584 3705
Xts −1851 −583 3700
Xph −1816 −557 3633
Xsu −1841 −571 3682
Xal −1847 −577 3697
Constant −1849 −584 3700

5.3. Red wine data

We consider the data of Cortez et al. (2009) consisting of various physicochemical tests of 1599 red variants of the
Portuguese ‘‘Vinho Verde’’ wine. Acidity and density are properties closely associated with the quality of wine and grape,
respectively. Of interest here is to study the dependence pattern between ‘fixed acidity’ (Yfa) and ‘density’ (Yde) and how
it changes with values of other variables: ‘volatile acidity’, ‘citric acid’, ‘residual sugar’, ‘chlorides’, ‘free sulfur dioxide’,
‘total sulfur dioxide’, ‘pH’, ‘sulphates’ and ‘alcohol’, denoted by Xva, Xca, Xrs, Xch, Xfs, Xts, Xph, Xsu, Xal, respectively. Response
variables are linearly transformed to have mean 0 and standard deviation of 1, similarly covariates were transformed to be
between 0 and 1.

To select the appropriate copula family, we fit GP-SIM with ‘Clayton’, ‘Frank’, ‘Gaussian’, ‘Gumbel’ and ‘T-3’ (Student T
with 3 degrees of freedom) dependencies. For each model the MCMC was run for 20,000 iterations with 10,000 burn-in
period. We used 30 inducing inputs for the marginals and we use calibration function estimation (m1 = m2 = m = 30). The
resulting CVML, CCVML and WAIC values are shown in Table 9.

All model selection measures indicate that among candidate copula families the most suitable one is the Gaussian one.
The GP-SIM coefficients (β) fitted under the Gaussian copula family are shown in Table 10.

The credible intervals suggest that not all covariates may be needed to model dependence between responses. For
example, ‘residual sugars’ and ‘chlorides’ seem to not affect the calibration function so we consider a model in which they
are omitted from the conditional copula model. In all models, we include all the covariates in the marginal distributions. For
comparison, we have also fitted all Gaussian GP-SIMmodels with only one covariate, andwith no covariates at all (constant).
The computational algorithm to fit GP-SIM when the conditional copula depends on only one variable is very similar to the
one described above. The main difference is that there is no β variable and the inducing inputs (for calibration function) are
evenly spread on [0, 1]. The testing results are shown in Table 11.

Based on the selection criteria results we conclude that all nine covariates are required to explain the dependence
structure of two responses. Fig. 8 shows 1-dimensional plots of Kendall’s τ calibration curve with 95% credible as a function
of covariates. The plots are constructed by varying one predictor while fixing all others at their mid-range values.
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Fig. 8. Wine Data: Slices of predicted Kendall’s τ as function of covariates. Red curves represent 95% credible intervals. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 9. Wine Data: Plots of ‘fixed acidity’ (blue) and ‘density’ (red) (linearly transformed to fit on one plot) against covariates. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

The plots clearly demonstrate that when covariates are fixed at their mid-range values, the conditional correlation
between ‘fixed acidity’ and ‘density’ increaseswith ‘volatile acidity’, ‘free sulfur dioxide’, ‘total sulfur dioxide’, ‘pH’, ‘sulphates’
and ‘alcohol’, and decreases with levels of ‘citric acid’. These relationships can influence the preparationmethod of thewine.

In order to demonstrate the difficulty one would have in gauging the complex evolution of dependence between two
responses as a function of covariates we plot in Fig. 9 the response variables together as they vary with each covariate. It is
clear that the model manages to identify a pattern that would be very difficult to distinguish without the help of a flexible
mathematical model.

6. Simplifying assumption

6.1. Model misspecification and the simplifying assumption

Understanding whether the data support the SA or not is usually important for the subject matter analysis, since a
dependence structure that does not depend on the covariates can be of scientific interest. The SA has also a serious impact
on the statistical analysis, because it has the potential to simplify greatly the estimation of the copula. There is however, an
interesting connection between model misspecification and SA which, as far as we know, has not been reported elsewhere.
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Fig. 10. Estimation of Kendall’s τ as a function of x1 when only first covariate is used in estimation. The dotted black and solid green lines represent the
true and estimated relationships, respectively. The red lines are the limits of the pointwise 95% credible in intervals obtained under the true Clayton family.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 12
Missed covariate: CVML, CCVML and WAIC criteria values for model with
conditional copula depends on one covariate and when it is constant.

Variables CVML CCVML WAIC

X1 −508 −174 1017
Constant −570 −232 1140

To illustrate the point, consider a random sampling design settingwith two independent random variables, X1, X2 serving
as covariates in the Clayton copula model in which SA is satisfied, the sample size n = 1500 and

f1(x) = 0.6 sin(5x1 + x2),
f2(x) = 0.6 sin(x1 + 5x2),
τ (x) = 0.5,
σ1 = σ2 = 0.2.

When we fit a GP-SIM model with the correct Clayton copula family, but with the X2 covariate omitted from both marginal
and copula models, the estimated Kendall’s τ (x1) exhibits a clear non-constant shape, as seen in Fig. 10. The CVML, CCVML
and WAIC criteria, whose values are shown in Table 12, unanimously vote for a nonconstant calibration function.

While one may expect a non-constant pattern when the two covariates are dependent, this residual effect of X1 on the
copula may be surprising when X1 and X2 are independent. We can gain some understanding by considering a simplified
example in which Yi|X1, X2 ∼ N(fi(X1, X2), 1) for i = 1, 2, and Cov(Y1, Y2|X1, X2) = Corr(Y1, Y2|X1, X2) = ρ, hence constant
in X1 and X2. Hence, for marginal models that include only X1, yielding residuals Wi = Yi − E[Yi|X1] for i = 1, 2, we are
interested in explaining the non-constant dependence between Cov(W1,W2|X1) and X1. Standard statistical properties of
covariance and conditional expectation are used to obtain

Cov(W1,W2|X1) = Cov(Y1, Y2|X1), (34)

and

Cov(Y1, Y2|X1) = E[Cov(Y1, Y2|X1, X2)] + Cov(E[Y1|X1, X2], E[Y2|X1, X2])
= ρ + Cov(f1(X1, X2), f2(X1, X2)), (35)

where the covariance in (35) is with respect to the marginal distribution of X2. Hence it is apparent that the conditional
covariance Cov(W1,W2|X1)will generally not be constant inX1. Note that if the truemeans have additive form, i.e. fi(X1, X2) =

f̄i(X1) + f̃i(X2), for i = 1, 2, then the covariances in (34) are indeed constant in X1, but the estimated value of Cov(Y1, Y2|X1)
will be biased. Although here we focused on the covariance as a measure of dependence, the argument is extendable to
copula parameters or Kendall’s tau, but the calculations are more involved.

In conclusion, violation of the SA may be due to the omission of important covariates from the model. This phenomenon
along with the knowledge that in general it is difficult to measure all the variables with potential effect on the dependence
pattern, suggests that a non-constant copula is a prudent choice.

6.2. A permutation-based criterion to detect data support for the simplified assumption

In this section we modify the CVML and the conditional CCVML method to identify data support for SA after the copula
family is selected.
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Aswas shown in previous sections, the selection criteria included in the paper do not performwell in recognizing that the
true calibration is constant. This is in line with Craiu and Sabeti (2012) who also noted that the traditional Bayesian model
selection criteria, e.g. the Deviance information criterion (DIC) of Spiegelhalter et al. (2002), tend to prefer themore complex
calibration model over a simple model with constant calibration even when the latter is actually correct. To illustrate this
point with larger sample sizes, we have simulated 50 replicates of sample sizes 1500 using Clayton copula from Sc1, Sc4
and Sc5. Each sample is fitted with the general model introduced here and a constant Clayton copula, while marginals are
estimated using a general GP. Table 13 shows the proportion of correct decisions for the three scenarios and various selection
criteria. Even for a large sample size, the proportion of right decisions for Sc4, i.e. when SA holds, is quite low. One of the
explanations is that the general model does a good job at capturing the constant trend of the calibration function and yields
predictions that are not too far from the ones producedwith the simpler (and correct)model. Themodified CVMLwepropose
is inspired by two desiderata: (i) to separate the set of observations used for prediction from the set of observations used for
fitting themodel, and (ii) to amplify the impact of the copula-induced errors in the CCVML calculation. The formerwill reduce
the implicit bias one gets when the same data is used for estimation and testing, while the latter is expected to increase the
power to identify SA.

For (i) we randomly partition the data into a training set D = {y1i, y2i, xi}i=1,...,n1 and a test set D∗
= {y∗

1i, y
∗

2i, x
∗

i }i=1,...,n2 .
In our numerical experimentswe have kept two thirds of observations in the training set. In order to achieve (ii) we note that
permuting the response indexes will not affect the copula term if SA is indeed satisfied andwill perturb the prediction when
SA is not satisfied. However, one must cautiously implement this idea, since the permutation λ : {1, . . . , n2} → {1, . . . , n2}

will affect themarginal model fit, regardless of the SA status, as yjλ(i) will be paired with xi, for all j = 1, 2. Belowwe describe
the permutation-based CVML criterion that combines (i) and (ii).

Assume that the fitted GP-SIM model yields posterior samples from the conditional distribution of latent variables and
parameters ω(t)

∼ π (ω|D), t = 1 . . .M . Then we define the observed data criterion as the predictive log probability of the
test cases which can be easily estimated from posterior samples, as follows:

CVMLobs =

n2∑
i=1

log P(y∗

1i, y
∗

2i|D, x∗

i ) ≈

n2∑
i=1

log
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1
M

M∑
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∗

2i|w
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i )

}
=

=
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,

where f ∗(t)
1i , f ∗(t)

2i , θ
∗(t)
i are the predicted values for the test cases produced by the GP-SIM model. Consider J permutations of

{1 . . . n2} which we denote as λ1, . . . , λJ , and compute J permuted CVMLs as:

CVMLj =

n2∑
i=1

log

{
1
M

M∑
t=1

1

σ
(t)
1

φ

(
y∗

1i − f ∗(t)
1i

σ
(t)
1

)
1

σ
(t)
2

φ

(
y∗

2i − f ∗(t)
2i

σ
(t)
2

)
×

× c
θ
∗(t)
λj(i)

[
Φ

(
y∗

1i − f ∗(t)
1i

σ
(t)
1

)
, Φ

(
y∗

2i − f ∗(t)
2i

σ
(t)
2

)]}
. (36)

Note that CVMLobs differs from CVMLj only in the values of the copula parameters. While for the former we use θ (x∗

i ), in the
latter we use θ (x∗

λj(i)
) for the dependence between y∗

1i and y∗

2i. If calibration is constant then CVMLobs and CVMLj should be
similar, hence we define the evidence

EV = 2 × min

{∑J
j=1 1{CVMLobs<CVMLj}

J
,

∑J
j=1 1{CVMLobs>CVMLj}

J

}
. (37)

Under the null model with constant calibration with known marginals and if we assume that CVMLobs and {CVMLj : 1 ≤

j ≤ J} are iid for each j, then each term inside themin function in (37) has a Uniform(0, 1) limiting distributionwhen J → ∞.
In that case it follows that P(EV < 0.05) = 0.05. In practice, the ideal situation just described is merely an approximation
since the {CVMLj : 1 ≤ j ≤ J} are not independent and we compute EV using a fixed number of permutations. Nevertheless,
the ideal setup can be used to build our decision that when EV > 0.05 the data support SA, and otherwise they do not.

A similar rule can be build using the CCVML criterion. For instance, its value for test data is

CCVMLobs =
1
2

n2∑
i=1

log P(y∗

1i|D, x∗

i , y
∗

2i) +
1
2

n2∑
i=1

log P(y∗

2i|D, x∗

i , y
∗

1i). (38)

The permutation-based version of (38) can be obtained using the same principle as in (36) thus leading to the counterpart
of (37) for CCVML.
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Table 13
The percentage of correct decisions for each selection criterion and scenarios.
GP-SIM and SA were fitted with Clayton copula, sample size is 1500.

Scenario CVML CCVML WAIC

Sc1 100% 100% 100%
Sc4 74% 78% 74%
Sc5 100% 100% 100%

Table 14
The percentage of correct decisions for each selection criterion and scenario.
Predicted CVML and CCVML values based on n1 = 1000 training and n2 =

500 test data, respectively. The calculation of EV is based on a random sample
of 500 permutations.

Scenario CVML CCVML

Sc1 98% 96%
Sc4 92% 90%
Sc5 100% 100%

Table 14 shows the proportion of correct decisions using proposed methods with 1000 and 500 samples in training and
test set respectively, and J = 500permutations. The results, especially those for Sc4, clearly showan important improvement
in the rate of making the correct selection, with only a slight decrease in the power to detect non-constant calibrations. We
can also notice that CVML and CCVML performed similarly.

7. Conclusion and future work

The inclusion of a dynamic copula in themodel comeswith a significant computational price. The inclusion canbe justified
by the need for an exploration of dependence, or because it can improve the predictive accuracy of the model.

We have proposed a Bayesian procedure to estimate the calibration function of a conditional copula model jointly with
the marginal distributions. In our attempt to move away from an additive model hypothesis we consider a sparse Gaussian
process prior used in conjunction with a single index model. The resulting procedure reduces the dimensionality of the
parameter space and can be used for moderate number of covariates.

The simplifying assumption is often adopted as a way to bypass the need for estimating a conditional copula model.
However, even if the SA is true when conditioning on the true set of covariates, we showed that if one or more covariates are
not included in the fitted model, then the SA is violated. We have introduced a couple of selection criteria to help select the
copula family from a set of candidates and to gauge data support in favor of the simplifying assumption. While the former
task seems to be achieved by all criteria considered, the latter is a particularly difficult problem and we are excited about
the good performance exhibited by our permutation-based version of the cross-validated marginal likelihood criterion. Its
theoretical properties are the focus of our ongoing work and we plan to extend its use to identifying the set of covariates
that do not influence the calibration function.
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