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Abstract The competing risks model is useful in settings in which individuals/units may

die/fail for different reasons. The cause specific hazard rates are taken to be piecewise

constant functions. A complication arises when some of the failures are masked within a

group of possible causes. Traditionally, statistical inference is performed under the

assumption that the failure causes act independently on each item. In this paper we propose

an EM-based approach which allows for dependent competing risks and produces esti-

mators for the sub-distribution functions. We also discuss identifiability of parameters if

none of the masked items have their cause of failure clarified in a second stage analysis

(e.g. autopsy). The procedures proposed are illustrated with two datasets.

Keywords Dependent competing risks Æ Masked cause Æ Missing data Æ Piecewise

constant hazard Æ Second stage data

1. Introduction

In survival data studies it is often the case that the individuals or items under study can experience

any one of J possible types or causes of failure; failure for each item being due to only one failure

cause. Crowder (2001) provides a recent review of this competing risks problem for which one

needs to estimate the failure rates for each cause. While items that do not fail during the

experiment have no failure time/cause associated with them, it is also possible that some of the

items that fail during this period have a cause of failure that is only known to belong to a certain

subset of all possible failures, in other words, their cause of failure is group masked. In this case

we say that the actual failure cause is masked by the restricted group (Sen et al. 2001).
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Sometimes, one may be able to conduct a second-stage analysis, such as autopsy, in which the

true cause can be uniquely determined for a sample of the masked items (Flehinger et al. 1998).

For the competing risks model with masked causes of failure, some authors have derived

semiparametric and nonparametric inference procedures for the case with two failure causes

and no second-stage analysis, which often occurs in carcinogenicity bioassays: Dinse (1986)

proposed nonparametric maximum likelihood estimators of prevalence and mortality;

Goetghebeur and Ryan (1990) derived a modified log-rank test for comparing the survival

of populations, which they later extended to proportional hazards regression (Goetghebeur

and Ryan 1995); Racine-Poon and Hoel (1984) considered inference for this model when a

probability of death from each missing cause is provided by a pathologist; and Kodell and

Chen (1987) tackled the problem via the EM algorithm. In the case of a general number of

failure causes and availability of second-stage analysis data, Flehinger et al. (1998, 2002)

propose maximum likelihood estimation under a model with proportional cause-specific

hazards (Flehinger et al. 1998) and a model with completely parametric cause-specific

hazards (Flehinger et al. 2002). Craiu and Duchesne (2004a, b) use a semiparametric model

with piecewise constant hazard functions which presents robust properties and can be

adapted to most situations in which some second stage data is available.

The issue of masking has been widely pursued by the reliability community. Sen et al.

(2001) and Flehinger et al. (2002) provide reviews of this literature. Almost all of the

research concerned with masking makes the strong symmetry assumption that the proba-

bility of masking does not depend on the true failure cause. Lin and Guess (1994) and

Guttman et al. (1995) discuss how misleading this assumption can be. In addition inde-

pendence of failure causes is typically assumed.

It is often the case that a good balance between flexibility and accuracy on one side and

computational feasibility on the other side is achieved by the piecewise constant cause-

specific hazard functions. In addition, these models allow for likelihood based methods for

estimation and testing to be used (Craiu and Duchesne 2004a; Lawless 2003). It is well

known that the independence between the competing risks cannot be tested using the

failure times and the failure causes even if these are completely known for all items in the

study. Kalbfleisch and Prentice (2002) emphasize that in many examples (e.g., life time

data) dependence between the competing risks is reasonable although a parametric model

for the dependency is hard to specify. In this paper, we show that models with piecewise

constant hazards can be used for estimation in a general situation in which the competing

risks do not act independently. If the competing risks are not independent it is known that

the marginal survival functions corresponding to one cause are not identifiable, so instead

we develop estimates for the sub-distribution (cumulative incidence) functions. The use of

sub-distribution functions for competing risks has been stressed by many authors (e.g.

Gaynor et al. 1993; Gooley et al. 1999; Kalbfleisch and Prentice 2002; Lawless 2003).

The paper is organized as follows. In Section 2 we describe the competing risks model

with masked information on the cause of death/failure and the EM algorithm used for

estimation of cause specific hazard rate. The estimation of sub-distribution functions is

presented in Section 3. Section 4 discusses the special case where no second stage data is

available. The paper concludes in Section 5 with a discussion of two different data examples.

2. Data and models

Consider n systems, each consisting of J separate modules (risks or causes) and suppose

that the failure of any of the modules results in the death/failure of the system. Often one is
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only able to narrow down the cause of system failure to a group of possible causes, that is

the failure is group masked. Such occurrences are often met in engineering and medical

applications. It may also be the case that after the first stage of the experiment, a subsample

of items with group masked failure cause is selected and sent to a second stage analysis in

which the exact cause of failure is determined for the selected items.

Suppose we observe n systems for a period of time of length s. In the case of masked

data, for each system i (system is henceforth called item), there are three possible

occurrences, at least in the first stage of the experiment: i fails because of cause ji at time ti;

i fails because of a cause that is not known precisely, but is known to belong to a group of

failure causes gi � f1; . . . ; Jg; or i had still not failed by time ti, the time we ceased

observing the item i. Therefore, some of the uncensored items will have a masking group

instead of a failure cause, and all the items have a failure time or a censoring time. We

assume that there are G proper masking groups (i.e. they contain more than one cause) and

we denote M=G+J. The observation for item i is then ðti; cig1
; . . . ; cigM

, di1; . . . ; diJ Þ, where

cig is the indicator that item i’s failure cause was masked to group g at the first stage; if the

failure cause is known to be j at the first stage, then we say that it is masked to g={j}. Also,

dij is the indicator that item i’s actual failure cause is j. If an item is right-censored, then all

the indicators dij, j=1,...,J, are 0. If an item is masked in stage one and is not taken to a

second stage analysis then all dij, j=1,...,J, are unknown. We denote by OBS the observed

data.

Let T denote the failure time and C denote the failure cause. The cause-specific hazard

functions are defined as

kjðtÞ ¼ lim
h#0

Prðt\T � t þ h;C ¼ jjT � tÞ
h

; j ¼ 1; . . . ; J : ð1Þ

The sub-distribution functions are

FjðtÞ ¼ PrðT � t;C ¼ jÞ ¼
Z t

0

kjðuÞSðuÞdu j ¼ 1; . . . ; J ð2Þ

and, in turn, yield to the cause-specific probability density functions fjðtÞ ¼ d
dt FjðtÞ ¼

kjðtÞSðtÞ where S(t)=Pr(T>t) is the item’s survival function. While we allow dependence

between the risks of failure, we assume that the failure occurs due to only one cause. The

overall hazard rate is kðtÞ ¼
PJ

j¼1 kjðtÞ and SðtÞ ¼ expf�
R t

0
kðuÞdug.

In this paper we use a model with piecewise constant cause-specific hazard functions,

that is, for each cause j we divide the interval [0,s] in Kj pieces and assume that

kjðtÞ ¼
XKj

k¼1

kjk1jkðtÞ; ð3Þ

where 0 ¼ aj0\aj1\� � �\ajKj , and 1jk(t) is the indicator that t 2 ðajk�1; ajk �.
As a result of masking, in addition to the parameters kjk, one must consider the masking

probabilities

Pgjj ¼ Prðcause masked to group g at stage 1jC ¼ jÞ; j 2 g: ð4Þ

One could extend (4) to include time-dependent masking probabilities, e.g. piecewise

constant PgjjðtÞ (see Craiu and Duchesne 2004a). In this paper we assume
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time-independent masking probabilities and denote by h the set of all the parameters

ðk11; . . . ; kJKJ ; Pg1j1; . . . ; PgGjJ Þ.
Using h, one can easily calculate quantities that are of interest to practitioners such as

the diagnostic probabilities (Flehinger et al. 1998, 2002)

pjjgðtÞ ¼Prðactually failed of cause jjfailed at time t and failure cause masked in gÞ

¼
kjðtÞPgjjP
l2g klðtÞPgjl

(using Bayes rule). ð5Þ

For such data, Craiu and Duchesne (2004a) have developed an EM-based analysis in which

the dij, for any masked item i and for all causes of failure j, are treated as missing data. The

EM algorithm relies in this case on the observation that, without masking, inference for the

competing risks model with piecewise constant hazards can be carried in closed form.

Moreover, since for each masked item i and each cause j the expectation of dij is linear in

the observed data, the implementation of the algorithm is straightforward.

Conditional on j being the true cause of failure for a masked item i, the random vector

cig : g 2 fg1; . . . ; gGþJg; g 3 j
� �

has a multinomial distribution with total 1 and

Prðcig ¼ 1jC ¼ jÞ ¼ Pgjj. Along with equations (1)–(4) this results in the following log-

likelihood function.

lCðhÞ ¼
Xn

i¼1

XJ

j¼1

dij ln
XKj

k¼1

kjk1jkðtiÞ �
XKj

k¼1

kjk

Z ti

0

1jkðuÞ du

" #(

þ dij 1�
X
g2G�j

cig

0
@

1
A ln 1�

X
g2G�j

Pgjj

0
@

1
AþX

g2G�j

cig ln Pgjj

2
4

3
5
9=
;; ð6Þ

where G�j is the set of all groups that contain cause j with the exception of group {j}.

For the EM algorithm the E-step consists in computing the expected value of the

complete data log-likelihood (6) for a given value h0 of the parameters given the observed

data, OBS, i.e., compute

Qðhjh0Þ ¼Eh0 ½lCðhÞjOBS�

¼
Xn

i¼1

XJ

j¼1

Eh0 ½dijjOBS� ln
XKj

k¼1

kjk1jkðtiÞ �
XKj

k¼1

kjk

Z ti

0

1jkðuÞ du

" #(

þ Eh0 ½dijjOBS� 1�
X
g2G�j

cig

0
@

1
A ln 1�

X
g2G�j

Pgjj

0
@

1
AþX

g2G�j

cig ln Pgjj

2
4

3
5
9=
; ð7Þ

Then the M-step consists in finding the value of h that maximizes Qðhjh0Þ. In our context,

this is done by running the following algorithm:

Initial step Set k̂ð0Þjk ¼
Pn

i¼1 1½dij observed and equal to 1�
�

ejk; k ¼ 1; . . . ;Kj; j ¼
1; . . . ; J and P̂ ð0Þgjj ¼ 1=#Gj; j ¼ 1; . . . ; J ; g ¼ g1; . . . ; gM , where # denotes cardinality,

ejk ¼
Pn

i¼1

R ti
0

1jkðuÞdu denotes the total time lived by all items (exposure) in the interval

ðajk�1; ajk �.
E-step Using (5) compute Eĥðl�1Þ ½dijjOBS� as
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Eh½dijjOBS� ¼
1; cause of failure of i known to be j:
0; cause of failure of i known not to be j:

p̂jjgiðtiÞ; cause of i masked in gi and no stage 2 data for i:

8<
: ð8Þ

M-step Set

k̂ðlÞjk ¼
Pn

i¼1 Eĥðl�1Þ ½dijjOBS� 1jkðtiÞ
ejk

and P̂ ðlÞgjj ¼
Pn

i¼1 E
ĥðl�1Þ ½dijjOBS� cigPn

i¼1 Eĥðl�1Þ ½dijjOBS� ð9Þ

and compute p̂jjgi
ðtiÞ from (5) using (9).

Stopping rule When kĥðlÞ � ĥðl�1Þk � e, for a pre-selected (small) value of the toler-

ance e. In our applications, we used the squared Euclidean norm for k � k and a tolerance

e ¼ 10�8.

While the marginal distributions of the competing risks are not identifiable unless the

risks are independent, this does not , however, affect the identifiability of the parameters of

interest, Pgjj and kjk. We show in the next section that the sub-distribution functions can be

computed in closed form and their asymptotic variance can be estimated using the SEM

algorithm (Meng and Rubin 1991).

The EM algorithm converges under mild assumptions regarding the choice of intervals

ðajk�1; ajk �. In particular, one needs to ensure that for each cause j and for each interval Ijk,

there is at least one item i which has failed during Ijk and has a failure cause masked in a

group g that contains or is identically j.

3. Estimation

3.1 Sub-distribution functions

Besides the diagnostic probabilities pjjg of particular interest in applications are the sub-

distribution functions Fj(t) defined in (2) for all 1£ j £ J and t‡ 0.

Following Lawless (2003) we obtain

FjðtÞ ¼
Z t

0

SðuÞkjðuÞdu ¼
Z t

0

exp �
XJ

h¼1

KhðuÞ
( )

dKjðuÞ; ð10Þ

where KjðtÞ ¼
R t

0
kjðvÞdv for all causes j. Note that

SðtÞ ¼ exp �
XJ

j¼1

KjðtÞ
( )

¼
YJ

j¼1

GjðtÞ

where GjðtÞ ¼ expf�KjðtÞg. Although the Gj(t) have the properties of survivor functions

they are not related to any observable random variables. However, for the special case of

independent competing risks they do represent the marginal (cause specific) survivor

functions of the J risks.

For the piecewise constant model one can compute the estimates of the sub-distribution

functions since
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KjðtÞ ¼
Z t

0

XKj

k¼1

1jkðuÞkjkdu ¼
XKj

k¼1

kjkDjkðtÞ; ð11Þ

where

DjkðtÞ ¼
0 if t � ajk�1;

t � ajk�1 if ajk�1\t � ajk;
ajk � ajk�1 if ajk\t:

8<
:

If we assume that the intervals have the same endpoints, i.e. Kj=K and ajk=ak for all 1£ j £ J

and 1£ k £ K and if we denote mðtÞ ¼ maxfk : ak�1 � t � akg we obtain

FjðtÞ ¼
Z t

0

exp �
XJ

h¼1

XK

l¼1

khlDlðuÞ
( )XK

k¼1

1kðuÞkjkdu

¼
XK

k¼1

Z t

0

exp �
XJ

h¼1

XK

l¼1

khlDlðuÞ
( )

1kðuÞkjkdu

¼
XmðtÞ
k¼1

Z minfak ;tg

ak�1

exp �
XJ

h¼1

Xk�1

l¼1

khlðal � al�1Þ
( )

exp �
XJ

h¼1

khkðu� ak�1Þ
( )

kjkdu

¼
XmðtÞ
k¼1

kjk

k�k
exp �

Xk�1

l¼1

k�lðal � al�1Þ
( )

1� exp �k�kðminfak ; tg � ak�1Þf g½ �

ð12Þ

where k:k ¼
PJ

j¼1 kjk . Thus, an estimator F̂jðtÞ can be obtained by replacing in (12) the kjk

with their estimates k̂jk . Similarly, Lj(t) can be estimated using k̂jk in (11).

In the case in which the intervals have different end points across causes, the above

result cannot be directly extended. Instead, one should first arrange the end points in

increasing order, say 0 ¼ b1\b2 � � �\bR where R ¼
PJ

j¼1 Kj and calculate Fj(t) separately

for t 2[bh,bh+1) since a recursive expression can be found as Fj(t)=Fj(bh)+(Fj(t))Fj(bh)).

Specifically,

Fjðb2Þ¼ kj1
½1�expð�b2

PJ
j¼1kj1Þ�PJ

j¼1kj1

;

FjðbhÞ¼Fjðbh�1Þ

þ
X

fk:ajk\bh\ajkþ1g
kjk exp �bh

XJ

l¼1

X
fk:alk\bh\alkþ1g

klk

0
@

1
A�exp �bhþ1

XJ

l¼1

X
fk:alk�bh\alkþ1g

klk

0
@

1
A

2
4

3
5

�exp �
XJ

l¼1

X
fk:alkþ1\bhg

alkðklk�klk�1Þ

2
4

3
5=X

J

l¼1

X
fk:alk\bh\alkþ1g

klk ð13Þ

for any 2<h£ R and any 1£ j £ J. In addition, for any t2[bh,bh+1),
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FjðtÞ¼FjðbhÞ

þ
X

fk:ajk\bh\ajkþ1g
kjk exp �bh

XJ

l¼1

X
fk:alk\bh\alkþ1g

klk

0
@

1
A�exp �t

XJ

l¼1

X
fk:alk\bh\alkþ1g

klk

0
@

1
A

2
4

3
5

�exp �
XJ

l¼1

X
fk:alkþ1\bhg

alkðklk�klk�1Þ

2
4

3
5=X

J

l¼1

X
fk:alk\bh\alkþ1g

klk: ð14Þ

Examples for cases with equal and unequal endpoints are analyzed in Section 5.

Lawless (2003) shows that the variance of F̂jðtÞ is ŵðjÞ
0
V ŵðjÞ where V is the asymptotic

variance of h obtainable directly via the supplemented EM algorithm (Meng and Rubin

1991) and the matrix ŵ has the entries given by ŵðjÞhk ¼
@Fj

@khk
estimated at the MLE. Unlike

the complete data, in the case of masking the variance-covariance matrix V is not diagonal

due to the correlations between various estimators induced by the EM algorithm.

The complexity of the likelihood does not stop us from using the Newton–Raphson

algorithm to find the maximum likelihood estimator. However, we have chosen to work

with the EM algorithm due to the natural interpretation of the masking as a missing data

mechanism. In addition, the calculations required to implement the M-step are straight-

forward while computing the Hessian of the observed log-likelihood, as required by the

Newton–Raphson, can be quite involved, especially if the number of masking groups is

large.

4. No second stage data

An important special case is encountered when none of the masked items are sent for a

second stage analysis. In this case, the information on the masking probabilities can be

obtained only via the hazard rate estimates. When only stage-one data is available,

Flehinger et al. (1998) show that under the assumption of proportional hazards for the

competing risks the resulting likelihood function is over-parameterized with the model

parameters being unidentifiable. Their argument is presented for independent competing

risks but can readily be extended to the dependent case. Let us denote by nc the number of

censored items, ng the number of items whose failure is masked in group g at stage 1 and nj

the number of items that have been identified during stage 1 as having failed due to cause j

for all proper masking groups g and all causes 1£ j £ J. For each item i we denote its failure

time tðjÞi if it failed because of cause j, or tðgÞi if its failure cause is masked in group g. If

item i is right censored its censoring time is denoted tðcÞi . If S(t) is the overall survival

function, define the sub-density function of time to failure due to cause j

gjðtÞ ¼ kjðtÞSðtÞ: ð15Þ

Then, following equation (4.5) from Flehinger et al. (2001) the likelihood function for

stage-one data is

LðhÞ ¼
Ync

i¼1

SðtðcÞi Þ
YJ

j¼1

Ynj

i¼1

PjgjðtðjÞi Þ �
Y

g

Yng

i¼1

X
r�g

PgjrgrðtðgÞi Þ; ð16Þ
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where Pj ¼ 1�
P

g2G� Pgjj. Define the overall probability density function of the failure

time f ðtÞ ¼
PJ

j¼1 gjðtÞ and /jk ¼ kjk=k�k . Then

f ðtÞ ¼
XJ

j¼1

gjðtÞ ¼
XJ

j¼1

XK

k¼1

kjk1kðtÞSðtÞ: ð17Þ

Replace S(t) from (17) in (15) and after a series of simple manipulations we obtain that for

each 1 � k � K gjðtÞ ¼ /jkf ðtÞ for t 2 ðak�1; ak � or, if we define /jðtÞ ¼PK
k¼1 /jk1kðtÞ; gjðtÞ ¼ /jðtÞf ðtÞ. Then the likelihood (16) becomes

L ¼
Ync

i¼1

SðtðcÞi Þ
Yn�nc

i¼1

f ðtiÞ
( )

�
YJ

j¼1

Ynj

i¼1

Pj/jðt
ðjÞ
i Þ
Y

g

Yng

i¼1

X
r�g

Pgjr/rðt
ðgÞ
i Þ

" #
ð18Þ

and thus can be expressed as LðhÞ ¼ L1 � L2 where L1 is the usual likelihood function for a

system with n failures which, in the case of the piecewise constant hazards, determines the

maximum likelihood estimators for the overall hazard rate kðtÞ ¼
PK

k¼1 k�k1kðtÞ (Lawless

2003). In order to examine in detail L2 define nðkÞj to be the number of failures due to cause

j in interval Ik ¼ ðak�1; ak � and nðkÞg the number of failures masked in group g during the

interval Ik. Then

L2 ¼
YK
k¼1

YJ

j¼1

YnðkÞj

i¼1

Pj/jk

0
B@

1
CAY

g

YnðkÞg

i¼1

X
r2g

Pgjr/rk

 !2
64

3
75

¼
YK
k¼1

YJ

j¼1

ðPj/jkÞn
ðkÞ
j
Y

g

X
r2g

Pgjr/rk

 !nðkÞg
2
4

3
5 ð19Þ

In the particular case of two causes (J=2) and two intervals (K=2) if g={1,2} the

parameters are Pj ¼ 1� Pgjj and /1j ¼ 1� /2j for j=1,2. From (19) we get that L2 can be

expressed as the product of two trinomials

L2¼ðP1/11Þn
ð1Þ
1 ðP2/21Þn

ð1Þ
2 ðPgj1/11þPgj2/21Þn

ð1Þ
g

�ðP1/12Þn
ð2Þ
1 ðP2/22Þn

ð2Þ
2 ðPgj1/12þPgj2/22Þn

ð2Þ
g

because Pgj1/11 þ Pgj2/21 ¼ 1� P1/11 � P2/21. From L2 we obtain four estimating

equations for the four unknown parameters. However, depending on the numbers of

masked and unmasked items failing in each interval due to cause 1 or 2 the solution to the

estimating equations may not exist or may not be completely identifiable. For instance, if

nð2Þ1 ¼ nð2Þ2 ¼ nð1Þ1 ¼ 30, nð1Þ2 ¼ 20; nð1Þg ¼ 10, and nð2Þg ¼ 60 the solutions to the maximum

likelihood equations are /12=)1/2, /11=)1, P1=)1/2 and P2=6, obviously outside

the parameter space. If, on the other hand, we consider a case in which nð1Þ1 ¼
nð2Þ2 ¼ 15; nð2Þ1 ¼ nð1Þ2 ¼ 30 and nð1Þg ¼ nð2Þg ¼ 15 then the solutions are uniquely determined

as /11 ¼ 1=3;/12 ¼ 2=3; P1 ¼ P2 ¼ 0:75.

In fact, if another interval is added, the number of equations will still match the number

of unknowns but the parameters have additional constraints. In our experiments we have
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generated data in which solving (19) can be done exactly and data in which the solution

lies outside the parameter space. In the latter case we have noticed that the EM converges

to points that are highly variable according to the starting values used in the algorithm. The

erratic behavior is a sign of unidentifiability under observed data and identifiability under

complete data, exactly as is the case here, and has been discussed by Dempster et al.

(1977). The lack of identifiability can be avoided if we choose different end-points for the

intervals used in different cause-specific hazards.

For theoretical results, it is necessary to make sure that the map Qðh0jhÞ is continuous

and has a unique maximizer (Vaida 2005). In particular, we choose the intervals such that

for each failure cause j and each interval 1jk, there exists an i such that j2gi and 1jk(ti)=1.

With this choice of the intervals the conditions of Wu (1983, Theorem 2) apply and imply

that the limit points of any instance hðlÞ of the EM algorithm are stationary points of the

observed-data loglikelihood, lOBS (obtained in equation (5) in Craiu and Duchesne 2004a),

and lOBSðhðlÞÞ converges monotonically to lOBSðh�Þ for some stationary point h�. Without

second stage data h� may be a local maximum even if there is an identifiable global

maximum so multiple starting points are always recommended.

Alternative solutions to the model without second stage data involve the assumption of

symmetry, in which the masking probability Pgjj does not depend on the cause j. Dewanji

and Sengupta (2003) use an EM-based approach for grouped masked data without second

stage that can be used only with the symmetry assumption. They provide an alternative

approach which replaces symmetry with the strong assumption that the diagnostic prob-

abilities are known. We do not consider the latter method. In Section 5 we reanalyze one of

their datasets and find no indication of symmetry. As a result, our hazard estimates differ

significantly from theirs.

5. Examples

5.1 Hard-drive data

The first example we consider here consists of 172 failure times observed over a period of

4 years during which 10,000 computer hard-drives were monitored. There are three pos-

sible causes of failure: j=1 if failure is due ‘‘electronic hard’’, j=2 if the item fails because

of ‘‘head flyability’’ and j=3 if ‘‘head/disc magnetics’’ break down. A detailed description

of the detection of these failure causes can be found in Flehinger et al. (2001). In summary,

the detection system makes it possible to have masked data with the following masking

groups g1={1,3} and g2={1,2,3}. Some of the masked items are subjected to a laboratory

analysis in which the exact cause of failure is determined. However, the prohibitive costs

of such a procedure do not allow for all masked items to be diagnosed.

We fit a model with piecewise constant hazards and assume the same end-points for the

intervals. The four intervals are constructed using the model selection method formulated

in Craiu and Lee (2005): [0.0.81), [0.81,1.58), [1.58,3.77), [3.77,4). Flehinger et al. (2001,

2002) analyze the data assuming that the risks are independent. However, for our analysis

this assumption is not necessary.

In Table 1 we show the estimates for the masking probabilities and their standard errors

produced with the SEM algorithm. The estimates for the cause specific hazard rates can be

found in Craiu and Lee (2005). In Fig. 1 we compare the sub-distribution function

F̂jðtÞ ¼ PrðT � t;C ¼ jÞ, represented by the three lines for j=1,2,3 with 1� ĜjðtÞ repre-

sented using the plotting symbols j=1,2,3 where ĜjðtÞ ¼ expf�K̂jðtÞg. This type of
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graphical comparison is often seen in the literature (Gaynor et al. 1993; Gooley et al.

1999). One can see that the two graphs are right on top of each other and similar to the ones

obtained by Flehinger et al. (2002) for each of the three causes. This indicates that the

modeling assumptions made by Flehinger et al. (2002) are not unreasonable. For this

particular dataset inference on cause specific survival seems to be robust regardless of

whether one assumes piecewise constant cause specific hazards with independent or

dependent causes or whether one assumes independent causes with Weibull hazards.

5.2 Carcinogenicity data

We consider here data provided by a large experiment with a total of 5000 rodents which

was conducted by the British Industrial Biological Research Association (Peto et al. 1980)

to investigate the carcinogenicity of different nitrosamines administered in drinking water.

We follow Dewanji and Sengupta (2003) and consider here only the 192 observations

corresponding to the control group. The data has been previously analyzed using a model

for grouped observations and assuming symmetry of masking probabilities (Dewanji and

Sengupta 2003). The data consists of the time to death (in days) and information regarding

the cause of death. There are three possible causes of death as follows: j=1 if death without

tumor, j=2 if death is due to some other causes but tumor is present (incidental), and j=3 if

Fig. 1 Hard-drive data. The
lines represent the sub-
distributions functions F̂jðtÞ for
j=1,2,3. The functions 1� ĜjðtÞ
are shown for j=1,2,3 using j as a
plotting symbol

Table 1 Masking probability estimates, Flehinger et al. (2002) hard-drive data

Estimates of the Pg| j’s
Flehinger et al.
Masking group j=1 j=2 j=3
g={1,3} 0.412 0 0.446
g={1,2,3} 0.310 0.469 0.436

Our estimates
Masking group j=1 j=2 j=3
g={1,3} 0.410 (0.0680) 0 0.443 (0.0353)
g={1,2,3} 0.305 (0.0658) 0.448 (0.0988) 0.442 (0.0356)

Numbers in parentheses are asymptotic standard errors computed with SEM
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death is due to tumor (fatal). One can imagine that the presence of a tumor may increase

the risk of death from other causes so the assumption of independence between the

competing risks may be false. In addition, in nine cases, the cause of death is not exactly

known and the possible masking groups are: g1={1,2} corresponding to the situation when

all we know is that the death is not due directly to tumor, g2={2,3} corresponding to the

probably fatal and probably incidental cases, and g3={1,2,3} corresponds to the case in

which nothing is known about the cause of death.

In Table 2 we present the estimates of the masking probabilities along with the SEM-

derived standard errors. It can be seen that there is no indication of symmetry. We have

considered four intervals for each hazard function as follows. The choice was made such

that the intervals satisfy the requirement imposed for the convergence of the EM algorithm

and we also tried to be close to the endpoints of the intervals chosen by Dewanji and

Sengupta (2003).

Cause 1: [0,827), [827,926), [926,1001), [1001,1213]

Cause 2: [0,801), [801,951), [951,1051), [1051,1213]

Cause 3: [0,851), [851,976), [976,1101), [1101,1213]

Table 2 Masking probability estimates for the carcinogenicity data

Estimates of the Pg| j’s

Masking group j=1 j=2 j=3
g={1,2} 0.013 (0.00467) 0.046 (0.00001) 0
g={2,3} 0 0.000 (0.00314) 0.074 (0.00002)
g={1,2,3} 0.028 (0.00027) 0.000 (0.00043) 0.000 (0.00198)

Table 3 Cause-specific hazard estimates, carcinogenicity data

Estimates of the kjk’s

j=1 j=2 j=3
1st Interval 0.000331 (0.01207) 0.000016 (0.00002) 0.000053 (0.00049)
2nd Interval 0.002363 (0.01388) 0.000456 (0.05040) 0.000639 (0.00098)
3rd Interval 0.004711 (0.00001) 0.000863 (0.00013) 0.001748 (0.00466)
4th Interval 0.008695 (0.00030) 0.004246 (0.00005) 0.002453 (0.00001)

Fig. 2 Carcinogenicity data.
Lines represent the sub-
distribution functions F̂jðtÞ for
the three causes j=1,2,3. The
functions 1� ĜjðtÞ are shown
for j=1,2,3 using j as a plotting
symbol
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In Table 3 we show the estimates of the hazard rates for the four intervals considered and

the standard errors. As in the previous example, in Fig. 2 we show F̂jðtÞ (represented by

lines) and 1� ĜjðtÞ (using plotting symbol j) for j=1,2,3. One can see that in this case the

difference is quite large indicating the importance of examining the sub-distribution

functions.
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