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The competing-risks model is useful in settings in which individuals (or units) may die (or fail) because
of various causes. It can also be the case that for some of the items, the cause of failure is known only
up to a subgroup of all causes, in which case we say that the failure is group-masked. A widely used
approach for competing-risks data with and without masking involves the specification of cause-specific
hazard rates. Often, because of the availability of likelihood methods for estimation and testing, piecewise
constant hazards are used. The piecewise constant rates also offer model flexibility and computational
convenience. However, for such piecewise constant hazard models, the choice of the endpoints for each
interval on which the hazards are constant is usually a subjective one. In this article we discuss and propose
the use of model selection methods that are data-driven and automatic. We compare three model selection
procedures based on the minimum description length principle, the Bayes information criterion, and the
Akaike information criterion. A fast-splitting algorithm is the computational tool used to select among an
enormous number of possible models. We test the effectiveness of the methods through numerical studies,
including a real dataset with masked failure causes.

KEY WORDS: Akaike information criterion; Bayesian information criterion; Code length; Compet-
ing risks; EM algorithm; Group masked cause; Minimum description length principle;
Missing data; Model selection; Piecewise constant hazard.

1. INTRODUCTION

In many survival data studies, the individuals under study can
experience any one of J types of failure. Consequently, each
individual/item under study has associated with it J potential
failure times, one time for each possible failure. Obviously, in
practice only one of the potential failure times is observed, un-
less the item is right-censored, that is, it does not fail before the
end of the study, in which case no failure time is observed. The
competing-risks problem involves estimating failure rates for
each type of failure. An additional complication arises when a
subset of the individuals has a cause of failure known to belong
only to a certain subset of all possible causes; in other words,
their cause of failure is group-masked. In practice, one possi-
bility is to conduct a second-stage analysis, such as autopsy, in
which the true cause can be uniquely determined. In fact, infer-
ence is possible even if not all items are subjected to a second-
stage analysis, as we discuss in Section 2.2.

Examples of failure data obtained under a competing-risks
model are abundant in the literature and range from survival
analysis studies in biostatistics to applications of reliability in
engineering to risk models in actuarial science. For instance,
Gaynor et al. (1993) and Barrett et al. (1989) discussed the im-
portance of estimating the probability of death due to cancer
relapse after treatment versus the probability of death due to
treatment-related complications, providing an example where
the competing risks are not acting independently. In reliabil-
ity studies, Sun and Tiwari (1997) analyzed the failure times
of small electrical appliances that may fail due to two compet-
ing risks, whereas Taylor (1994) used competing risks to model
the probability distribution of the tensile strength of certain ma-
terials known to contain two or more subpopulations of flaw
types. Lapidus, Braddock, Schwartz, Banco, and Jacobs (1994)

presented a study of motorcycle fatalities in which 40% of the
death certificates have missing information.

Parametric analyses of the competing-risks model were
proposed by Hoel (1972), Moeschberger and David (1971),
Lagakos (1977), and Prentice et al. (1978). Cause-specific haz-
ard functions were used in nonparametric estimation by Nelson
(1969), Aalen (1978), and Crowder (2001). Semiparametric
methods based on proportional-hazards models were discussed
by Holt (1978), Kalbfleisch and Prentice (2002, chap. 8), and
Lawless (2003, chap. 9).

For the competing-risks model in which a subset of all items
have masked causes of failure, some authors have derived semi-
parametric and nonparametric inference procedures in the case
with two failure causes and no second-stage analysis, which
often occurs in carcinogenicity bioassays. Dinse (1986) pro-
posed nonparametric maximum likelihood estimators of preva-
lence and mortality; Goetghebeur and Ryan (1990) derived
a modified log-rank test for comparing the survival of popu-
lations, which they later extended to proportional hazards re-
gression (Goetghebeur and Ryan 1995); Racine-Poon and Hoel
(1984) considered inference for this model when a probability
of death from each missing cause is provided by a pathologist;
and Kodell and Chen (1987) tackled the problem via the EM
algorithm. In the case of a general number of failure causes
and availability of second-stage analysis data, Flehinger, Reiser,
and Yashchin (1998, 2002) proposed maximum likelihood esti-
mation under a model with nonparametric proportional cause-
specific hazards (Flehinger et al. 1998) and a model with
completely parametric cause-specific hazards (Flehinger et al.
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2002). Craiu and Duchesne (2004a) proposed a semiparamet-
ric model with piecewise-constant cause-specific hazard func-
tions that presents robust properties and can be used in most
situations in which some second-stage data are available. The
same approach can be used to integrate prior knowledge about
the failure process using a Bayesian analysis in which the data
augmentation algorithm is used for computation (Craiu and
Duchesne 2004b).

The model with piecewise-constant cause-specific hazard
functions achieves a good balance between flexibility and ac-
curacy on one hand and computational feasibility on the other
hand. In addition, although essentially nonparametric, these
models allow for likelihood-based methods for estimation and
testing (Craiu and Duchesne 2004a; Lawless 2003; He and
Lawless 2003). Generally, the endpoints of the intervals that de-
fine the piecewise-constant hazard functions (henceforth called
simply “the intervals”) are chosen by each researcher based on
past experience or intuition regarding the failure process.

The main contribution of this article is the exploration
of more objective and data-specific criteria for automatically
choosing the intervals. To the best of our knowledge, this is the
first time such a study has been conducted. In particular, we fo-
cus on three widely used model selection criteria: the minimum
description length (MDL) principle, the Bayesian information
criterion (BIC), and a small-sample version of the Akaike infor-
mation criterion (AICC). None of the three criteria is uniformly
optimal. The AICC and MDL seem to perform better if the
number of intervals (relative to the number of observations) is
large, whereas the BIC is slightly better than the MDL in sit-
uations in which only a small number of intervals is needed,
with AICC lagging behind in this case. However, for situations
in which the statistician does not have any knowledge regard-
ing the number of intervals, we recommend the MDL criterion
because it performs the best on average.

In the next section we describe the data and the likelihood
methods used for estimation. We also provide some theoret-
ical justification of the importance of correctly selecting the
endpoints for each interval. In Section 3 we discuss in detail
the three criteria used for model selection and show how they
can be applied to the competing-risks problem. We provide real
examples and a simulation study in Section 4 to illustrate the
efficiency of the model selection procedure. We close with con-
clusions and ideas for further improvements.

2. DATA AND MODELS

2.1 Competing Risks Without Masking

In the competing-risks model with unmasked data, assume
that there are J possible failure causes and that N items are ob-
served between time t0 = 0 and tmax, the time when the study
is stopped. Each item i that has failed at a time ti ∈ [t0, tmax]
corresponds to a pair (ci, ti) in which ci is equal to the cause of
failure; that is, ci = j if the jth cause is responsible for the fail-
ure. In general we refer to (ci, ti) as one realization of a bivari-
ate random variable (C,T). For those items that have not failed
during the observation period [t0, tmax] (i.e., for those items that
are right-censored), neither ci nor ti is observed. In our model
selection procedure we use only the uncensored items, because

the censored items do not contain any information regarding the
cutpoints of the intervals. Practically, this implies that we ignore
in the likelihood the terms involving censored items. It should
be noted that such assumptions should not be carried over in the
estimation phase of the study once the model is selected.

The dependence between T and C is usually specified using
the cause-specific hazard rates,

λj(t) = lim
h↓0

Pr(t < T ≤ t + h,C = j|T ≥ t)

h
, j = 1, . . . , J.

(1)

From (1), it follows that the marginal hazard function for
T is λ(t) = ∑J

j=1 λj(t) and the marginal survivor function
for T is S(t) = Pr(T > t) = exp{− ∫ t

0

∑J
j=1 λj(u)du}. The cu-

mulative incidence functions are Fj(t) = Pr(T ≤ t,C = j) =∫ t
0 λj(t)S(t)dt.

We define each cause-specific hazard rate to be a piecewise
constant function; that is, we partition the interval [0, tmax]
into K disjoint intervals (ak−1,ak] so that

λj(t) =
K∑

k=1

λjk1k(t), (2)

where 0 = a0 < a1 < · · · < aK = tmax and 1k(t) is the indica-
tor that t ∈ (ak−1,ak]. Note that in (2) we have made the im-
plicit assumption that the cutpoints a0, . . . ,aK are the same for
all failure causes. This assumption is not necessary to carry
out the model selection procedure presented here. However,
using common cutpoints simplifies the notation and the under-
standing of the ideas. In addition, the model with equal inter-
vals across causes encompasses the proportional hazards model
with piecewise hazards in which λj(t) = ∑K

k=1 rjkλ(t)1k(t) and∑
j rjk = 1. For the remaining of the article we assume the

model defined by (2).
The likelihood function is then proportional to

L(θ) =
N∏

i=1

J∏

j=1

[{
K∑

k=1

λjk1k(ti)

}δij

× exp

{

−
∫ ti

0

K∑

k=1

λjk1k(u)du

}]

, (3)

where θ is the (J × K)-dimensional vector of parameters
(λ11, . . . , λJK). It is convenient to introduce, for each item i
and for each cause j, the indicator δij, which is equal to 1 if
item i has failed due to cause j and equal to 0 otherwise. The
maximum likelihood estimate for θ can be obtained from (3) as

λ̂jk =
∑N

i=1 δij1k(ti)

ek
, (4)

where ek is the exposure in the interval (ak−1,ak], that is, the
sum of all the time lived by each item in this interval. For in-
stance, if item 1 has failure time t1 ∈ (ak−1,ak] and item 2 has
failure time t2 > ak, then their contributions to ek are t1 − ak−1
and ak − ak−1.

It is clear from (4) that the choice of the cutpoints is cru-
cial for the estimation of each parameter λjk. To better under-
stand the impact of misspecification of the ak’s on the estimates,
consider the following simple example in which the data are
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generated under a model, M0, with two competing risks each
having constant cause-specific hazards, λ1 and λ2, on the inter-
val [0, tmax]. However, suppose that we fail to choose this model
and instead work with a model M1 in which the cutpoints are
0 = a0 < a1 < a2 = tmax, so that for each cause j = 1,2, the
cause-specific hazard is

λj(t) = λj11(0,a1](t) + λj21(a1,tmax](t). (5)

Denote by njk the number of items that died of cause j in the
interval (ak−1,ak] for each k = 1,2.

Under the true model, M0, λ̂1 = n11+n12
e1+e2

, and under mod-
el M1, λ̂11 = n11

e1
. We prove the following result in the Appen-

dix.

Lemma 1. As N → ∞, the following hold:

a. λ̂11 and λ̂1 converge almost surely to λ1.
b. The variance of λ̂11 is larger than the variance of λ̂1.

This holds even for moderate values of N. For example, with
a sample size N = 50, simulations show that the variance of λ̂1
is 25% smaller than the variance of λ̂11 when a1 = tmax/2. The
situation discussed earlier describes a type of error that results
only in variance inflation. But if the original “true model” has
piecewise cause-specific hazards with more than one interval,
then it is likely that one of the true endpoints will be included in-
side one of the assumed (misspecified) intervals. In such a case,
calculations similar to the foregoing show that the estimates are
asymptotically biased and less efficient than the estimates ob-
tained under the true model. We emphasize that the asymptotic
results are obtained under the assumption that the size of the
sample increases but the true model as well as the specified
model intervals remain constant. We must note that in practice it
is usually the case that the piecewise-constant hazards are just
an approximation to the true ones. However, Lemma 1 shows
that it is possible to increase the efficiency of the estimators for
the flat segments of the true hazards if the interval endpoints are
properly selected. Simulations in Section 4.1 indeed reflect the
result of the lemma.

2.2 Competing Risks With Masking

The simple competing-risks model presented earlier rapidly
becomes more complicated once some of the items have un-
known failure causes. In particular, here we consider the case
when one can narrow down the cause of failure to a group of
possible causes—in other words, the item’s failure is group-
masked. In addition, we assume that some of the items with
a masked failure cause are sent to a second-stage analysis to
determine the exact reason for failure.

Therefore, in the case of masked data, for each item i, there
are three possible occurrences: (1) i fails because of cause ji
at time ti; (2) i fails because of a cause that is not known
precisely but is known to belong to a group of failure causes
gi ⊂ {1, . . . , J}; or (3) i had still not failed by time ti. There-
fore, some of the items will have a masking group instead of
a failure cause, and all of the items will have a failure time.
If G is the number of proper groups (i.e., groups that con-
tain more than one element), then the observation for item i is
(ti, γig1, . . . , γigG+J , δi1, . . . , δiJ), where γig is the indicator that
item i’s failure cause was masked to group g at the first stage; if

the failure cause is known to be j at the first stage, then we say
that it is masked to g = { j}. Also, δij is the indicator that item i’s
actual failure cause is j. Obviously, if the item is masked in the
initial stage and is not sent for further analysis, then the indica-
tors δij are not known, and we denote by M the set of all such
items.

As a result of masking, in addition to the parameters λjk, one
must consider the masking probabilities,

Pg| j = Pr(cause masked to group g at stage 1|C = j),

j ∈ g. (6)

Of eventual interest to practitioners are the diagnostic probabil-
ities (Flehinger et al. 1998, 2002),

πj|g(t) = Pr
(
actually failed of cause j|

failed at time t and failure cause masked in g
)
.

Using Bayes’s rule, we obtain

πj|g(t) = λj(t)Pg| j
∑

l∈g λl(t)Pg|l
. (7)

For such data, Craiu and Duchesne (2004a) developed an EM
algorithm (Dempster, Laird, and Rubin 1977) in which the δij’s
(for those masked items) are treated as missing data and that
allows estimation of all of the parameters of the model. In the
model selection procedures used in the following sections, es-
sential ingredients are the observed likelihood function as well
as the estimators for each parameter of interest. We briefly re-
view here the algorithm used for estimation and refer the reader
to the article by Craiu and Duchesne (2004a) for details on addi-
tional properties, such as convergence and variance estimation.

Using (1)–(6), we obtain the log-likelihood function under
the complete data as

lC(θ) =
N∑

i=1

J∑

j=1

{[

δij ln
K∑

k=1

λjk1k(ti) −
K∑

k=1

λjk

∫ ti

0
1k(u)du

]

+ δij

[(

1 −
∑

g∈G∗
j

γig

)

ln

(

1 −
∑

g∈G∗
j

Pg| j

)

+
∑

g∈G∗
j

γig ln Pg| j

]}

, (8)

where in this case θ is the vector of parameters λjk and Pg| j for
all 1 ≤ j ≤ J, 1 ≤ k ≤ K, and all masking groups g, and G∗

j is
the number of proper masking groups that contain cause j, for
all 1 ≤ j ≤ J.

For right-censored observations, the term on the second line
of (8) vanishes, and hence the γig’s are not needed for right-
censored observations. We emphasize again that for the stated
purpose of this article (i.e., the choice of the intervals’ limits),
we consider that there are no right-censored observations. The
EM algorithm consists of the following steps:

Initial step. Set λ̂
(0)
jk = ∑N

i=1 1[δij observed and equal to 1]/ek,

j = 1, . . . , J, k = 1, . . . ,K and P̂(0)
g| j = 1/#Gj, j = 1, . . . , J,

g = g1, . . . ,gG+J , where # denotes cardinality and Gj is the
set of all masking groups that contain cause j.
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E-step. Using (7), compute E
θ̂ (l−1) [δij|OBS] as

Eθ [δij|OBS]

=






1, cause of failure of i known to be j

0, cause of failure of i known not to be j

π̂j|gi(ti), cause of i masked in gi and

no stage 2 data for i.

(9)

The π̂j|gi(ti) is computed using (7).
M-step. Set

λ̂
(l)
jk =

∑N
i=1 E

θ̂ (l−1) [δij|OBS]1k(ti)

ek
and

(10)

P̂(l)
g| j =

∑N
i=1 E

θ̂ (l−1) [δij|OBS]γig
∑N

i=1 E
θ̂ (l−1) [δij|OBS] .

Note that the expression for λ̂
(l)
jk in (10) is the same as the

one in (4) with the exception of those δij’s that are unknown
and must be replaced by their estimates computed in the E-step.
Also note that the observed log-likelihood can also be computed
in this situation, because

lOBS(θ) = Eθ ′ [lC(θ)|OBS] − Eθ ′ [lM(θ)|OBS]

=
N∑

i=1

J∑

j=1

{[

Eθ ′ [δij|OBS] ln
K∑

k=1

λjk1k(ti)

−
K∑

k=1

λjk

∫ ti

0
1k(u)du

]

+ Eθ ′ [δij|OBS]

×
[(

1 −
∑

g∈G∗
j

γig

)

ln

(

1 −
∑

g∈G∗
j

Pg| j

)

+
∑

g∈G∗
j

γig ln Pg| j

]}

−
∑

i∈M

∑

j∈gi

Eθ ′ [δij|OBS] lnπj|gi(ti). (11)

3. MODEL SELECTION METHODS

In this section we consider the problem of selecting a “best”-
fitting model, that is, the problem of choosing a “best” number
of intervals K and a “best” combination of the interval end-
points ak. Recall that in our convention, a0 = 0 and aK = tmax,
and hence there are K − 1 endpoints to be determined. For
simplicity, we write AK = (a1, . . . ,aK−1). Note that once
AK is specified, unique maximum likelihood estimates for
θ = (λ11, . . . , λJK) can be obtained using (4) or the EM al-
gorithm described in Section 2.2.

We suggest using the following strategy to solve the prob-
lem of finding a “best” AK . First, a model selection principle
is applied to define a “best”-fitting model. Then a fast-splitting
algorithm is adopted to practically obtain such a defined “best”-
fitting model. In the next two sections, we discuss the use of
three different model selection principles for defining a “best”-
fitting model.

3.1 Akaike and Bayesian Information Criteria

With the Akaike information criterion (AIC), the best-
fitting model is defined as the minimizer of an estimator of
the Kullback–Leibler (KL) distance measure between a fitted
model and the “true” model (see, e.g., Burnham and Anderson
2002). If r is the number of parameters that need to be esti-
mated in a fitted model, then, under some mild regularity con-
ditions, it can be shown that such a KL distance estimator is
−2× “maximized log likelihood” + 2r. Here, for a candidate
model with K intervals, there are JK λjk’s to be estimated and
M = ∑G

h=1 #gh − J masking probabilities, where #gh denotes
the cardinality of the masking group gh. The number of inde-
pendent parameters is thus r = JK +M, and the AIC best-fitting
model is defined as the one that minimizes

AIC(AK) = −2lOBS(θ) + 2(JK + M). (12)

It has been known that this criterion is biased when the sample
size is small, and for many problems, biased-corrected versions
of it have been proposed (e.g., Burnham and Anderson 2002;
McQuarrie and Tsai 1998). Such small-sample version criteria
are often termed AICC, and for the present problem it is given
by

AICC(AK) = −2lOBS(θ) + 2(JK + M)

+ 2(JK + M)(JK + M + 1)

N − JK − M − 1
. (13)

Our simulation study suggests that AICC is uniformly better
than AIC, and hence AIC is not included in our summary of
findings.

The form of the BIC (Schwarz 1978) is very similar to AIC.
Instead of a constant value 2, it replaces the penalty for each pa-
rameter with log N. Thus the BIC best-fitting model is defined
as the one that minimizes

BIC(AK) = −2lOBS(θ) + (M + JK) log N. (14)

As stated by Hastie, Tibshirani, and Friedman (2002), choosing
the model with the minimum BIC value is approximately equiv-
alent to choosing the model with the largest posterior prob-
ability with respect to an uniform prior. Because the penalty
term for BIC is larger than the one for AIC, it is expected that
BIC tends to produce more parsimonious best-fitting models
than AIC. However, this comparison is less clear with respect to
the AICC, especially if the sample size N is not very large. An
astute reader will have noticed that in the case of masked data,
the term involving the number of masking probabilities, M, can
be omitted in (12) and (14), because this term remains the same
no matter how many intervals we use. However, this is not the
case for AICC, as can be seen from (13), so the number M must
be taken into consideration in that case.

3.2 Minimum Description Length Principle

The MDL principle uses ideas from the information theory
and signal processing literature and was adapted by Rissanen
(1989) as a model selection tool for statisticians. It defines the
best-fitting model as the one that produces the shortest code
length of the data. Loosely speaking, the code length of an ob-
ject can be treated as the amount of memory space required to
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store the object (for details, see Rissanen 1989). (Also see, e.g.,
Hansen and Yu 2001 and Lee 2001 for introductory tutorials to
the MDL principle.)

One common approach to applying the MDL principle is to
split the code length for a set of data into two components:
a fitted model plus the data “conditioned on” the fitted model,
that is, the part in the data not explained by the fitted model.
For the present problem, a fitted model can be specified by AK

and the maximum likelihood estimate θ̂ = (λ̂11, . . . , λ̂JK) for θ .
We choose to omit the number of masking parameters, M, from
the criterion because this number remains the same across mod-
els with different intervals. If CL(z) denotes the code length of
the object z, then we have the following decomposition:

CL(“data”) = CL(AK, θ̂) + CL(“data”|AK, θ̂)

= CL(AK) + CL(θ̂) + CL(“data”|AK, θ̂).

Now the task is to find an expression for CL(“data”) so that
the MDL best-fitting model can be defined and obtained as
its minimizer. We show in Appendix B that in the case of
competing-risks data without masking CL(“data”) can be well
approximated by

MDL(AK) =
K∑

k=1

log nk + J

2

K∑

k=1

log(nk + nk+1 + · · · + nK)

− lOBS(θ), (15)

where nk is the number of observations inside the interval
(ak−1,ak]. We propose to select the minimizer of MDL(AK)

as our MDL-based estimate. Note that, unlike in AICC or BIC,
in MDL the penalty for each interval is not the same. First, the
penalty for the kth interval is a function of its width nk. Second,
from the double summation in the second term of MDL(AK),
one can see that those “late” intervals (i.e., large k) are penal-
ized more than those “early” intervals (i.e., small k). This agrees
with the intuition that stronger penalties (or, loosely, more prior
information) are required for those “late” intervals, because as
time passes, more and more items die, and hence a smaller
amount of information is available for those intervals.

Ideally, one would like to adapt the MDL principle to the
situation of masked data. However, due to a technical difficulty
given in Appendix B, we decide to use the same criterion for un-
masked data. Simulations show that this choice performs better,
on average, than AICC and BIC.

3.3 A Fast-Splitting Algorithm

Minimizing any one of the foregoing selection criteria with
respect to AK is not a trivial task, because the search space
is enormous. Here we describe a simple, fast, and yet effec-
tive search algorithm for approximating the minimizers of the
criteria.

The algorithm starts with fitting a model with only a K = 1
interval (i.e., no breakpoints) and calculates the corresponding
value of the selection criterion used (i.e., MDL, BIC, or AICC).
Denote this value by S1. Then the algorithm adds one break-
point to the model or, equivalently, splits the entire domain into
two intervals. The location of this first breakpoint is chosen in
the following manner. Among all possible breakpoint locations,
if the whole domain is split at this particular breakpoint, then

it will produce the largest increase (or the smallest decrease)
of the likelihood value. To locate such a breakpoint, one could
conduct a grid search on [0, tmax] or, as in our implementation,
limit the set of all possible breakpoints to be the midpoints be-
tween any two adjacent observations. To further speed up the al-
gorithm, one could consider, say, every other midpoint. That is,
if the set of all midpoints is {x1, x2, . . . , xN−1}, then one can
consider {x1, x3, x5, . . . , xN−1} instead of all of the xi’s. Once
such a breakpoint is located, the algorithm computes the value
of the selection criterion being used. This selection criterion
value is denoted by S2.

The next step of the algorithm is to add one additional break-
point to the existing two-interval model; that is, to produce a
model with K = 3 intervals. This second breakpoint is chosen
in a similar manner as before; among all possible splitting lo-
cations, it produces the largest increase of the likelihood value
after the splitting. After this breakpoint is chosen, the algorithm
computes the selection criterion value, S3. If this computed se-
lection criterion value (S3) is larger than the value (S2) obtained
with K = 2 intervals, then the algorithm stops and the fitted
model that has the smallest selection criterion value among all
of the fitted models examined so far is taken as the final fitted
model. Otherwise, the algorithm continues to add breakpoints
to the model, to recompute, and to compare the selection crite-
rion values S4,S5, . . . in a similar fashion as before. The process
stops when the selection criterion value Si increases, and the
fitted model with the smallest criterion value Si is taken as the
final fitted model. Some timing figures on the computational
speed of this algorithm are reported in the next section.

It should be noted that for the algorithm defined in Sec-
tion 2.2, there are certain restrictions on the width of the in-
tervals. More precisely, we need to have for each interval
Ik = (ak−1,ak] and for each cause j at least one item that has
failed during Ik and with a failure cause masked in a group that
contains j. Such restrictions can be easily incorporated within
the fast-splitting algorithm.

4. EXAMPLES

4.1 Simulation Study

We conducted a simulation study to empirically evaluate
the performances of the foregoing model selection methods.
We used two sets of λjk’s as our test functions. These two func-
tions have the same number of failure causes, J = 3, but differ-
ent numbers of intervals, 3 and 7. The locations of the interval
endpoints and the corresponding values for the λjk’s are listed
in Tables 1 and 2.

Altogether, three sample sizes, N = (100,200,800), and
three values for the probability p that a masked item is sent to
second-stage analysis, p ∈ {.3, .6,1.0}, were used (e.g., p = 1

Table 1. True λjk Values for the Test Function With Three Intervals

j λj1 λj2 λj3

1 .0030 .0200 .0120
2 .0045 .0100 .0300
3 .0045 .0100 .0300

NOTE: The two interval endpoints are 30 and 50.
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Table 2. True λjk Values for the Test Function With Seven Intervals

j λj1 λj2 λj3 λj4 λj5 λj6 λj7

1 .0013 .0052 .0151 .0001 .0200 .0050 .0500
2 .0015 .0081 .0151 .0021 .0300 .0050 .0600
3 .0012 .0071 .0161 .0017 .0180 .0060 .0500

NOTE: The six interval endpoints are 53, 65, 75, 89, 101, and 173.

means that there are no missing data in the sample). Thus
the total number of different experimental configurations was
2 × 3 × 3 = 18.

For each experimental configuration, 400 simulated datasets
were generated, and the following methods were applied to
each dataset to obtain a fitted model:

• mdl: the MDL criterion (15) minimized by the splitting
algorithm described in Section 3.3,

• aicc: similar to mdl but for the AICC criterion (13)
• bic: similar to mdl but for the BIC criterion (14)
• f 5: a model with five equilength intervals in [0, tmax]. This

approach of fixing five intervals is a generic approach for
situations in which the researcher does not have additional
experience with the type of failure data under study and is
included in this simulation as a baseline for comparison.

A discrete approximation of the mean squared error (MSE) was
used to measure the quality of the fitted models,

MSE =
J∑

j=1

∫ tmax

0
{λj(t) − λ̂j(t)}2 dt,

where the true and known λj is λj(t) = ∑K
k=1 λjk1k(t) and the

estimate λ̂j is λ̂j(t) = ∑K̂
k=1 λ̂jk1k(t). Boxplots of the logs of

these MSE values are given in Figures 1 and 2. Paired Wilcoxon
tests were also applied to test whether the difference between
the median MSE values of any two methods was significant.
The significance level used was 1.25%. If the median MSE
value of a particular method was significantly less than the me-
dian MSE values of the other three methods, then this method
was assigned rank 1. If its median MSE value was significantly
less than two but greater than one of the other three, then the
method was assigned rank 2, and so on for ranks 3 and 4. Meth-
ods with insignificantly different MSE values share the same
averaged rank. These paired Wilcoxon rankings are also shown
in Figures 1 and 2.

Note from Figures 1 and 2 that none of the three criteria is
uniformly optimal. Table 3 and also our numerical experience
suggest that aicc has a tendency to overestimate the number of
intervals. When the number of intervals is smaller (i.e., three)
bic performs the best, with mdl lagging not far behind. But

Figure 1. Boxplots of the Log of the MSE Values for the Test Function With Three Intervals. The paired Wilcoxon rankings are listed inside the
parentheses.
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Figure 2. Boxplots of the Log of the MSE Values for the Test Function With Seven Intervals. The paired Wilcoxon rankings are listed inside the
parentheses.

when the number of intervals is larger (i.e., seven), both mdl
and aicc do better than bic, with mdl the best.

Surprisingly, f 5 does not seem to take advantage of addi-
tional data. One can see that as the amount of complete data
increases from top to bottom and from left to right, mdl, bic,
and aicc become sensibly more accurate.

The averaged Wilcoxon rankings for mdl, bic, aicc, and f 5
are 1.72, 1.92, 2.37, and 4. Judging from this measure, it seems
that mdl should be the preferred method for a researcher with-

Table 3. Further Results for the Test Function With Three Intervals
and N = 200

Number of intervals Endpoint 1
(at t = 30)

Endpoint 2
(at t = 50)p Method 2 3 4 5+

.3 mdl 54 285 54 7 30.06 (.017) 50.90 (.296)
bic 39 316 34 11 30.06 (.016) 50.40 (.238)
aicc 0 24 66 310 30.00 (.050) 50.04 (.432)

.6 mdl 31 323 37 6 30.03 (.016) 50.19 (.241)
bic 20 346 28 3 30.04 (.015) 50.09 (.219)
aicc 0 25 81 291 30.08 (.040) 50.24 (.442)

1.0 mdl 12 376 12 0 30.02 (.015) 50.18 (.155)
bic 7 386 7 0 30.03 (.015) 50.14 (.157)
aicc 0 117 166 117 30.05 (.027) 50.62 (.271)

NOTE: The left half of the table lists the number of times out of 400 repetitions that the number
of intervals a particular method selected. The right half of the table provides the averaged lo-
cations of the interval endpoints for those repetitions that the correct number of intervals were
identified. Numbers in the parentheses are estimated standard errors. Numbers in bold repre-
sent the number of correct choices for each method.

out any prior knowledge on the expected number of intervals
required by the particular application.

To assess the performance of the methods in terms of select-
ing the correct number of intervals and the correct locations
of the endpoints, we recorded, for those experimental settings
associated with N = 200 and the test function with three inter-
vals, the number and the endpoints of the intervals that mdl,
bic, and aicc selected. Results are summarized in Table 3. The
methods mdl and bic seem to be preferable in this case.

To visually evaluate the quality of the estimates, Figure 3
plots the true λjk’s for the three-interval test function, together
with one representative estimate sampled from the 400 sim-
ulations. The number of observations was N = 400, and the
masking probability was p = .6. From this figure, one can see
that both mdl and bic selected the correct number of intervals,
whereas aicc overfitted the data. For f 5, one can see that it
inflated the variance of the estimates confirming the result of
Lemma 1.

We also applied the foregoing methods to data generated
from hazards following a Weibull distribution. In particular,
we generated datasets of size N = 400 with a probability of
a second-stage analysis of p = .6. Figure 4 displays the true
hazards and the estimate obtained from a typical dataset. Not
surprisingly, the performances of the three procedures depend
on the gradient of the true hazards. However, it seems fair to say
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Figure 3. Plots of True (solid lines) and Estimated (dotted lines) λjk ’s for the Three-Interval Test Functions.

that the mdl and bic perform well for the three hazards shown.
The middle row has a poor fit on the last piece, because most
of the items die early and few data points are available later
in the study. This obviously affects aicc and f 5 even more, be-
cause many of the intervals artificially added in the model will
contain very few data points.

Finally, we report some timing figures. If the true number of
intervals is 7 and N = 200, then our implementation took an
average of 5 seconds on a Sun Ultra 60 Unix workstation for
any of the three model selection methods to finish. If N = 800,
then on average it took 17 seconds on the same machine.

4.2 Hard Drive Data

We consider here a real dataset analyzed by Flehinger et al.
(2002) using a model with Weibull cause-specific hazards.
Craiu and Duchesne (2004a) analyzed the same data using
piecewise-constant hazards, and their conclusions were very
close to those obtained by Flehinger et al. (2002). However,
selection of the intervals was based on a subjective choice, a
situation that we want to remedy here.

We are interested in the failure causes of a certain subassem-
bly of hard disk drives. Some of these causes are related to par-
ticular components (e.g., defective head), but others, such as
particle contamination, are not. The analysis does not discrimi-
nate among these and simply treats them as causes of failure.

The data consist of 10,000 hard drives, of which 172 have
failed during an observation period of 4 years. There are three
possible failure causes, and for many of the failed items the
true cause of death is group-masked. There are two masking
groups, {1,3} and {1,2,3}. The results obtained using mdl
and bic are similar to those obtained by Craiu and Duchesne
(2004a), where the endpoints of the intervals were chosen sub-
jectively, as can be seen from Table 4. The aic suggests eight
intervals, whereas the aicc suggests six intervals. Both mod-
els result in inflated variances for the maximum likelihood es-
timators. The asymptotic standard errors, as measured using
the SEM algorithm (Meng and Rubin 1991), are smaller with
the new cutpoints (0, .81,1.58,3.77,4) compared with the ones
obtained previously using the cutpoints (0,1,2,3,4).

5. CONCLUSIONS AND FURTHER WORK

Choosing the endpoints of the piecewise cause-specific
hazard intervals can play an important part in solving a
competing-risks problem with or without group masking. Here
we discuss three possible approaches using the MDL, AICC,
and BIC criteria. The MDL and BIC seem to be more robust
with respect to the number of intervals required for a good ap-
proximation. We recommend using MDL in situations in which
little is known about the number of intervals required.
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Figure 4. Plots of True (solid lines) and Estimated (dotted lines) λjk ’s for Weibull Hazards.

One can adapt the present work to the case where not all fail-
ure causes share the same number of intervals and interval end-
point locations. It is straightforward to modify the AICC and
BIC criteria for this generalization, because the penalty terms
in these two criteria are proportional to the number of parame-
ters in the model being fitted. It is also straightforward to derive
a corresponding MDL criterion. The necessary modification is
to derive new expressions for CL(AK) and CL(θ̂), and the ma-
terial in Appendix B can be applied to derive such expressions.
The fast-splitting algorithm discussed in Section 3.3 can also be
modified to minimize any of these new criteria. The main idea is
that at each time step, instead of adding a new same breakpoint
to all failure causes, the new algorithm adds one breakpoint to
only one failure cause. However, this would be a lengthy proce-

dure, because at each time step many comparisons are needed
to determine a best breakpoint.

In addition, we would like to expand the present study to
fitting splines instead of constant functions on each interval.
However, this significantly increases the amount of data re-
quired and the complexity of the computation, and further re-
search is necessary.
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APPENDIX A: PROOF OF LEMMA 1

To show part a, write λ̂11 = n11/N
e1/N and note that because

of the law of large numbers, the sequences xn = n11/N and
yn = e1/N converge almost surely to PrM0(T ∈ (0,a1],C = 1)

and EM0 [min(T,a1)]. (The index M0 signifies that the probabil-
ity and expectation are computed using the distribution under
that model.)

From (1), we get

PrM0

(
T ∈ (0,a1],C = 1

) = λ1

λ1 + λ2

(
1 − e−(λ1+λ2)a1

)
(A.1)

and

EM0 [min(T,a1)]
= E

[
T1{T≤a1} + a11{T>a1}

]

= −a1e(λ1+λ2)a1 +
∫ a1

0
e−(λ1+λ2)t dt + a1e−(λ1+λ2)a1

= 1 − e−(λ1+λ2)a1

λ1 + λ2
. (A.2)

Under fairly general regularity conditions, (A.1) and (A.2) im-
ply that λ̂11 converges almost surely to λ1. Similar calculations
can be done to show that the same holds for λ̂1.

Taking second derivatives of the log-likelihood obtained
from (3), we can deduce that the asymptotic variance of λ̂11, ob-
tained using the observed Fisher information, is n11/e2

1 whereas
the asymptotic variance of λ̂1, is (n11 + n12)/(e1 + e2)

2. For
N large, using part a, we have n11/e1 ≈ λ1 ≈ (n11 + n12)/

(e1 + e2), so that the desired result part b follows.

APPENDIX B: DERIVATION OF THE MINIMUM
DESCRIPTION LENGTH CRITERION (15)

This appendix outlines the derivation of MDL(AK). Recall
that the goal is to find an expression for

CL(“data”) = CL(AK) + CL(θ̂) + CL(“data”|AK, θ̂),

and we begin with CL(AK). Because we limit the breakpoints
between different intervals to be a subset of the midpoints
of any pair of adjacent observations, the width of each in-
terval can be specified with nk, the number of observations
falls within that interval. Thus AK is completely specified by
all nk’s. Using the fact that the code length for an integer I is
log2 I, we have CL(AK) = ∑

k CL(nk) = ∑
k log2 nk. To calcu-

late CL(θ̂) = CL(λ̂11) + · · ·+ CL(λ̂JK), we apply the following
result of Rissanen (1989). If a maximum likelihood estimate is
calculated from m data points, then its code length is 1

2 log2 m.
It can be seen that when there is no masking, for all j, λ̂jk is com-
puted from nk + · · · + nK data points, that is, those items that
are still alive. Thus CL(λ̂jk) = 1

2 log2(nk + · · ·+ nK), and hence

CL(θ̂) = J
2

∑
k log2(nk +· · ·+nK). Finally, based on Shannon’s

classical results on information theory, Rissanen (1989) showed
that the code length for “data given a fitted model” amounts

to the negative of the conditional log (base 2) likelihood of
the data given the fitted model. That is, for our problem,
CL(“data”|AK, θ̂) = −lOBS(θ). Now, combining these expres-
sions and changing log2 to log, we obtain MDL(AK).

To derive an MDL criterion for masked data, one would need
to recalculate CL(λ̂jk) for all j and k. This calculation requires
knowledge of the number of items used in the computation
of CL(λ̂jk). However, the EM algorithm makes it difficult to
track the number of items used to estimate each of the λjk’s.
In addition, not all items will have equal weight in (10), be-
cause their importance will depend on (9) via (7). We therefore
decide to use MDL(AK) for unmasked data.

[Received June 2004. Revised December 2004.]
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