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ABSTRACT: By systematic examination of common tag single-nucleotide polymorphisms (SNPs) across the genome, the
genome-wide association study (GWAS) has proven to be a successful approach to identify genetic variants that are asso-
ciated with complex diseases and traits. Although the per base pair cost of sequencing has dropped dramatically with the
advent of the next-generation technologies, it may still only be feasible to obtain DNA sequence data for a portion of available
study subjects due to financial constraints. Two-phase sampling designs have been used frequently in large-scale surveys and
epidemiological studies where certain variables are too costly to be measured on all subjects. We consider two-phase strati-
fied sampling designs for genetic association, in which tag SNPs for candidate genes or regions are genotyped on all subjects
in phase 1, and a proportion of subjects are selected into phase 2 based on genotypes at one or more tag SNPs. Deep se-
quencing in the region is then applied to genotype phase 2 subjects at sequence SNPs. We investigate alternative sampling
designs for selection of phase 2 subjects within strata defined by tag SNP genotypes and develop methods of inference for
sequence SNP variant associations using data from both phases. In comparison to methods that use data from phase 2 alone,
the combined analysis improves efficiency. Genet. Epidemiol. 00:1–13, 2012. C© 2012 Wiley Periodicals, Inc.
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INTRODUCTION

The population-based genetic association study is now
a well-established approach to identify genetic variants
that are detrimental or protective for human disease. The
genome-wide association study (GWAS) attempts to com-
prehensively survey common variants in the entire human
genome based on up to a million typed genetic markers in
each individual in the sample, with imputation of another
3 million single-nucleotide polymorphisms (SNPs) based
on a reference panel such as HapMap3, done without re-
gard to any phenotypic information . This form of impu-
tation has the advantage that different phenotypes can be
tested for association without the need to redo the imputa-
tion [Li et al., 2009]. For many GWAS, single-marker associ-
ation analysis of typed and imputed SNPs is the first step to
identify promising regions, and associations are confirmed
by more powerful and focused analysis based on replica-
tion and fine-mapping studies [Zheng et al., 2007].

In focused studies following up reasonable GWAS hits,
investigators may choose to comprehensively sequence a
whole region of interest using next-generation sequencing
(NGS) technology, or selectively sequence the region using
customized technology to genotype additional SNPs, for
example, SNPs that are not imputable or are known from
dbSNP [Liu and Leal, 2010]. Although most GWAS stud-

ies can impute over 3 million SNPs, the directly typed or
imputed SNPs detected are not necessarily the functional
variants [Fridley et al., 2010; Ioannidis et al., 2009]. Impu-
tation coverage or accuracy may be low in the region of in-
terest [e.g., Pei et al., 2010], particularly when the trait is
influenced by multiple low-frequency/rare variants in the
region rather than solely by common variants. Investigators
may also use sequence data to test for association between
the trait and a common variant or a gene-based summary
score that incorporates information on multiple rare vari-
ants in a region.

Thus, one purpose of regional sequencing may be to dis-
cover novel, potentially functional variants in a particular
region that has been detected in genome-wide association
analysis or chosen as a candidate region. Due to financial
constraints, however, investigators may be able to afford
sequencing only a portion of the available subjects. When
a covariate, such as a sequence SNP (seq SNP), is diffi-
cult or costly to measure, a two-phase stratified sampling
design can dramatically reduce the cost of data collection
[Breslow and Wellner, 2007]. At phase 1, measurements of
the phenotype and an easily measured auxiliary variable,
such as a GWAS tag SNP, are obtained for all available sub-
jects. At phase 2, measurements on the expensive target co-
variate (i.e., the seq SNP) are made for a subsample drawn
randomly, without replacement, from strata defined by the
auxiliary variable. Loss of efficiency due to incomplete
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observation will be modest when the target covariate is
highly correlated with the auxiliary variable. By sequenc-
ing an informative portion of the available phase 1 subjects
at phase 2, sequence variants associated with one or more
phenotypes can be detected efficiently. Thereafter, selected
variants together with the promising GWAS tag SNPs can
be examined jointly in additional larger studies.

We investigate the use of a two-phase sampling design
to obtain sequence data for genetic association analysis of a
quantitative trait. At phase 1, we assume that all available
subjects are fully phenotyped and genotyped at an asso-
ciated tag SNP within a promising region of the genome.
Strata are then formed according to the genotypes of the
tag SNP, and a fraction of subjects from each stratum is
randomly selected for sequencing in the region of interest
at phase 2. The total phase 2 sample size can be predeter-
mined based on study budget, for example, 10% or 50% of
the phase 1 sample, but the fraction of subjects selected in
each stratum can differ across strata. We propose a method
for the joint analysis of data from both phases and investi-
gate strategy for the allocation of the phase 2 sample size
to each stratum. The method is particularly useful in situa-
tions in which the tag SNP is in high linkage disequilibrium
(LD) with a common seq SNP or with a rare variant score
constructed by aggregation of multiple low frequency/rare
variants. When imputation accuracy is high within a region
identified by tag SNP association with a quantitative trait,
the two-phase stratified design strategy we propose for a
tag SNP can be similarly applied using imputed SNP data
to define the sampling strata.

In most GWAS and fine-mapping studies, it is difficult
to distinguish two SNPs that are in strong LD on statisti-
cal grounds without incorporating biological or other addi-
tional information. Depending on the minor allele frequen-
cies and the strength of the LD correlation, the sample size
required to conduct such fine-scale mapping and success-
fully distinguish two SNPs is typically one to four times
larger than that required to detect the initial association
[Udler et al., 2010]. We see the goal of the two-phase strat-
egy as (1) to select a set of highly correlated polymorphisms
for further evaluation, and/or (2) to identify other asso-
ciated variants in the region that can be analyzed subse-
quently for functional consequences [Ioannidis et al., 2009].
The joint analysis method we propose here aims to effi-
ciently detect potential association signals at SNPs that are
not typed in phase 1, rather than to distinguish a causal
SNP, genotyped by sequencing, from the tag SNP.

In the following sections, we develop an approach for
joint analysis of phases 1 and 2 and compare it to meth-
ods of inference limited to sequenced SNP data available
only in phase 2. For ease of exposition, we assume an ad-
ditive model for the genetic association analysis, one that
is used widely to capture the average change of the quan-
titative trait with each additional copy of the minor al-
lele of an associated SNP, or with a unit increase in a rare
variant summary score. In simulation studies, we quan-
tify the relative design efficiencies across a range of possi-
ble sample allocations, considering both joint analysis and
phase 2 only methods for analysis of a common variant or
a rare variant score, and assess robustness to misspecifi-
cation of the model used for analysis of the phase 2 data.
We close with discussion of implications for studies in-
volving multiple seq SNPs, multiple tag SNPs, or multiple
traits.

METHODS

TWO-PHASE STRATIFIED SAMPLING
The basic idea of the two-phase design is to use auxiliary

information available on all subjects to draw a subsample
for additional, more expensive, measurements of a target
variable. In genetic association analysis, the auxiliary infor-
mation typically available consists of genotype data for a
tag SNP, or an imputed SNP, within a candidate region. The
SNP genotypes are available in all individuals in phase 1 of
the study. The target covariate refers to a potentially func-
tional seq SNP that is collected in the phase 2 subjects only.

Suppose we have N subjects that constitute a population
sample, indexed by i = 1, . . . , N. Let Yi denote the quanti-
tative trait for the ith subject, and denote the major and mi-
nor alleles of the seq SNP by D and d , respectively. Let Pd
be the minor allele frequency (MAF) at the seq SNP in the
population. If Hardy-Weinberg Equilibrium (HWE) holds,
the population frequencies of genotypes DD, Dd , and dd
are given by (1 − Pd )2, 2(1 − Pd )Pd , and P2

d , respectively. A
linear regression model under an additive genetic effect is
given by

Yi = �0 + �1 Xi + �i , (1)

where Xi , the number of copies of allele d , would be po-
tentially available on each subject if all subjects were com-
pletely observed. Let � = (�0, �1)T be a vector of the regres-
sion parameters. The error term �i is commonly assumed to
be normally distributed with mean 0 and variance �2.

For simplicity, we consider stratification that is based on
a single tag or imputed SNP available in phase 1. Denote
the major and minor alleles of the tag SNP by A and a , re-
spectively. Correspondingly, let Pa be the MAF at this tag
SNP in the population, and Zi be the number of copies of
allele a at the tag SNP observed on subject i . Again, if HWE
holds for the tag SNP, the genotype frequencies pr(Zi = j)
are given by (1 − Pa )2, 2(1 − Pa )Pa , and P2

a for j = 0, 1, 2,
respectively.

The phase 1 sample is divided into three strata according
to the observed value of Zi . Let Nj denote the number of
subjects observed in stratum AA, Aa , and aa for j = 0, 1, 2,
respectively. Under the assumption that the phase 1 sam-
ple represents the source population, E(Nj/N) equals the
corresponding population genotype frequency. Let �i be a
binary indicator such that �i = 1 if subject i is sampled at
phase 2 and �i = 0 otherwise. Then �i = pr(�i = 1|Zi ) is the
probability of such sampling.

Breslow and Wellner [2007] describe two probability
models for the indicators �i in two-phase stratified sam-
pling. In the first one, known as Bernoulli sampling, �i for
each phase 1 subject is independently generated with prob-
ability �i = �0(Zi ), where �0 is a known sampling function.
Under a missing at random mechanism, �0 does not de-
pend on the unobserved values of missing data from phase
1. This sampling scheme results in random phase 2 stratum-
specific samples of size nj ≤ Nj ( j = 0, 1, 2). For i �= i ′, let
�i,i ′ = pr(�i = �i ′ = 1) be the joint inclusion probability. Un-
der Bernoulli sampling, �i,i ′ = �i �i ′ . In contrast, under a
second sampling model, known as finite population strat-
ified sampling, the phase 2 sample size in each stratum is
fixed. To be specific, at the second phase of sampling, nj
subjects are sampled at random without replacement from
stratum j , with sampling for different strata conducted
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independently. This sampling method is of particularly in-
terest to survey statisticians who aim to derive variances
of estimates of population quantities, such as population
means, totals, or quantiles, and leads to finite popula-
tion joint inclusion probabilities then involved in the vari-
ance formula. In our development here we consider only
Bernoulli sampling for phase 2, which is relatively simpler
for the problem we are investigating.

For each subject selected into the phase 2 sample ac-
cording to a promising tag SNP, a region containing the
tag SNP is sequenced to identify additional, potentially
functional seq SNPs. In the remainder, we assume that
a functional SNP is indeed in the region containing the
tag SNP and is sequenced for all phase 2 subjects. We
quantify the association between the tag SNP and the seq
SNP by the conditional probabilities � jk = pr(Xi = k|Zi =
j), j, k = 0, 1, 2. Since � j0 = 1 − � j1 − � j2, j = 0, 1, 2, we let
� = {(� j1, � j2), j = 0, 1, 2}T be a vector of LD-related pa-
rameters that are to be estimated. The joint distribution
of the two SNP genotypes given by pr(Xi = k, Zi = j) =
pr(Xi = k|Zi = j)pr(Zi = j) = � jkpr(Zi = j) with the cor-
relation between Xi and Zi defined as Pearson’s correla-
tion coefficient. The phase 1 data consist of (Yi , Zi ), i =
1, 2, . . . , N, and the phase 2 data consist of (Yi , Zi , Xi ) for
i included in the phase 2 sample.

ALLOCATION OF PHASE 2 SAMPLE SIZE AND
NAIVE ANALYSIS

In this section, we discuss allocation of the phase 2 sam-
ple size to each of the phase 1 strata, in the context of fit-
ting a standard additive linear regression model (A1) to the
phase 2 data.

Let mk be the number of phase 2 subjects carrying k
copies of allele d at the seq SNP, k = 0, 1, 2, with a total
phase 2 sample size of n. Let �̂1,nai be the naive estima-
tor for �1 obtained from fitting model (A1) to the phase
2 data. Given variance var(�̂1,nai) = �2{∑i∈s2

(Xi − X̄)Xi }−1,
and X̄ = ∑

i∈s2
Xi/n = (m1 + 2m2)/n, it follows that

var(�̂1,nai) = n�2{m1(n − m1 − 2m2)
+2m2(2n − m1 − 2m2)}−1

= n�2
{
n(n − m1) − (n − m1 − 2m2)2

}−1
,

and minimum variance would be achieved when m1 = 0
and m0 = m2 = n/2. In the context of genetic association
studies, �̂1,nai is most efficient when half of the phase 2
subjects have zero copies of d and the other half have two
copies of d , provided that the true genetic model is additive.
Since at phase 1 we observe information only on tag SNPs,
a natural choice is to select subjects from the three strata
defined by the tag SNP genotypes such that E(m1) is mini-
mized while E(m0) and E(m2) are approximately equal. Be-
cause the tag SNP genotype is serving as a surrogate for
the unobserved target SNP and discordance between them
will reduce the chance of selecting informative subjects, the
underlying correlation between the tag and the seq SNPs is
important for the success of the phase 2 sample size alloca-
tion strategy.

Under Bernoulli sampling, all subjects within a stratum
are sampled independently with the same probability. Let
� j ( j = 0, 1, 2) be the inclusion probability for the subjects
in stratum j , that is, the stratum-specific sampling fraction.

Fig. 1. An illustration of a two-phase stratified sampling (Pa = 0.3
under HWE, sampling fraction � = 10%).

TABLE I. An example of realized genotype counts at the
seq SNP under the sampling scheme shown in Figure 1
(Pa = 0.3, Pd = 0.2, r = 0.75, and sampling fraction
� = 10%. The A/a alleles are for the tag SNP and D/d
are for the seq SNP)

DD Dd dd Total

AA 29 1 0 30
Aa 2 8 0 10
aa 9 23 28 60
Total 40 32 28 100

The individual sampling probability is therefore �i = � j for
all subjects in stratum j . The expected number of phase
2 observations is E(nj ) = � j Nj , and the overall sampling
fraction � = ∑2

j=0 � j Nj/N may be predetermined accord-
ing to financial constraints. Therefore, the expected num-
ber of subjects carrying k copies of allele d in the phase 2
sample is E(mk | n0, n1, n2) = ∑2

j=0 nj � jk , k = 0, 1, 2.
An illustration of phase 2 sampling is given in Figure 1,

where the MAF at the tag SNP is 0.3, and the overall sam-
pling fraction is 10%. Table I is an example of one realiza-
tion of phase 2 sampling, where the MAF at the seq SNP
is 0.2, and the correlation between the tag and seq SNPs is
0.75. The joint distribution of the SNPs can be estimated
from these counts. One can see that if the two SNPs are
highly correlated, the rare homozygote dd at the seq SNP
will appear most frequently in the stratum with the rare
homozygote aa at the tag SNP.

PHASE 2 INVERSE PROBABILITY WEIGHTED
(IPW) ANALYSIS

The unweighted naive analysis just described does not
take account of the sampling probabilities. In this section,
we review a weighted estimation method that incorporates
the stratum-specific sampling fractions. A typical method
of estimation, as used by survey statisticians, is to maxi-
mize the IPW sum of log-likelihood contributions from the
phase 2 observations, or equivalently, to solve an IPW ver-
sion of the score equations [Manski and Lerman, 1977]. IPW
is a standard approach to inference about finite population
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parameters (i.e., those of the entire phase 1 data), when the
probability of being sampled (i.e., being included in phase
2) varies across individuals. It is usually applied to ensure
that inferences are representative of the complete data, and
it can limit the effects of model misspecification [Godambe
and Thompson, 1986], for example, if an additive model is
assumed incorrectly. We begin with the case of complete
data: (Yi , Zi , Xi ) for all i = 1, 2, . . . , N, and then consider es-
timation with phase 2 data alone.

The likelihood contribution of subject i to estima-
tion of (�, �2) is Li (�, �2) = f (Yi | Xi ), where f (Yi | Xi ) =
1/

√
2��2 exp[−{Yi−(�0 + �1 Xi )}2/(2�2)] is the probability

density function of Yi . If seq SNP genotypes were observed
on all subjects, the likelihood of the data would be

L(�, �2) =
N∏

i=1

Li (�, �2).

The log-likelihood contribution of subject i is �i (�, �2) =
log Li (�, �2), and maximum likelihood estimation of � is
equivalent to solving

0 =
N∑

i=1

Ui (�), (2)

where Ui (�) = ∂�i (�, �2)/∂�. An estimate of the variance
parameter �2 can be obtained from the residuals via the
method of moments. In addition, estimates of the con-
ditional probabilities in the vector � can be obtained by
solving

0 =
n∑

i=1

Qi (�), (3)

where Qi (�) = ([I(Zi = j){I(Xi = k) − � jk}, k = 1, 2], j =
0, 1, 2)T and I(·) is an indicator function.

In phase 2 data, however, Equations (2) and (3) cannot
be used directly, due to missing seq SNP data for subjects
with �i = 0. Let s2 and s̄2 denote the phase 2 sample and its
complement, respectively. One commonly employed IPW
estimation method for �, using data from phase 2 alone,
applies weighted estimating equations [Skinner et al., 1989,
section 3.4] which are given by

0 =
∑
i∈s2

(1/�i )Ui (�) =
N∑

i=1

(�i/�i )Ui (�), (4)

with 1/�i called the sampling design weight for subject i .
Under the two-phase stratified design, we have

E p

⎧⎨
⎩

∑
i∈s2

(1/�i )Ui (�)

⎫⎬
⎭ =

N∑
i=1

Ui (�),

where E p denotes expectation under the sampling scheme.
Because the constructed estimating functions are unbiased
for the phase 1 complete data estimating functions under
expectation with respect to the sampling design, the esti-
mator obtained by solving (4) is called a design-consistent

estimator for the phase 1 sample parameter, that is, the so-
lution to (2). Design consistency is a desirable property in
randomization approaches to finite population sampling
[Godambe and Thompson, 1986].

Both naive and IPW analyses of phase 2 data ignore the
phenotype and tag SNP genotype data available in the
phase 1 participants not included in phase 2, which leads
to efficiency loss. Although the IPW estimator has attrac-
tive properties such as consistency and asymptotic normal-
ity, when the additive model (1) is correctly specified the
naive estimates are not biased due to sampling, and incor-
porating IPW sampling weights can induce greater varia-
tion when some of the weights are large. As is evident in
the simulation studies we report, the result is that the IPW
estimator can be less precise than the naive estimator that
ignores the sampling design.

JOINT ANALYSIS OF PHASE 1 AND PHASE 2
Although analysis of phase 2 data alone can give an esti-

mate of �1 at a seq SNP that is similar to the estimate that
would be obtained if seq SNP data were available for all
phase 1 subjects, the naive and IPW approaches are gener-
ally not powerful. In this section, we describe an alterna-
tive estimating equations method that can achieve greater
power by jointly analyzing data from both phases. This ap-
proach constructs mean score functions for subjects that are
not selected into phase 2. We show that the mean score
function is a weighted sum of three score functions, each
of which corresponds to one of the three possible seq SNP
genotypes. The weight measures the likelihood of the miss-
ing seq SNP genotype given the observed trait and the tag
SNP genotype.

For subject i ∈ s̄2, that is, not selected into phase 2 sample,
let

	ik(�, �) = f (Yi |Xi = k; �) pr (Xi = k|Zi ; �)∑2
k′=0 f (Yi |Xi = k ′; �) pr (Xi = k ′|Zi ; �)

,

k = 0, 1, 2. Under the assumption that the distribution of
the phenotype in the population is a mixture of three nor-
mal distributions with constant variance, 	ik(�, �) can be
viewed as a weight for the possible seq SNP genotype
with k copies of the minor allele. We construct estimating
functions U∗

i (�, �) = ∑2
k=0 	ik(�, �)Ui (�; Yi , Xi = k), and let

Ũi (�, �) = �i Ui (�) + (1 − �i )U∗
i (�, �). Therefore, in parallel

to Equations (3) and (4) above, the proposed estimating
equations for � are given by

0 =
N∑

i=1

Ũi (�, �), (5)

and we construct weighted estimating equations for �
given by

0 =
∑
i∈s2

(1/�i )Qi (�) =
N∑

i=1

(�i/�i )Qi (�), (6)
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with solution �̂. Under the two-phase stratified design, we
have

E p

⎧⎨
⎩

∑
i∈s2

(1/�i )Qi (�)

⎫⎬
⎭ =

N∑
i=1

Qi (�).

One can obtain a consistent estimator for �1 by simul-
taneously solving (5) and (6) using a two-stage estima-
tion procedure that is equivalent to an iterative Fisher
scoring algorithm. Specifically, in the first step, we solve
(6) for �. Let M̃(�, �) = ∑N

i=1 M̃i (�, �), where M̃i (�, �) =
∂Ũi (�, �)/∂�T. In the second step, we replace � with �̂ and
solve (5) for � via the Fisher scoring algorithm

�(t+1) = �(t) − M̃−1(�̂, �(t))
N∑

i=1

Ũi (�(t)),

t = 0, 1, . . . , until convergence. Let �̂ = (�̂0, �̂1)T denote the
resulting limit.

Let 
 = (�T, �T)T, with estimate 
̂ = (�̂T, �̂T)T. Large
sample theory yields asymptotic properties for 
̂. In
the Appendix, we outline the proof that N1/2(
̂ − 
) is
asymptotically normal with mean 0 and asymptotic co-
variance matrix given by �−1�(�−1)T, where �i (
) =
{(�i/�i )QT

i (�), ŨT
i (�, �)}T, i = 1, . . . , N, � = E{�i (
)/∂
T},

and � = E{�i (
)�T
i (
)}. As N → ∞, � and � can be con-

sistently estimated by their empirical counterparts. In the
Appendix, we give the components of the approximate co-
variance matrix.

In concluding this section, we note the influence of sam-
ple size allocation on the efficiency of the proposed method.
We wish to optimize the power to detect the association of
the seq SNP with the quantitative trait by choosing a de-
sign that minimizes the variance of �̂1 obtained using both
phase 1 and phase 2 data. Because the variance of �̂1 de-
pends on the estimated LD-related conditional probabili-
ties, �, reducing the uncertainly in � translates into reduc-
ing variability in �̂1. Therefore, allocations that improve
precision of the conditional probabilities also improve pre-
cision of the genetic association estimate, although a gen-
erally valid approach is yet to be found. There are several
reasons why we do not consider a design that samples only
from the two tag SNP homozygote categories. First, robust-
ness to departures from the underlying genetic model can
depend on having observations from the heterozygote cat-
egory. Second, the joint analysis method utilizes the corre-
lation between the tag and the seq SNPs. If the tag SNP het-
erozygote stratum is not sampled at all, the phase 1 subjects
in this category (usually a large proportion) will not be used
in the joint analysis, which will greatly decrease the design
efficiency. Third, if the MAF is low at the tag SNP but is rela-
tively high at the seq SNP (e.g., Pa = 0.1, Pd = 0.3, positive
correlation), then lack of sampling from the tag SNP het-
erozygote Aa stratum may decrease the number of phase 2
subjects carrying rare homozygote dd at the seq SNP, even
when all subjects in the tag SNP rare homozygote aa stra-
tum are sampled.

Although formulated for common seq SNPs, the pro-
posed method can be generalized to analysis of rare vari-
ants, that is, variants with MAF < 1%. In this case, the
objective of sequencing is to investigate the potential asso-

TABLE II. Table of parameters for simulation design
(N = 1, 000)

Minor allele freq. (MAF) Scenario (i): Pa = Pd = 0.4
Scenario (ii): Pa = 0.3, Pd = 0.2

tag SNP-seq SNP
correlation

Scenario (i):
r = 0.95, 0.50, 0.05,−0.50

Scenario (ii):
r = 0.75, 0.25, 0.05,−0.30

Overall sampling fraction � = 0.10, 0.25, 0.50
(n = 100, 250, 500 in phase 2)

seq SNP genetic model Additive, dominant, recessive

Genotype-specific
variance

�2
0 = �2

1 = �2
2 = 0.50 (for all three

genetic models);
�2

0 = 0.50, �2
1 = 0.75, �2

2 = 1.00
(for additive model only)

ciation between the phenotype and multiple rare variants
within a gene or a specific genomic region. The target vari-
able Xi in the linear model (1) now becomes the genetic
score of rare variants [e.g., Morris and Zeggini, 2010]. For
example, for Ril defined as the number of copies of mi-
nor allele at the lth rare variant, l = 1, . . . , K , where K is
the total number of rare variants in that region, we have
Xi = ∑K

l=1 Ril . Although Xi is a count variable from 0 to 2K ,
it takes far fewer values in practice due to the low MAFs of
the rare variants.

SIMULATION STUDIES

SIMULATION DESIGN
We conducted simulation studies to investigate the rela-

tive efficiency of the proposed joint analysis method. Here,
relative efficiency of the joint analysis estimator is defined
as the ratio between the empirical variance of the estima-
tor obtained when complete phase 1 data were available
and the empirical variance of the joint analysis estimator.
By calculating this quantity, we can investigate whether
there is benefit from jointly analyzing both phases 1 and
2 data. In our simulation comparisons, we also included a
naive method, which fits a standard linear model to phase 2
data ignoring the sampling design, and the IPW approach,
which fits a linear model to phase 2 data weighted by the
inverse of the inclusion probability.

Throughout our simulation studies, the sample size of
phase 1 was fixed at N = 1, 000. Table II summarizes the
simulation design. For each combination of parameters and
a specific sampling scheme, we generated 1,000 data sets.
We used analysis of complete data for phase 1 as the ideal.
We considered various scenarios for the genotypes of the
tag SNP and the seq SNP, varying the MAFs. Two sets of
MAF values were specified as (i) Pa = Pd = 0.4, and (ii)
Pa = 0.3, Pd = 0.2. We quantified LD between the two SNPs
by the correlation coefficient r , and considered a range of
correlations from highly positive to moderately negative.
For scenario (i) where MAF values are equal, r = 0.95, 0.5,
0.05, and −0.50. For scenario (ii) where MAF values differ,
complete correlation between the two SNPs was not pos-
sible, and r was bounded by some value that is smaller
than 1. Therefore, for scenario (ii) we set r = 0.75, 0.25,
0.05, and −0.30, where the highest correlation 0.75 was
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very close to the upper bound of possible correlation. The
joint distribution of the tag SNP and the seq SNP can be
inferred from their marginals and their correlation. For a
given combination of MAF values and correlation, we first
simulated the two haplotypes for each subject to achieve
the desired frequencies of the genotypes and correlation.
We then simulated a quantitative trait under an additive
model given by (A1), where parameters were specified as
�0 = 0.5, �1 = 0.25, and �2 = 0.5.

We considered three different values of the phase 2 sam-
pling proportion � (Table II), corresponding to samples of
size 100, 250, and 500. For each � , we investigated the in-
fluence of sample size allocation on the efficiencies of the
various estimators for �1. The sampling fractions �1 and �2
for the heterozygote and the rare homozygote strata were
specified to reflect the extent to which the minor alleles are
over sampled. The sampling proportion �0 in stratum AA
can be calculated from Pa , �1, �2, and � . We considered a
range of phase 2 sample sizes allocated to the heterozygote
stratum. For each given heterozygote count, we then var-
ied the size allocated to the rare homozygote stratum. To
avoid variance inflation in the estimated � due to sparse
counts, we required a minimum of 10 for the expected num-
ber of subjects to be selected from each stratum. Therefore,
there is not much freedom to allocate sample size to the two
homozygote strata when most of the sample size is allo-
cated to the heterozygote stratum. We also included two
special allocations. The first one is equivalent to simple ran-
dom sampling within each stratum with the same sampling
fraction, and the second one allocates an equal sample size
to each stratum, that is, � j Nj = � N/3, j = 0, 1, 2.

To investigate the robustness of the methods to model
misspecification, we also simulated data under various
forms of departures from the additive model with constant
variance specified by model (1), but then analyzed the data
assuming a dosage effect and constant variance. We first
considered dominant and recessive genetic effect models,
both of which followed a similar form of model (A1) for
the seq SNP. In the third case, we considered a true model
with heteroscedastic variances across the seq SNP genotype
categories. Heteroscedasticity may be encountered in sit-
uations where the phenotype is more variable in subjects
with two copies of the rare allele at the seq SNP than in
patients with one or zero copies. We set �2

0 =0.5, �2
1 =0.75,

and �2
2 =1 for X = 0, 1, and 2, respectively. In the fourth

case, we simulated genotypes at an additional seq SNP with
low MAF but strong association with the phenotype, and
moderate LD with the seq SNP being tested. We set the
MAF at this additional SNP to be 0.01 and the regression
parameter to be 0.5. This SNP was ignored in the analy-
sis, however, yielding model misspecification. In the last
case, we generated observations from an additive model
in which the residuals follow a skewed distribution, a fea-
ture not uncommon in practice, but analyzed the data as
if they were normally distributed. Because estimators for
�1 obtained under model misspecification are generally bi-
ased, we used mean squared error (MSE), as opposed to
empirical variance, in the calculation of relative efficiency
for all cases with model misspecification. That is, we cal-
culated the ratio between two MSEs, with one from fitting
model (A1) to complete phase 1 data (as if seq SNP data
were available for all) and the other from applying the esti-
mation method under the two phase design with seq SNP
data only for the phase 2 sample. When the model used
for analysis is misspecified, MSE is a better measure in the

comparison of efficiency, since it incorporates both the bias
and variability of an estimator.

In addition to studies of common seq SNPs, we con-
ducted simulations for scenarios involving rare variants.
We assumed that a rare variant score had been obtained by
counting the number of rare variants across 20 loci, each of
which had minor allele frequency (MAF) generated from
a uniform distribution between 0.005 and 0.01, yielding a
score of 0, 1, 2, or rarely 3. We then randomly selected three
rare variants to be associated with the phenotype. All three
causal rare variant effects are additive on the quantitative
trait, with each copy of the minor allele increasing the mean
trait value by 0.5, 0.75, and 1, respectively. Because most of
the loci were noncausal, the overall association of the score
with the trait was weak. The MAF for the tag SNP is speci-
fied as 0.3, and the correlation r with the rare variant score
was around 0.5.

The primary focus of the evaluations was design effi-
ciency based on the precision of parameter estimation. De-
sign efficiency translates directly into power for hypoth-
esis testing, provided the variance estimate used to con-
struct the corresponding test statistic is accurate, and the
test statistic is valid under the null hypothesis of no associa-
tion. We therefore also examined the distribution of the test
statistic for the proposed method under the null of no seq
SNP association with the phenotype. Genotype data were
simulated with the same configurations described above,
and a quantitative trait was simulated with �1 = 0. We used
Z = �̂1/se(�̂1) as the test statistic and calculated the P-
value under an asymptotic standard normal distribution.
For illustration purposes we chose 5% as the threshold for
type I error assessment.

RESULTS
Overview. Under HWE and correct model specifica-

tion, all methods yield consistent estimators for the inter-
cept and the additive seq SNP effect. Asymptotic normality
for the estimator from the proposed method is confirmed
by examination of the distribution of �1 estimates (see Sup-
plementary Fig. 1). We focus on the relative efficiencies of
the methods under different sampling designs compared to
the ideal situation where we have sequence data for all sub-
jects in the cohort. In general, the empirical standard devi-
ations of the naive estimate �̂1,nai are smaller than those of
the IPW estimate. For a quantitative trait, naively fitting a
linear model still leads to a consistent estimate of the ad-
ditive effect even though the marginal distribution of Xi in
the phase 2 sample is not the same as that in the population.
When the effect size under an additive model in the phase 1
sample is of interest, the incorporation of weighting in IPW
helps to guard against bias from model misspecification.
The proposed joint analysis method however yields more
precise estimates than the other two approaches, and il-
lustrates improved efficiency in detecting a functional SNP
within the same region as the tag SNP when we can only
afford to sequence a portion of the subjects in phase 1.

Scenario (i) (MAF Pa = Pd = 0.4) with additive effect.
Table III displays a subset of the phase 2 sample alloca-
tions we evaluated for scenario (i) with correlation r = 0.50
and sampling fraction � = 10%, as well as the resulting
averages of estimates and empirical standard deviations.
Here, E(n0, n1, n2) are the expected counts in the common
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TABLE III. An example of estimation efficiencies under various phase 2 sample allocations for scenario (i) with MAFs
Pa = Pd = 0.4, correlation r = 0.50, effect size �1 = 0.25, and overall sampling fraction � = 10% (AVE = average of the �1
estimates over 1,000 replicates, SD = standard deviation of the �1 estimates multiplied by 100. For the complete data,
N = 1, 000, and for the phase 2 sample, n = 100. Minimum and maximum standard deviations for each method are
displayed in bold)

Complete data Naive IPW Proposed
Allocation

� r E(n0, n1, n2) AVE SD AVE SD AVE SD AVE SD

10% 0.50 (80, 10, 10) 0.250 3.27 0.248 9.62 0.246 14.19 0.247 6.15
(45, 10, 45) 0.251 9.43 0.249 13.52 0.248 6.25
(10, 10, 80) 0.254 10.01 0.252 16.02 0.251 6.86
(60, 30, 10) 0.251 9.73 0.251 10.66 0.248 6.13
(50, 30, 20) 0.252 9.85 0.250 10.43 0.252 6.04
(35, 30, 35) 0.254 9.78 0.254 10.71 0.249 6.29
(20, 30, 50) 0.250 10.83 0.247 12.47 0.249 6.97
(10, 30, 60) 0.252 12.06 0.252 16.41 0.248 7.44
(33, 34, 33)a 0.250 9.62 0.251 10.54 0.247 6.39
(36, 48, 16)b 0.255 10.18 0.255 10.18 0.249 6.46
(40, 50, 10) 0.248 10.06 0.248 10.29 0.247 6.32
(25, 50, 25) 0.254 10.65 0.255 11.08 0.253 6.32
(10, 50, 40) 0.252 10.54 0.254 14.03 0.252 6.80
(20, 70, 10) 0.249 11.20 0.249 12.37 0.248 7.02
(10, 70, 20) 0.257 11.18 0.259 14.46 0.248 7.67
(10, 80, 10) 0.253 11.21 0.250 14.40 0.247 7.43

aApproximately equal phase 2 sample size in each stratum.
bEqual sampling fraction in each stratum.

homozygote, the heterozygote, and the rare homozygote
strata in the phase 2 sample. We also include results for
two special cases of interest: one with approximately equal
phase 2 sample size in each stratum, and the other with
equal sampling fraction in each stratum. The relative bias is
within 2% for all methods. The SD of the proposed estimate
is roughly 2–2.5 times larger than the SD for the complete
data, corresponding to a relative efficiency of 40–50%.

Figure 2 shows the relative efficiencies of the three meth-
ods under various sample size allocations for scenario (i),
in which the overall sampling fraction is 10% or 50% (for
cases with � = 25% see Supporting Information). The rel-
ative efficiency depends on the strength of the correlation
between the tag and the seq SNPs. When there is high LD
(e.g., r = 0.95), the efficiency of the proposed method ap-
proaches that of fitting model (A1) to the complete data if
they were available. When there is no or low LD between
the two SNPs (e.g., r = 0.05), the phase 1 sample tag SNP
does not provide much useful information for inferring the
genotypes at the seq SNP for phase 1 subjects not included
in phase 2. Thus, the proposed method performs no better
than the naive approach. For cases where the tag and the
seq SNPS are negatively correlated, the proposed method
still can improve efficiency. As the overall sampling fraction
� increases, all methods produce more precise estimates.

The phase 2 sample size allocation plays an important
role in the relative efficiency of the naive method. As men-
tioned above, under an additive genetic association model,
�̂1,nai achieves maximum efficiency when the seq SNP geno-
type is DD for half of the phase 2 sample and is dd for the
other half. This strategy works well when the seq SNP and
the tag SNP have similar minor allele frequencies and are
highly correlated or in perfect LD. As shown in the pan-
els with r = 0.95 in Figure 2, compared to other allocations,

the relative efficiency for the naive method is higher when
stratum Aa is sparsely sampled and the two homozygote
strata AA and aa are equally heavily sampled. Compared
to the other approaches, the proposed method is relatively
more consistent across different allocations for cases with
positive correlation as long as the sampling scheme is not
extreme. For negative correlation, however, the proposed
method performs better when the rare homozygote stratum
is sparsely sampled. This result is as expected, since the mi-
nor allele d at the seq SNP appears less frequently with the
minor allele a at the tag SNP.

Scenario (ii) (MAF Pa = 0.3, Pd = 0.2) with additive ef-
fect. Similar results are obtained for scenario (ii) with ad-
ditive effect. Figure 3 shows selected results for cases with
sampling fraction � = 10% and 50%. For cases where the
correlation between the tag and the seq SNPs is positive
(e.g., r = 0.75), both the naive method and the proposed
method can achieve higher relative efficiency when the
rare homozygote stratum is heavily sampled. In contrast,
for cases with negative correlation (e.g., r = −0.30), the
methods achieve higher relative efficiency when the rare
homozygote stratum is sparsely sampled. Again, the pro-
posed method performs no better than the naive method
when there is weak or no correlation between the tag and
the seq SNPs (e.g., r = 0.05) but does not do worse. See Sup-
porting Information for more comprehensive results.

Robustness assessment. When the regression model
for the genetic association of the quantitative trait with
the seq SNP is misspecified, all methods produce biased
estimates. Here, we focus on reporting results under sce-
nario (i) (MAF Pa = Pd = 0.4) for cases where correlation
between the tag SNP and the seq SNP is moderate and the
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Fig. 2. Relative efficiencies of the naive (dashed line), IPW (dotted line), and proposed (solid line) methods under scenario (i) with MAF
values of Pa = Pd = 0.4. The rows correspond to decreasing values of the tag-seq SNP correlation r . The first column corresponds to
overall sampling fraction � = 10% with sample size = 30 allocated to stratum Aa. The second and third columns correspond to overall
sampling fraction � = 50%, with sample size of 100 and 300 allocated to stratum Aa, respectively. Within each panel, the horizontal axis
indicates different tag SNP strata allocations (AA, Aa, aa) for fixed heterozygote (Aa) count. At 100% sampling, the expected counts of
AA, Aa, aa are 360, 480, 160.

sampling fraction is � = 25% (Fig. 4). With the dominant
model being the true model, the naive estimator �̂1,nai can
have relative efficiency greater than 1 for some allocations.
The explanation is that the complete data analysis yields
biased estimates if one incorrectly fits an additive model,
while the naive method can be less biased if the number
with rare homozygote dd at the seq SNP in phase 2 is small.
This may be achieved by oversampling from strata AA and
Aa , provided that the correlation is high (see Supplemen-
tary Figs. 9– 23 for the other cases of r and � ). For cases with
negative r , the naive method performs best when stratum
AA is sparsely sampled. This is due to the fact that under a
dominant model, fewer cases with genotype dd in the sam-
ple leads to smaller bias in �̂1,nai. In general, however, the
proposed method performs better than the naive method
for various allocations. Under a recessive model, the op-
posite phenomenon is observed. The relative efficiency of
�̂1,nai increases as the expected number E(m1) of genotype
DD in phase 2 sample increases. Comparison of row 1 with

row 4 in Figure 4 suggests that the proposed method is rea-
sonably robust to violation of the assumption of constant
variance across genotype classes. Results for the cases with
an additional causal seq SNP ignored in analysis or with a
skewed phenotype distribution are very similar to the case
with heteroscedasticity. Similar results are also observed for
scenario (ii) (MAF Pa = 0.3, Pd = 0.2) that specifies differ-
ent minor allele frequencies (see Supplementary Figs. 24–
38).

Rare variant analysis. Because only a few rare variants
are specified to be associated with the trait, the estimate of
the overall effect size � for the aggregation score is only
about 0.11. When the tag SNP and the rare variant score
are moderately correlated (e.g., r = 0.5), the relative effi-
ciency is consistently higher when stratum aa is oversam-
pled than when stratum aa is undersampled. The proposed
joint analysis method performed consistently better than
the two methods that use phase 2 data alone (Fig. 5). Un-
like common seq SNP analysis, however, undersampling of
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Fig. 3. Relative efficiencies of the naive (dashed line), IPW (dotted line), and proposed (solid line) methods under scenario (ii) with MAF
values Pa = 0.3 and Pd = 0.2. The rows correspond to decreasing values of the tag-seq SNP correlation r ; for the given MAF values, r is
constrained to be less than 0.76. The first column corresponds to overall sampling fraction � = 10% with sample size = 10 allocated to
stratum Aa. The second and third columns correspond to overall sampling fraction � = 50%, with sample size of 10 and 400 allocated
to stratum Aa , respectively. Within each panel, the horizontal axis indicates different tag SNP strata allocations (AA, Aa, aa) for fixed
heterozygote (Aa) count. At 100% sampling, the expected counts of AA, Aa, aa are 490, 420, 90.

the tag SNP heterozygote stratum did not appear to con-
tribute to efficiency gain, most likely due to the fact that
the rare variant score distribution concentrates its mass on
zero. Under the assumption that K independent rare vari-
ants are included in the rare variant score, the sum of the
correlations between the tag SNP and each of the K rare
variants is approximately equal to K 1/2r . For r =0.5 and
K =20, the average correlation between each of the K rare
variants and the tag SNP would be approximately 0.112.

Simulations under the null hypothesis of no associa-
tion. When data were generated under the situation of
no association between the seq SNP and the phenotype,
all methods consistently estimated the genetic effect at 0
for all sampling fractions and all sampling schemes. For
scenario (i) with MAF Pa = Pd = 0.4 and sampling fraction
� = 10%, there is a slight inflation of type 1 error rate for the
proposed method under some sample size allocations. The
type 1 error rate is between 5% and 10% when r = 0.05 (see
Supplementary Fig. 39). However, type I error does not nec-
essarily reflect accurately the statistical design efficiency.
This is because the test statistic depends on the accuracy
of standard error estimation (typically based on asymptotic

distributions) whereas efficiency depends on the empirical
precision of the estimates. This inflation may be due to the
use of small phase 2 sample. For sampling fraction � = 25%
or 50%, the type 1 error rate is close to the nominal 5% (see
Supplementary Figs. 40 and 41). Similar patterns are ob-
served for scenario (ii) where minor allele frequencies dif-
fered between the tag and seq SNPs (see Supplementary
Figs. 42–44).

Summary concerning allocation. It is evident that the
phase 2 sample size allocation has a major impact on meth-
ods that use only phase 2 data, which is relevant when
analysis is limited to use of a linear model in phase 2 data.
Although a universally optimal allocation design does not
appear to exist even when the assumption of additive effect
is correctly made, our simulation studies provide investiga-
tors with some guidelines for planning regional sequencing
on a subset of phase 1 subjects. As illustrated by our simu-
lations, efficiency of the naive method using only the phase
2 sample depends on the MAFs at the tag SNP and the
seq SNP as well as their correlation r . When there are rea-
sonable grounds to expect positive correlation, we recom-
mend that the heterozygote stratum Aa be undersampled
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Fig. 4. Relative MSE of the naive (dashed line), IPW (dotted line), and proposed (solid line) methods under model misspecification with
MAF values Pa = Pd = 0.4. The first row corresponds to a correctly specified additive (ADD) model. The second, third, and fourth rows
correspond to cases where the true model is dominant (DOM), recessive (REC), and heteroscedastic (HET), respectively. The overall
sampling fraction is � = 25%, and the tag-seq SNP correlation is r = 0.5. The columns correspond to cases with sample sizes of 10,
50, and 100 allocated to stratum Aa, respectively. Within each panel, the horizontal axis indicates different tag SNP strata allocations
(AA, Aa, aa) for fixed heterozygote (Aa) count. At 100% sampling, the expected counts of AA, Aa, aa are 360, 480, 160. Results for cases
with an additional causal seq SNP ignored as well as for cases with skewed phenotype distribution are similar to HET, and hence are
not shown here (see Supplementary Figs. 9–23).

while the two homozygote strata AA and aa be oversam-
pled up to maximum available counts in aa (Figs. 2 and 3).
Although similar trends of relative efficiency are observed
for the proposed joint analysis of phases 1 and 2 data, it
is less dependent on the sample allocation and is generally
more efficient and more robust than the naive method.

DISCUSSION

The two-phase study design, widely used in epidemi-
ological studies, focuses on collecting more detailed but
expensive covariate data in a subset of the study sample
based on information in auxiliary variables available in
the entire sample. Although the cost of high-density geno-
typic data has dropped dramatically, costs of NGS are still
considered high for large-scale studies that involve tens of
thousands of participants. Efficient study designs are likely
to remain necessary in the near future for cost-efficiency in
large studies of the genetic basis of complex diseases and
traits. The two-phase design is important in the sense that

information from low-cost tag SNPs and imputed SNPs
available in a phase 1 sample can lead to better decisions
on how to select a subset of the sample to be sequenced
for discovery and assessment of additional variant SNPs in
phase 2. As the depth and breadth of available sequence
data accumulates, for example, through initiatives such as
the 1,000 Genomes Project, and lower frequency SNPs are
added to GWAS SNP arrays, the number of unknown or
unimputable variants within a sequenced region in a par-
ticular study may decrease. It remains to be seen, however,
whether imputation accuracy will improve sufficiently for
follow-up and fine-mapping studies, especially for very
low frequency variants. Moreover, sequencing a portion of
study participants may serve to create a very well-matched
reference panel useful for imputation in the entire study
[Fridley et al., 2010; Zeggini, 2011].

Two-phase stratified design and optimal sample alloca-
tion for GWAS follow-up studies have received little atten-
tion [Thomas et al., 2004, 2009]. In contrast, the well-known
multistage design improves cost-efficiency in the GWAS
setting by genotyping a full set of known SNP markers in a
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Fig. 5. Relative efficiency of the naive (dashed line), IPW (dotted line), and proposed (solid line) methods for rare variant analysis in-
volving 20 rare variants with MAF values generated from Unif (0.005, 0.01). The overall sampling fraction is � = 25%, and the correlation
between the tag SNP and the rare variants sum score is r = 0.5. The panels correspond to cases with sample size of 10, 50, and 150 al-
located to stratum Aa, respectively. Within each panel, the horizontal axis indicates different tag SNP strata allocations (AA, Aa, aa) for
fixed heterozygote (Aa) count. At 100% sampling, the expected counts of AA, Aa, aa are 490, 420, 90.

subset of available subjects in stage 1, and then genotyping
a selected subset of the SNPs in the remaining subjects in
stage 2. By excluding markers that show little evidence of
association in stage 1, genotyping requirements, and hence
cost, can be substantially reduced while preserving much
of the power of the corresponding single-stage design in
which all subjects are genotyped on all markers [Skol et al.,
2006]. An association detected in both stages, however, may
be arising indirectly through a common variant that is in
LD with a functional variant, thus motivating the need for
subsequent regional fine-mapping and sequencing studies
to identify additional variants.

In this report, we consider estimation of an additive ge-
netic effect in a two-phase stratified design. As a starting
point, we examine the case of one tag SNP and one seq
SNP. We propose an estimating equations approach using
all available data from phases 1 and 2 and study the effi-
ciency gain compared to using only phase 2 data. We also
investigate the sensitivity of estimation efficiency to alloca-
tion of the phase 2 sample size under the additive model.
The main idea of the sampling design is to select fewer het-
erozygotes with the sequence variant while selecting more
of each homozygote type. If one expects positive correla-
tion between the tag SNP and a functional seq variant,
then it is more efficient to over-sample from the tag SNP
rare homozygote stratum. This strategy provides no useful
information, however, if the tag SNP is not in LD with the
seq SNP, which may be the case when the seq SNP is too
distant from the tag SNP. Through simulation studies, we
show that the correlation between a tag SNP used for strat-
ification and the seq SNP plays an important role in esti-
mation efficiency for the proposed joint analysis method.
As the magnitude of the correlation coefficient decreases to
zero, the efficiency decreases relative to complete sequenc-
ing. When the seq SNP and the tag SNP are independent,
the phase 2 sample can be regarded as a random subset of
the entire study sample, and stratification by the tag SNP
genotype does not contribute to improved estimation of the
genetic effect.

Our findings concerning sample size allocation are most
directly applicable to the design of an independent repli-
cation study in which a specific region of interest has been

prespecified, and typed or imputed SNP data for the region
are readily available. When, however, a promising region
of interest has been identified by GWAS using genome-
wide significance criteria, effect estimates for tag SNPs so
identified will be subject to selection bias known as the
”winner’s curse” [Faye et al., 2011, Sun et al., 2011]. In fine-
mapping conducted in the same sample, effect estimates for
seq SNPs in LD with the tag SNP will also be affected indi-
rectly by this phenomenon in a complicated manner [Faye
and Bull, 2011], and similarly subject to bias. However, re-
gardless of such complications in interpreting the results, a
tag SNP in high LD with a sequenced SNP is nevertheless
expected to serve well in selecting individuals enriched for
informative seq SNP genotypes within the region.

For complex diseases and traits, the underlying genetic
models are unknown. Thus, there is no uniformly most
powerful test across all possible alternative genetic models
and no single optimal phase 2 sample size allocation for all
situations. We have limited consideration to a linear model
for a quantitative trait with an additive effect of a genetic
variant, in which the number of the copies of the minor al-
lele is treated as dosage. Our method presumes that a po-
tential functional variant is within the same region as the
tag SNP used for stratification. In practice, with sequenc-
ing of multiple SNPs in the same region as the tag SNP,
analysis of the sequence genotypes would proceed by as-
sociation testing of each of the seq SNPs with the quantita-
tive trait of interest. For any of the seq SNPs correlated with
the tag SNP, a stratified sampling design will be more pow-
erful than a simple random sample of the same size. On
the other hand, for a seq SNP in the region that is uncorre-
lated with the tag SNP, stratified sampling will not perform
worse than simple random sampling.

The development of sample allocation and joint analysis
methods is based on the assumption that only a single tag
SNP is available within a region. In practice, multiple SNP
markers in phase 1 may be used as tag SNPs for a region or
there may be tag SNPs in multiple regions of interest. When
the number of genotype combinations is large, stratification
using multiple tag SNPs can be problematic. One possible
modification is to combine genotype categories based on
the total count of minor alleles at the tag SNPs. Modeling
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the associations between the seq SNPs and the collapsed
strata as well as designating a robust allocation, however,
may not be straightforward. As a result, scope for the ap-
plication of sample allocation design principles across mul-
tiple regions may be limited for purposes of cost-efficiency.
For other types of analysis such as haplotype- or gene-
based inference, optimal allocation depends on the specific
statistical methods to be used and is very likely to employ
different optimization criteria. In principle, the sample size
allocation methods can be extended to situations in which
haplotypes are used for stratification and/or rare variant
counts are used to summarize sequence data [Price et al.,
2010]. In addition, because environmental factors also play
important roles in the etiology of complex traits/diseases,
they can be included in the joint analysis to better explain
other sources of the variation of the trait [e.g., Paterson
et al., 2010].

Subject-selection strategies that depend on the quantita-
tive trait, and associated methods of analysis, have been
evaluated by a number of authors [e.g., Bacanu et al., 2011;
Guey et al., 2011; Huang and Lin, 2007; Lin and Tang, 2011;
Tang, 2010; Van Gestel et al., 2000; Yilmaz and Bull, 2011],
and in principle could also be applied within genotype
classes, as suggested by a reviewer . In cross-sectional and
longitudinal study designs, however, multiple traits are of-
ten of interest, and sampling based on one trait may not
improve efficiency for another. If functional variants for
multiple traits are harbored in the region and are corre-
lated with the tag SNP, then sampling based on that tag
SNP can be beneficial for all traits. To the extent that the
tag SNP genotype is correlated with a quantitative trait,
over-sampling on the high- and low-risk genotype strata
will indirectly enrich for associated extreme trait values in
the selected individuals. Further work to formally evalu-
ate additional improvements in efficiency associated with
trait-dependent sampling, for example, by defining mul-
tiple strata according to genotype and phenotype, is war-
ranted.
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APPENDIX: CONSISTENCY AND
ASYMPTOTIC DISTRIBUTION OF �̂

The asymptotic behavior of 
̂ can be derived based on
standard estimating equations theory. By Theorem 3.4 of
Newey and McFadden [1994], under regularity conditions,
we have that with probability approaching 1, there is a
unique solution to

∑N
i=1 �i (
), denoted by 
̂, that satisfies

0 = N−1/2
N∑

i=1

�i (
)

+ N−1
N∑

i=1

∂�i (
)/∂
T N1/2 (

̂ − 


) + o p(1).

This is equivalent to

N1/2 (

̂ − 


) = − [
E

{
∂�i (
)/∂
T}]−1

× N−1/2
N∑

i=1

�i (
) + o p(1)
(A1)

as under regularity conditions, E
{
∂�i (
)/∂
T

}
exists and

is invertible and var{�i (
)} is finite and positive definite.
The Law of Large Numbers leads to N−1 ∑N

i=1 �i (
) →p

E{�i (
)} = 0, as N → ∞, and the consistency of 
̂ is imme-
diate by the Slutzky theorem. By applying the Central Limit
Theorem to (A1), the asymptotic distribution of N1/2(
̂ − 
)
can be established.

Let

Wi (�) = (�i/�i )∂ Qi (�)/∂�T,

Gi (�, �) = (1 − �i )∂U∗
i (�, �)/∂�T.

Note that

M̃i (�, �) = �i∂Ui (�)/∂�T + (1 − �i )∂U∗
i (�, �)/∂�T.

Therefore,

∂�i (
)
∂
T

=
(

Wi (�) 0

Gi (�, �) M̃i (�, �)

)
.

Thus,
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j=0
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(
� j11 0

� j21 � j22

)
,

where

� j11 = E{∂ Qi (�)/∂�T | Zi = j},
� j21 = (1 − � j )E{∂U∗

i (�, �)/∂�T | Zi = j},
� j22 = � j E{∂Ui (�)/∂�T | Zi = j}

+ (1 − � j )E{∂U∗
i (�, �)/∂�T | Zi = j}.

As N → ∞, E{∂U∗
i (�, �)/∂�T | Zi = j}, and � j11 can be con-

sistently estimated by, respectively,
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Ê
{

∂U∗
i (�, �)
∂�T

| Zi = j
}

= 1
Nj − nj

×
∑

i∈{s̄2∪ j}

⎡
⎣ 2∑

k=0

	ik(�̂, �̂)Ui (�̂; Yi , Xi = k)QT
i (�̂; Gk, Zi )

−
{

2∑
k=0

	ik(�̂, �̂)Ui (�̂, �̂; Yi , Xi = k)

}

×
{

2∑
k=0

	ik(�̂, �̂)Qi (�̂; Gk, Zi )

}T
⎤
⎦.

Similarly, E
{
∂Ui (�)/∂�T | Zi = j

}
can be consistently

estimated by
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The middle term � in the sandwich variance matrix can be
consistently estimated by its empirical counterpart

�̂ =
N∑

i=1
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�i/�i Ũi (�̂, �̂)QT
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