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Summary

This paper considers inference methods for case-control logistic regression in longitudinal setups. The
motivation is provided by an analysis of plains bison spatial location as a function of habitat heterogeneity.
The sampling is done according to a longitudinal matched case-control design in which, at certain time
points, exactly one case, the actual location of an animal, is matched to a number of controls, the alterna-
tive locations that could have been reached. We develop inference methods for the conditional logistic
regression model in this setup, which can be formulated within a generalized estimating equation (GEE)
framework. This permits the use of statistical techniques developed for GEE-based inference, such as
robust variance estimators and model selection criteria adapted for non-independent data. The perfor-
mance of the methods is investigated in a simulation study and illustrated with the bison data analysis.

Key words: Akaike information criterion (AIC); Case-control logistic regression; Estimating
equations; Generalized estimating equations; Quasi-likelihood under indepen-
dence criterion (QIC); Retrospective sampling; Robust sandwich estimators.

1 Introduction

In many scientific investigations in ecology and health, researchers are interested in exploring possible
relationships between the characteristics of the individual’s environment and a binary response. In
some cases, one of the values of the response might be “rare” or the sets of covariates corresponding
to both values of the response must be matched. This is the case in the experiment that motivated this
work, the analysis of the spatial distribution of plains bison (Latin name bison bison bison) as a
function of the characteristics of the environment. Bison are located every hour, and each observed
location is matched to other locations that could have been reached during the 1-hour time interval. In
such setups, a conditional or case-control design is one in which sampling is stratified on the values
of the response variable itself.

The study of case-control data has been intensive in biostatistics. Many such studies require the
close matching of control and case subjects, and there is a vast literature on conditional logistic
regression (a classical reference is Breslow and Day (1980)). Scott and Wild (1986) compare the ad-
hoc methods generated by sample survey techniques to a likelihood based approach in the case of
conditional logistic regression. More recently, Fay et al. (1998) derived sandwich variance estimators
for conditional logistic regression models and Fay and Graubard (2001) have studied how small sam-
ple adjustments to these robust variance estimates could be applied, whereas Arbogast and Lin (2004)
have proposed goodness-of-fit tests for such models in non-longitudinal setups.
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In many situations the common assumption that observations from different matched sets are inde-
pendent may be unreasonable. For example we can think of a study where many matched sets could
come from the same cluster (e.g., hospital or family), or subjects may be followed over time (as in the
bison data analysis of Section 5). As discussed by Longford (1994), a possible approach is provided
by the theory of generalized estimating equations (GEE) of Liang and Zeger (1986). Fay and Grau-
bard (2001) use an approach based on GEE and offer corrections for inferences when the sample size
is small and/or the range of covariates varies with clusters (unbalanced data). Under a certain specific
longitudinal case-control design where cases are observed at all time points and controls at some
predetermined subset of the time points, Park and Kim (2004) consider estimating equations with
independence working correlation. Their approach consists in a marginal specification of the mean
that is unconditional on the value of the response (prospective), but they show that with an indepen-
dence working correlation, their estimating equation is conditionally (retrospectively) unbiased. How-
ever, some longitudinal case-control sampling schemes do not fall within the sampling designs that
they investigated, and this is the case with our data on plains bison, whose sampling design we now
describe.

We consider estimation for the conditional logistic regression model under a case-control design
where the number of cases and controls per matched set (stratum) is predetermined before sampling
and where strata within clusters might be correlated; this type of design is becoming more popular in
biological applications, where GPS technology allows longitudinal follow up of subjects’ locations.
Our goal is to derive population-averaged inference methods for the conditional logistic regression
model parameters under this sampling scheme. More precisely, we propose conditional (retrospective)
estimating equations that lead to robust inferences about the model parameters in this context. To
derive these estimating equations, we show how we can embed this inference problem into the gener-
alized estimating equation (GEE) framework of Liang and Zeger (1986). This will allow us to benefit
from some of the good properties of GEE analysis, such as robustness of inferences to misspecifica-
tion of the working correlation structure. We explain in Section 2 that, for the model and data under
study, using a working correlation matrix other than independence induces certain difficulties with the
inferences. While this impedes the capacity to “root-n consistently” estimate correlation matrix param-
eters, we avoid the problem by choosing an independence working correlation and, thus, can still take
advantage of the many robust inference tools derived for GEE, such as estimating equations, sandwich
variance estimators and model selection criteria (e.g., Pan (2001)).

The paper is organized as follows. In Section 2 we introduce the model and notation and show how
GEE can be derived. We tackle specific inference problems in Section 3. The validity of the approach
in finite samples is briefly investigated by simulations in Section 4, and we apply the method to an
analysis of a dataset on habitat selection by plains bison in Section 5. Section 6 concludes the paper
with a discussion and ideas for further work.

2 Estimating Equations for the Conditional Logistic Model

Consider that we have K independent individuals/clusters under study. For the c-th individual/cluster,
suppose that we observe SðcÞ strata (matched sets). For each stratum SðcÞj , c ¼ 1; . . . ;K, j ¼ 1; . . . ; SðcÞ,

we observe YðcÞj ¼ ðY
ðcÞ
j1 ; . . . ; YðcÞ

jNðcÞj

Þ>, a vector of f0; 1g responses and XðcÞj ¼ ðx
ðcÞ
j1 ; . . . ; xðcÞ

jNðcÞj

Þ>, an

NðcÞj � p matrix of covariates. We suppose that the number of responses whose value is 1 in the ðc; jÞ
stratum is fixed to mðcÞj by study design and our objective is to estimate the effect of the covariate
values on the value of the response. Mathematically, YðcÞji 2 f0; 1g 8c; j; i and

P
i Y ðcÞji ¼ mðcÞj with mðcÞj

a fixed integer value (that may or may not be the same for all strata). In the bison data of Section 5,
clusters are the individual animals followed over a time period and a stratum is a set of one visited
location (Y ¼ 1) matched with several locations that could potentially have been visited at the same
time (Y ¼ 0).

98 R. V. Craiu et al.: Conditional Logistic Regression for Longitudinal Data

# 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



2.1 Regression model and likelihood under independence

For simplicity, let us first consider a single stratum and drop the superscript ðcÞ and the subscript j.
For each observation i in the stratum, we have a p-vector of covariates xi ¼ ðxi1; . . . ; xipÞ>. Let
X ¼ ðx1; . . . ; xNÞ>.

As in (Hosmer and Lemeshow, 2000, Chapter 7), for a given stratum, we suppose that given the
covariates X and a stratum-specific random effect q, Y1; . . . ; YN are independent Bernoulli random
variables with

P½Yi ¼ 1 j q;X� ¼ exp ðqþ b> xiÞ
1þ exp ðqþ b> xiÞ

: ð1Þ

It is well known (Hosmer and Lemeshow, 2000, Eq. (7.4)) that the likelihood, conditional onPN
i¼1 Yi ¼ m, under the model described by (1) is proportional to

LFull b

���� PN
i¼1

Yi ¼ m; q

� �
¼ LFullðbÞ ¼

exp ð
PN

i¼1 b> xi YiÞP N
mð Þ

l¼1 exp ð
PN

i¼1 b> xivliÞ
; ð2Þ

where
P N

mð Þ
l¼1 denotes a sum over all N-vectors vl such that vlj 2 f0; 1g and

PN
j¼1 vlj ¼ m. Lemma 2.1

shows a reformulation of LFullðbÞ that avoids having to deal with singular covariance matrices for the
data in one stratum. Note that the proofs of the lemmas and theorem that follow can all be found in
Section 7.

Lemma 2.1 Let xð�jÞ
i ¼ xi � xj. Then, for any choice of j 2 f1; . . . ;Ng, the following likelihood is

equal to LFullðbÞ given by ð2Þ:

Lð�jÞðbÞ ¼
exp ð

P
i6¼j b> xð�jÞ

i YiÞP N
mð Þ

l¼1 exp ð
P

i6¼j b> xð�jÞ
i vliÞ

: ð3Þ

In practical terms, Lemma 2.1 means that since the stratum sums are given, for each stratum we
can delete one observation without changing anything to the conditional inferences, provided that we
correct the covariates of the remaining observations for that of the deleted observation. Therefore,
without loss of generality, from hereon we shall only work with LðbÞ � Lð�1ÞðbÞ and we set
x*i ¼ xi � x1.

2.2 Likelihood score estimating equations

In most case-control studies the data are obtained conditionally on the response, i.e. the cases and
controls are obtained and then, subsequently, the covariates X are observed. Prentice and Pyke (1979)
have shown that for the logistic model unbiased estimates for b can be obtained by treating the data
as if they were coming from a prospective study, i.e., one in which the items included in the study
are sampled unconditionally on the response Y . (However, if the logistic model (1) includes an inter-
cept term a, then, as shown by Scott and Wild (1986), the maximum likelihood estimator for a
would be biased.) In addition, as shown by Park and Kim (2004), using “prospective” estimating
equations in longitudinal case-control studies may produce biased estimators. In this paper, we choose
to base our inferences on “retrospective” estimating equations, i.e., estimating equations that condi-
tion on the fact that the case-control sampling fixes the number of cases within each stratum, as this
seems to us like a simpler and more natural way to obtain consistent inferences under our sampling
design.

We derive the expressions for the conditional mean and variance for the responses assuming that
there is only one stratum (we drop the ðcÞ=j superscript/subscript).
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Lemma 2.2 Let mi ¼ E½Yi j
PN

j¼1 Yj ¼ m;X� and mij ¼ E½Yi � Yj j
PN

j¼1 Yj ¼ m;X�. Then

mi ¼
P N

mð Þ
l¼1 vli exp ð

PN
k¼2 b> x*kvlkÞP N

mð Þ
l¼1 exp ð

PN
k¼2 b> x*kvlkÞ

; ð4Þ

mij ¼
P N

mð Þ
l¼1 vlivlj exp ð

PN
k¼2 b> x*kvlkÞP N

mð Þ
l¼1 exp ð

PN
k¼2 b> x*kvlkÞ

: ð5Þ

Under the assumption of independence between strata, the likelihood score for b can be obtained
from (3) and reexpressed using (4):

lðbÞ ¼
PN
i¼2

b> x*iYi � ln
PNmð Þ
l¼1

exp
PN
h¼2

b> x*hvlh

� �
ð6Þ

) UðbÞ ¼
PN
i¼2

x*iYi �
P N

mð Þ
l¼1 vlix*i exp ð

PN
h¼2 b> x*hvlhÞP N

mð Þ
l¼1 exp ð

PN
h¼2 b> x*hvlhÞ

8<
:

9=
;

¼
PN
i¼2

x*ifYi � miðbÞg ¼ X�>fY � mðbÞg ; ð7Þ

where Y ¼ ðY2; . . . ; YNÞ> and mðbÞ ¼ fm2ðbÞ; . . . ; mNðbÞg
>. Under the assumption of no correlation

between strata, we have that the global likelihood score equations that are given by

UindepðbÞ ¼
PK
c¼1

PSðcÞ
j¼1

UðcÞj ðbÞ ¼ 0 ; ð8Þ

with UðcÞj ðbÞ given by (7), would be valid and efficient. However, as we might have strata that are
correlated, we want to derive inference methods that are more robust to between-stratum correlation.

It is useful to rewrite (8) in a form more suitable for implementing the GEE. To do so, define
Y ¼ ðYð1Þ>; . . . ;YðKÞ>Þ>, with YðcÞ > ¼ ðYðcÞ >1 , . . ., YðcÞ >

SðcÞ
Þ> for each c ¼ 1; . . . ;K and where

YðcÞj ¼ ðY
ðcÞ
j2 ; . . . ; YðcÞ

jNðcÞj

Þ> is the ðNðcÞj � 1Þ-vector of binary responses (without the first observation) for

the observations in the j-th stratum of the c-th cluster. Let mðbÞ and mðcÞðbÞ denote E½Y j
P

Y ;X*�
and E½YðcÞ j

P
Y ;X*�, respectively. The following theorem states that (8) can be written in the usual

GEE form with working independence correlation structure.

Theorem 2.3 Let DðcÞ ¼ @ mðcÞðbÞ=@ b> be the f
PSðcÞ

j¼1 ðN
ðcÞ
j � 1Þg � p matrix of the derivatives of

the conditional mean vector for the c-th cluster with respect to each element of b. Let
VðcÞ Indep ¼ Var ½YðcÞ j

P
Y ;X*�. Then

UIndepðbÞ ¼
PK
c¼1

DðcÞ
> ðVðcÞ IndepÞ�1 fYðcÞ � mðcÞðbÞg : ð9Þ

Theorem 2.3 allows us to easily generalize the inference. Let us now suppose that conditionally on the
stratum sums and the covariates, there can be within cluster correlation between responses, but that
responses from different clusters are still uncorrelated. Note that this more complex correlation scheme
would not occur by simply letting all strata in a cluster share a common random intercept, as condition-
ing on the stratum sums suppresses this random effect in the conditional likelihood. As a matter of fact,
consider a single cluster of S strata with a prospective logistic model with a cluster-level random effect,
i.e., given Q ¼ q, suppose that Ysi, s ¼ 1; . . . ; S, i ¼ 1; . . . ; ns are independent Bernoulli’s with
P½Ysi ¼ ysi j q; xsi� given by the logit model with linear predictor qþ b> xsi. Then the conditional like-
lihood will be proportional to P½Ysi ¼ ysi; s ¼ 1; . . . ; S; i ¼ 1; . . . ; ns j X; Ys�; s ¼ 1; . . . ; S�, where Ys� is
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the sum of the Y’s in stratum S. Under these model assumptions, this probability isZ YS

s¼1

exp f
Pns

i¼1 ysiðqþ b> xsiÞgP ns
msð Þ

l¼1 exp f
Pns

i¼1 vliðqþ b> xsiÞg
dFQðqÞ ;

which simplifies to the usual conditional likelihood with independent strata. Thus, in this section we
consider cases where correlation may be induced among strata in some more complex manner. For
instance, in the analysis of the bison data presented in Section 5, this would mean that if the only
source of correlation among strata is a bison-level random effect, then likelihood-based methods
should yield valid inferences, while this might not be the case if there are other sources of correlation
(e.g., spatio-temporal, as we expect that locations with similar characteristics, i.e. similar covariate
values, are more likely to be selected by an animal in consecutive time periods).

2.3 Working correlation matrices

We now describe the difficulties encountered when modeling a correlation matrix in this setup. Let us
consider the working correlation matrix for all the responses in one cluster. The elements of the “true”
conditional variance matrix of Y, say V, are of the form

cov ðYðcÞji ; Y
ðc0Þ
j0i0 Þ ¼

0; c 6¼ c0

rðY ðcÞji ; Y
ðcÞ
j0i0 Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m
ðcÞ
ji ð1� m

ðcÞ
ji Þ m

ðcÞ
j0i0 ð1� m

ðcÞ
j0i0 Þ

q
; c ¼ c0 ;

(
ð10Þ

where rðY ðcÞji ; Y
ðcÞ
j0i0 Þ represents the conditional correlation between Y ðcÞji and Y ðcÞj0i0 given the stratum sums

and the covariates. In order to specify a working correlation structure we need to specify values for
rðY ðcÞji ; Y

ðcÞ
j0i0 Þ. For instance, if we put rðY ðcÞji ; Y

ðcÞ
j0i0 Þ ¼ 0 when j 6¼ j0, then we can recover the conditional

variance under independent strata, VðcÞ Indep. The working correlation matrix must be constructed so
that it allows for correlation between responses from different strata that are in the same cluster while
still preserving the correlation structure among responses from the same strata as given by (10). This
can be done by reexpressing VðcÞ ¼ cov ðYðcÞÞ as a product of the form VðcÞ R ¼ AðcÞ1=2RAðcÞ1=2>, with
AðcÞ1=2 such that VðcÞ Indep ¼ AðcÞ1=2AðcÞ1=2> and by choosing the proper block diagonal matrix R.

Unfortunately, inference about the parameters in R is a more complex issue. Indeed, the parameters
of R are constrained since the stratum sums are fixed. To see this, we can assume without loss of
generality that there are only two strata in a cluster with n observations per stratum and m ¼ 1 for
both. Suppose that we denote the responses in cluster one y ¼ ðy1; . . . ; ynÞ and the responses in cluster
two are y0 ¼ ðy01; . . . ; y0nÞ. Put corr ðyi; y

0
jÞ ¼ rij. Then, if we drop one observation from each stratum,

say y1 and y01, we obtain

Pn
j¼2

rij f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mið1� miÞ m0jð1� m0jÞ

q
þ mim

0
jg ¼ mi � Pðyi ¼ 1; y01 ¼ 1Þ � mi

and Pn
i¼2

rijf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mið1� miÞ m0jð1� m0jÞ

q
þ mim

0
jg ¼ mj � Pðy1 ¼ 1; y0j ¼ 1Þ � m0j :

So whichever way we choose to model the correlation matrix, we must ensure that the above con-
straints are satisfied. However, many reasonable choices for the correlation structure cannot match the
aforementioned constraints. For instance, it is possible to show that an exchangeable correlation struc-
ture does not satisfy the constraints, unless r ¼ 0. We also found difficult to implement a GEE2 type
of approach since all optimization must be done subject to a set of nontrivial constraints.

For these reasons, in the present paper we restrict ourselves to the working independence structure
and the GEE (9). This still allows us to fulfill our objective, namely, making valid inferences on b, as
we outline in the next section and observe in the simulation study of Section 4.
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3 Inferences

Under working independence and using Theorem 2 from Liang and Zeger (1986), we have thatffiffiffiffi
K
p
ðb̂b� bÞ is asymptotically multivariate Gaussian with zero mean and variance matrix consistently

estimated by

V̂VG ¼
PK
c¼1

DðcÞ > ðVðcÞ IndepÞ�1
DðcÞ

� ��1 PK
c¼1

DðcÞ > ðVðcÞ IndepÞ�1 fYðcÞ � mðcÞðbÞg
�

� fYðcÞ � mðcÞðbÞg> ðVðcÞ IndepÞ�1
DðcÞ

� PK
c¼1

DðcÞ > ðVðcÞ IndepÞ�1
DðcÞ

� ��1

; ð11Þ

with b replaced by its estimator. We shall refer to V̂VG given by (11) as the robust variance estimator
of b̂b, while the variance estimator obtained by inverting the information matrix corresponding to (6)
will be referred to as naive variance and will be denoted V̂VI . As the simulation study in Section 4 will
show, Wald-type inferences based on b̂b and V̂VG obtained under an independence working correlation
exhibit very good finite sample properties. A viable alternative to this approach is proposed by Fay
and Graubard (2001) when K is small and/or the distribution of the covariates is such that their
possible values are not observed in all clusters. Their approach replaces V̂VG with an alternate estimator
and the null distribution of the Wald statistic is modified in consequence.

Let us now consider more specifically the issue of model selection, i.e., the choice of the covariates
that should be part of the linear predictor b> x. For this purpose, we can again use Wald-type methods
via stepwise selection procedures with p-values based on the asymptotic normality of b̂b and the robust
variance V̂VG given by (11). However, in some fields of application “information-theoretic” model
selection criteria (e.g., AIC, BIC) are often preferred to p-value based model selection (see, for in-
stance, Burnham and Anderson (2002) in the case of biological/ecological applications). Recently, Pan
(2001) proposed a quasi-likelihood under independence criterion (QIC) that can be viewed as a gener-
alization of the AIC under GEE, and this with any working correlation structure; this criterion can
actually be used for both covariate and working correlation structure selection. In general, in order to
derive the QIC, one needs to compute the quasi-likelihood corresponding to the score Eq. (9) and a
working independence matrix VðcÞ ¼ VðcÞ Indep. Our derivations in Section 2 imply that, under assumed
independence between strata, the quasi-likelihood function is the same as the log-likelihood function
given by (6). Following the notation of Pan (2001), we denote this log-likelihood function
Q½mðbÞ;Y; I�, to emphasize that it was computed under a model with mean mðbÞ, data Y and the
independence assumption.

Though we recommend to use a working independence correlation structure, the QIC is defined
more generally. Consider a working correlation matrix R. To emphasize their dependence on R, let us
denote the solution of the GEE (9) by b̂bðRÞ and its robust sandwich variance estimator by VGðRÞ, and
let b̂bðIÞ be the maximum likelihood estimator of b under the independence assumption. We also
define

WI ¼
PC
c¼1

DðcÞ
>
VðcÞ IndepDðcÞ ¼ � @

2Q½mðbÞ;Y; I�
@b @ b>

����
b¼b̂bðIÞ

;

which is simply the observed information matrix under independence. The QIC criterion is then de-
fined as

QIC ðRÞ ¼ �2Q½mfb̂bðRÞg;Y; I� þ 2 trace fWIV̂VGðRÞg :

Notice that if the true correlation structure is independence, then V̂VGðRÞ should be close to the inverse
of the information matrix, W�1

I , and QIC will therefore approach the Akaike information criterion,

AIC ¼ �2Q½mfb̂bðIÞg;Y; I� þ 2p :
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Pan (2001) studied the behavior of QIC by simulation. His conclusion is that QICðIÞ is a good
criterion for covariate selection, while QIC ðRÞ can be used to choose among correlation structures.

4 Simulations

The purpose of this simulation study is to investigate the validity of inferences based on GEE with
working independence with samples of different sizes and with different levels of correlation between
strata. We investigate the unbiasedness of regression coefficient and robust variance estimators. Re-
sults on the effectiveness of model selection criteria are not reported here in the interest of space, but
they are comparable to those obtained by Pan (2001).

We performed simulations under a few variations of two types of models:

Models RI These are models with cluster-level random intercepts. Specifically, given Q ¼ q,
Y1; Y2; . . . are independent Bernoulli random variables with logit ðP½Yi ¼ 1 j xi;Q ¼ q�Þ ¼ qþ b> xi.
We then form each of the S strata of the cluster by randomly sampling the ðYi; xiÞ until we have 1
case and 4 controls. The random effects Q of each clusters are i.i.d. Nð0; s2Þ.

Models RS Same as Models RI, but the random intercept is replaced with a random slope in front of xi1.

Remark that under Models RS, the coefficients bj in front of xij that we estimate with GEE are not
quite the same as the coefficient bj in the mixed model, as the former are estimates of the marginal
(population averaged) effects while the latter are estimates of the conditional (subject specific) effects
(McCulloch and Searle, 2000, Chapter 8). More precisely, with two covariates and one random effect,
the RS model is the conditional model

P½Yi ¼ 1 j q; xi� ¼
exp fx1iðqþ b1Þ þ x2ib2g

1þ exp fx1iðqþ b1Þ þ x2ib2g
; ð12Þ

where the random effect q 	 Nð0;s2Þ and the covariates xij 	 Nð0; s2
1Þ for j ¼ 1; 2. The procedure

proposed here approximates the marginal probability

P½Yi ¼ 1 j xi� ¼
Z

exp fx1iðqþ b1Þ þ x2ib2g
1þ exp fx1iðqþ b1Þ þ x2ib2g

fðq=sÞ
s

dq ; ð13Þ

where f is the standard normal density, using

P½Yi ¼ 1 j xi� ¼
exp ðxi1g1 þ xi2g2Þ

1þ exp ðxi1g1 þ xi2g2Þ
: ð14Þ

It is known that (14) can approximate the marginal logistic model with random effects (13) (e.g.,
Zeger et al., 1988). In addition, while the estimators ĝg1 and ĝg2 for (14) depend on the particular
simulated values of x1 and x2, the summaries presented in Table 1 represent averages over 500 differ-
ent simulated datasets. Therefore, in order to assess the efficiency of the estimates we compare them
with a Monte Carlo approximation of E½ĝg1� and E½ĝg2� where the expectation is taken with respect to
x1 and x2. In Table 1 we present the parameters bj, j ¼ 1; 2 from (12), the Monte Carlo estimates for
gj obtained using the approach just described and the average GEE estimates produced by solving (9).
One should note that, not surprisingly, jgjj�j bj j for j ¼ 1; 2 as is the case when parameters for condi-
tional and marginal mixed models are compared. Note that when the true model is not known, one
can use the approximation for the values of gj given by Zeger et al. (1988, p. 1054), that is based on a
Gaussian approximation to the logistic function.

While we have freedom over all the simulation parameters we decided to focus on those we identi-
fied as the most important with respect to their effect but also as important in practice: 1) the size of
the effects, b; 2) the number of clusters, K; 3) the number of strata in each cluster, S; 4) the variance
of the random effects, s2.
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For Models RI, we expect likelihood based methods to perform best, as under these models indepen-
dence corresponds to the true model. As can be seen from Table 1, this is indeed the case: the coefficient
estimates are unbiased and their variance is best estimated by the naive variance estimator, V̂VI .

Inference under Models RS yields different results, as under these models the coefficients estimated
with GEE are attenuations of the coefficients used in the conditional model. However, we note that on
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Table 1 Average value (sample variance) of regression coefficient and variance estimators under Mod-
els RI and RS based on 500 simulations.

Models RI
K ¼ 5, S ¼ 40

s2 ¼ 0:5 s2 ¼ 2:5

Estimator b1 ¼ 0:75 b2 ¼ 0:5 b1 ¼ 0:75 b2 ¼ 0:5

Coefficients 0.75 (0.016) 0.51 (0.015) 0.76 (0.015) 0.50 (0.014)
Naive var. 0.015 0.014 0.015 0.014
Robust var. 0.012 0.011 0.012 0.011

K ¼ 40, S ¼ 20

s2 ¼ 0:5 s2 ¼ 2:5

Estimator b1 ¼ 0:75 b2 ¼ 0:5 b1 ¼ 0:75 b2 ¼ 0:5

Coefficients 0.75 (0.0037) 0.50 (0.0036) 0.75 (0.0036) 0.50 (0.0035)
Naive var. 0.0038 0.0036 0.0038 0.0036
Robust var. 0.0037 0.0035 0.0037 0.0035

Models RS
K ¼ 5, S ¼ 40

s2 ¼ 0:5 s2 ¼ 2:5

Parameter b1 ¼ 0:75 b2 ¼ 0:5 b1 ¼ 0:75 b2 ¼ 0:5
(conditional)
MC estimate g1 ¼ 0:660 g2 ¼ 0:478 g1 ¼ 0:515 g2 ¼ 0:427
(marginal)

Coefficients 0.68 (0.100) 0.48 (0.015) 0.57 (0.295) 0.44 (0.016)
Naive var. 0.015 0.014 0.016 0.014
Robust var. 0.082 0.012 0.238 0.012

K ¼ 40, S ¼ 20

s2 ¼ 0:5 s2 ¼ 2:5

Parameter b1 ¼ 0:75 b2 ¼ 0:5 b1 ¼ 0:75 b2 ¼ 0:5
(conditional)
MC estimate g1 ¼ 0:660 g2 ¼ 0:478 g1 ¼ 0:515 g2 ¼ 0:427
(marginal)

Coefficients 0.67 (0.013) 0.48 (0.0033) 0.53 (0.039) 0.43 (0.004)
Naive var. 0.0037 0.0035 0.004 0.003
Robust var. 0.014 0.0034 0.035 0.003
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average, coefficient estimates are close to the “theoretical” marginal coefficient gj. Also, since under
this setup working independence is not the true model, we expect robust methods to outperform their
naive counterparts. From Table 1 one can see that an increase in the variance of the random effects
makes the attenuation more important. But more importantly, we note that the naive variance estima-
tor is grossly inappropriate in such cases as its average value is nowhere near the sample variance of
the estimator. On the other hand, the robust variance estimator seems to perform well even under the
Models RS.

5 Application: Analysis of Bison Data

The objective of this analysis is to investigate the link between the distribution of the plains bison
population of Prince Albert National Park (53
440N, 106
400W), Saskatchewan (Canada), and the
spatial patterns of landscape attributes. Within the park, the landscape is 85% forested, and within this
forest matrix are interspersed meadows (10%) and lakes and rivers (5%) (Fortin et al. (2003)). Agri-
cultural lands are found next to the park, and they are potentially accessible to bison. This study of
habitat selection was based on the locations of nine female bison equipped with global positioning
system (GPS) radio-collars. Bison were located every hour, twice a week from 2 September 2005 to 2
December 2005.

We studied fine-scale habitat selection using the conditional logistic regression model (1), whose
linear predictor is referred to as resource selection function (RSF). An RSF compares landscape attri-
butes at animal locations to the attributes at random locations (Manly et al. (2002)). Because bison
could not travel to every location found within their range during the 1 hour time interval, we used a
case-control design in which each visited location (Y ¼ 1) was paired to 10 random locations (Y ¼ 0).
Random locations were drawn within a circular plot (300 m in radius) centered around each observed
location. This radius of 300 m captured 85% of the distance moved within 1 hour, and thus should
reflect locations that are available to the animal within that time interval. Such case-control designs,
where availability is restricted in space, are now commonly used in ecology (Compton et al. (2002),
Johnson et al. (2002), Boyce et al. (2003)).

For each bison, strings of 48 locations (one location at every hour for 48 hours) separated by 120
hours were gathered. Eight of the bison yielded fourteen 48-hour strings while one animal only
yielded nine strings due to a malfunction of the GPS collar. Since strings of locations were separated
by 120 hours and since radio-collared bison were also largely independent from one another (on
average, pairs of bison were located within 100 m from each other 2.7% of the time), we treat the
8� 14þ 1� 9 ¼ 121 strings as uncorrelated clusters in the analyses. Based on a classified Landsat
TM satellite image in a geographic information system, the study area was separated into seven major
habitat classes: agricultural lands (“agric” in Table 2), meadow, conifer stand (“conif” in Table 2),
deciduous stand (comprised mostly of aspen), water (including ponds, lakes and rivers), riparian area
(“riparian” in Table 2), and road (including hiking trails and gravel roads, all of which are not fre-
quently used by visitors). Habitat classes were coded using 6 dummy variables, with deciduous stands
being used as the baseline category. For each observed and random location, we also quantified the
proportion of a circular plot (300 m in radius) centered on the locations that was comprised of mea-
dow. Note that habitat classes and proportion of meadow are variable from cluster to cluster but the
large number of clusters ensures that covariate effect estimates are based on many observations.

RSF were built using matched case-control logistic regression. Models were then compared on the
basis of their AIC and QIC, as well as based on the p-values associated with naive and robust Wald
tests.

Results in Table 2 revealed that bison distribution was linked to multiple landscape attributes. The
probability of bison occurrence increased in areas surrounded (i.e., within 300 m) by a large propor-
tion of meadows. Relative to deciduous stands, bison selected meadows, agricultural lands, and roads.
The strength of meadow selection decreased, however, as the proportion of meadows increased within
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a radius of 300 m. Also, bison avoided conifer stands and riparian areas. Interpretation of the effect of
water distribution on bison spatial patterns varied depending on whether or not the correlation in the
successive bison locations was accounted for in inferences. Indeed, the naive Wald test associated with
the water coefficient had a p-value of 0.08, whereas the robust equivalent had p-value of 0.30. Also,
AIC indicated that an RSF including a negative coefficient for water seems preferable to a model
without water, while QIC points towards the model that excludes water. Model comparisons thus
illustrate that the consideration of the correlation in the data might lead to different interpretation of
factors influencing the probability of animal occurrence in complex landscapes.

6 Discussion

We have considered conditional logistic regression when matched sets can be correlated. We have
shown how to rewrite the likelihood score equations in a fashion that allowed for an easy extension to
GEE. We have demonstrated that such an approach yields valid inferences. We have also illustrated
how, under complex correlation schemes, robust inferences based on GEE with working independence
might lead to conclusions that are more accurate than what one would obtain using likelihood-based
methods. This fact transpired in the bison data analysis, where the differences between the robust and
naive analyses suggest an underlying (possibly spatio-temporal) correlation structure among the
matched sets.

In case of small samples, the present treatment could potentially be improved upon by using the mod-
ified variance estimator of Fay and Graubard (2001). Also of interest in this case would be the specifi-
cation of working correlation structures other than independence. In the latter case, further investiga-
tion is needed to overcome the difficulties resulting from the constraints as discussed in Section 2.3.
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Table 2. Summary of the Conditional logistic regression models (RSF) fitted to
the bison data. “PROPMD300” stands for the proportion of meadows within a
300-m radius, while “meadint” represents the meadow�PROPMD300 interaction.

Complete model (AIC = 24122.984, QIC = 24143.07)

Variable b̂b
ffiffiffiffiffi
V̂VI

p
Naive p-value

ffiffiffiffiffiffi
V̂VG

p
>Robust p-value

PROPMD300 0.644 0.252 0.0106 0.336 0.0558
meadow 1.464 0.065 <0.0001 0.118 <0.0001
meadint �0.904 0.246 0.0002 0.424 0.0328
conif �0.539 0.061 <0.0001 0.100 <0.0001
water �0.164 0.093 0.0793 0.159 0.3031
riparian �0.566 0.281 0.0440 0.240 0.0184
agric 1.213 0.413 0.0033 0.092 <0.0001
road 0.875 0.106 <0.0001 0.163 <0.0001

Model without water (AIC = 24124.162, QIC = 24140.40)

Variable b̂b
ffiffiffiffiffi
V̂VI

p
Naive p-value

ffiffiffiffiffiffi
V̂VG

p
Robust p-value

PROPMD300 0.581 0.250 0.0198 0.32380 0.0726
meadow 1.471 0.065 <0.0001 0.11718 <0.0001
meadint �0.862 0.245 0.0004 0.42149 0.0408
conif �0.525 0.061 <0.0001 0.09861 <0.0001
riparian �0.549 0.281 0.0505 0.23879 0.0215
agric 1.223 0.413 0.0031 0.08855 <0.0001
road 0.885 0.106 <0.0001 0.16204 <0.0001
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Zeger et al. (1988) propose a GEE-based approach to subject specific inferences. It would be inter-
esting to see if their method could be adapted to our context and to compare the inference thereby
obtained to that obtained with maximum likelihood or partial quasi-likelihood.

7 Proofs

Proof of Lemma 2.1 It is easily seen that for any j ¼ 1; . . . ;N,

Lð�jÞðbÞ ¼
exp f

PN
i¼1 b>xiYi � ð

PN
i¼1 YiÞ b> xjgP N

mð Þ
l¼1 exp f

PN
i¼1 b> xivli � ð

PN
i¼1 vliÞ b> xjg

:

But
PN

i¼1 Yi ¼
PN

i¼1 vli ¼ m, which means that Lð�jÞðbÞ ¼ LFullðbÞ � exp ð�m b> xjÞ=
exp ðm b> xjÞ ¼ LFullðbÞ:

Proof of Lemma 2.2 Let
P N�1

m�1

� �
l¼1 denote a sum over all N-vectors ~vv

ðiÞ
l such that ~vv

ðiÞ
lj 2 f0; 1g,P

j ~vv
ðiÞ
lj ¼ m and ~vv

ðiÞ
li ¼ 1. Because the Yi are binary, we have that

mi ¼ P Yi ¼ 1

���� PN
j¼1

Yj ¼ m;X

 !

¼
exp ðqþb> x>i Þ

1þexp ðqþb> xiÞ
P N� 1

m� 1

� �
l¼1

Q
h 6¼i

exp fðqþb> xhÞ ~vv
ðiÞ
lh g

1þexp fðqþb> xhÞ ~vvlhðiÞgP N
mð Þ

l¼1

QN
i¼1 ½exp ðqþ b> xi vliÞ=f1þ exp ðqþ b> xiÞg�

¼ eb>xi

P N� 1
m� 1
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l¼1 exp

PN
h¼1
h6¼i

b>xh~vvlhðiÞ
� �

P N
mð Þ

l¼1 exp ð
PN

h¼1 b> xhvlhÞ
: ð15Þ

After applying Lemma 2.1, the denominators of (4) and (15) are the same. To show that the numera-
tors are equal, notice that in (4), the only terms in the sum over l are those with vli ¼ 1. This leaves
us with a sum over N� 1

m� 1

� �
N-vectors with 1 in position i and whose elements in other positions add

up to m� 1, which, after applying Lemma 2, is exactly the numerator of (15). The proof of (5) is
similar to the proof of (4) since E½Yi � Yj j

PN
k¼1 Yk ¼ m;X� ¼ PðYi ¼ 1; Yj ¼ 1 j

PN
k¼1 Yk ¼ m;XÞ and

the latter probability can be expanded as in (15).

Proof of Theorem 2.3 We have to show that DðcÞ > ðVðcÞ IndepÞ�1 ¼ X*ðcÞ > or, equivalently, that
X*ðcÞ >VðcÞ Indep ¼ DðcÞ >. For ease of notation, we drop the superscript ðcÞ for the remainder of this
proof. Because two responses in a same stratum are correlated and responses from different strata are
uncorrelated, VIndep will be block diagonal. The element in position ði; jÞ of VIndep will therefore be

Vij ¼
0; i and j from different strata
mið1� miÞ; i ¼ j
mij � mimj; i 6¼ j; i and j from same stratum ;

8<
:

where the formulas for mi and mij are given by equations (4) and (5), respectively. Let us now calculate the

element in position ði; jÞ of X*>VIndep. Since VIndep is block diagonal, this element is given by
P

l x*liVlj,
where the sum is over all columns of X*> (rows of X*Þ and all rows of VIndep corresponding to observa-
tions from the same stratum as that of the element corresponding to column j of VIndep. We then getP

l
x*liVlj ¼

P
l

x*liðmlj � mlmjÞ

¼
P

l
x*li

P
h
vhlvhjwhðbÞ �

P
k
vklwkðbÞ

	 
 P
g
vgjwgðbÞ

( )" #
; ð16Þ
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where
P

k and
P

g denote the sum over all N
m

� �
possible vectors comprised of N � m zeros and m

ones, and where whðbÞ ¼ exp ð
P
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which is exactly Eq. (16).
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Correction

Biometrical Journal 2008, 50, 97–109

Inference Methods for the Conditional Logistic Regression
Model with Longitudinal Data

Radu V. Craiu, Thierry Duchesne, and Daniel Fortin

Unfortunately, in this article, the equation on page 101 is incorrect and should have been replaced in
the proof stage. We apologize for this error. For the correct equation see below.

Z YS

s¼1

exp f
Pns

i¼1 ysiðqþ b>xsiÞgP ns
msð Þ

l¼1 exp f
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