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a b s t r a c t

Conditional copula models are flexible tools for modelling complex dependence structures
in regression settings. We construct Bayesian inference for the conditional copula model
adapted to regression settings in which the bivariate outcome is continuous or mixed.
The dependence between the copula parameter and the covariate is modelled using cubic
splines. The proposed joint Bayesian inference is carried out using adaptive Markov chain
Monte Carlo sampling. The deviance information criterion (DIC) is used for selecting the
copula family that best approximates the data and for choosing the calibration function.
The performances of the estimation and model selection methods are investigated using
simulations.

© 2012 Elsevier Inc. All rights reserved.

1. Introduction

Central to modern statistical analysis is modelling and understanding the dependence between random variables.
However, the number of options at the statistician’s disposal is limited due to the sparsity of available multivariate
distributions. Copulas represent a flexible alternative in which one can bypass the use of multivariate distributions by using
Sklar’s theorem [48] to model separately the marginal distributions and the joint dependence structure.

In this paper we consider the bivariate case, as the extension to more than two responses requires a considerably
more complex statistical machinery. Let Y1 and Y2 be continuous random variables of interest with joint distribution
function H and marginal distributions F1 and F2, respectively. Sklar’s theorem ensures the existence of a unique copula
C : [0, 1]2 → [0, 1], which satisfies H(y1, y2) = C{F1(y1), F2(y2)}, for all (y1, y2) ∈ R2. Often, the function C assumes
a parametric form indexed by a copula parameter θ . A nice introduction to copulas and their properties is [38] and the
connections between various copulas and dependence concepts are discussed in detail in [31].

It should be noted that copula models have been mostly used for dependence between continuous random variables
(e.g., [9,10,14,17,28,46,59]) but there is growing interest in the study and applications of copula models for mixed (discrete
and continuous) data [21,13,42,52,53,55]. Recent work by [21,49] has shown that extra care is needed in performing and
interpreting statistical inference for copula models when some of the marginals are discrete.

While frequentist methods have been used predominantly in the copula literature (see, for instance, [20,22]), the
availability of powerful computers and ‘‘off-the-shelf’’ algorithms have recently led to a few Bayesian methods for copula
estimation, model selection and goodness-of-fit (see, for instance, [29,34,37,42,47,49]).

A natural extension of the classical copula model allows the copula parameter to vary with covariate values as in [35].
This idea, formalized by the conditional copula model of [40], allows for realistic copula modelling in regression settings
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[3,23]. For instance, if, in addition to Y1 and Y2, we have information on a covariate X , then the influence of X on the
dependence between Y1 and Y2 can be modelled by the conditional copula C(· | X), which is the joint distribution function
of U1 ≡ F1|X (Y1 | x) and U2 ≡ F2|X (Y2 | x) given X = x, where Yi | X = x has cdf Fi|X (· | x), i = 1, 2. For each x in the support
of X , it was showed in [40] that for continuous random variables the joint conditional distribution is uniquely defined by

HX (y1, y2 | x) = C{F1|X (y1 | x), F2|X (y2 | x) | x}, for all (y1, y2) ∈ R2.

In general, it is not known how the copula parameter varies with the covariate X . Moreover, visualizing the dependence
patterns in the data is not possible as the available samples are not identically distributed (usually there is no replication
at a given value of X). Therefore, one needs to use flexible methods to model the calibration function that characterizes the
relationship between the copula parameter and the covariates. This naturally leads to the use of semiparametric [3] and
nonparametric inferential tools [39,58] in the case of continuous marginals. Conditional copulas have been used mostly in
the context of financial time series [5,32,40,41] but have recently been used in classical regression models too [3].

In this paperwepropose joint Bayesian inference for a conditional copulamodel inwhich of interest, besides themarginal
models, is the dependence between the outcomes. Our approach can handle the case of continuous and mixed (binary
and continuous) outcomes. The Bayesian approach proposed here offers a number of advantages. First, it is a principled
method to produce full likelihood-based inference as recommended by [21,49] in the case of copula models with some
of the margins discrete. Second, the Bayesian approach offers a natural solution to the ‘‘propagation of errors’’ challenge
in which the variance of the marginal model estimators must be accounted for when assessing the variance of the copula
estimators. Within the Bayesian paradigm, the posterior distribution gives a full representation of the uncertainty in the
whole data and prior. An added bonus is that the simultaneous estimation of both marginal distributions’ parameters and
copula parameters results in better understanding of the parameter dependences and leads to better performance of model
selection criteria, as discussed in [47].

The shape of the calibration function is difficult tomodel in general andwe thus need to use flexiblemodels to capture its
structure. In this paper we consider a Bayesian cubic spline model in which the choice for the position of the knots is data-
driven. Sampling from the posterior distribution is performed using an adaptive MCMC algorithm following the principles
developed in [26]. For more details regarding the theory and implementation of adaptive MCMC, we refer to [11,25,43].

In the next sectionwe detail the statistical model alongwith the prior specification. Section 3 contains the computational
algorithm used to sample from the posterior and the criterion used formodel selection. The simulation study is summarized
in Section 4. The paper closes with a discussion in which future directions are outlined.

2. The model

In this section we describe the conditional copula model for the dependent outcome data. We separate the model
formulations used for continuous and for mixed outcomes (binary and continuous), as the two situations require different
computational algorithms to sample from the posterior distribution and the resulting estimators exhibit different efficiency.

2.1. Continuous outcomes case

The data consist of bivariate continuous random variables (V1, V2) and covariate X measured for n samples. Marginally,
Vi and X are related through Vi ∼ N (Xβi, σ

2
i ), for i = 1, 2. The conditional dependence between V1 and V2 is defined via a

conditional copula model with joint density

f (V1, V2|X) =

2
i=1

1
σi
φ


Vi − Xβi

σi


× c(1,1)


Φ


V1 − Xβ1

σ1


,Φ


V2 − Xβ2

σ2

 θ(X) ,
where c(a,b)(u, v|θ) = ∂a+bC(u, v|θ)/∂ua∂vb, for all 0 ≤ a, b ≤ 1.

An important part of the model is the specification of θ(X). In this paper we assume that X ∈ R and follow [3,4] by
assuming that g(θ) = η(X) where g is a known function that maps the support of the copula parameter onto the real line
and η : R → R is the unknown calibration functionwewant to estimate.We adopt the flexible cubic splinemodel suggested
by [50] in which

η(z) =

3
j=0

αjz j +
K

k=1

ψk(z − γk)
3
+
, (1)

where a+ = max(0, a). It is well known that the performance of spline-based estimators are influenced by the location of
the knots γ1, . . . , γK . In our model this choice is automatic and data-driven.

2.2. Mixed outcomes case

In the mixed outcome case, the response consist of one binary and one continuous random variable, denoted Q and W ,
respectively. We are interested in statistical inference for the marginal logistic and linear regression models but also the
estimation of the calibration function.
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For the response (Q ,W )with covariate X we assume the marginal models

Pr(Q = 1|X) =
exp(Xβ1)

1 + exp(Xβ1)
,

W |X ∼ N (Xβ2, σ2
2).

The dependence betweenQ andW is defined using a parametric conditional copula C{·, ·|θ(X)}. Using the derivations in [53]
we obtain the contribution of the jth sample to the likelihood

Pr(Qj = a,Wj|Xj, ω) =
1
σ2
φ


Wj − Xjβ2

σ2


×


c(0,1)


exp(aXjβ1)

1 + exp(Xjβ1)
,Φ


Wj − Xjβ2

σ2

 θ(Xj)

1−a

×


1 − c(0,1)


exp{(1 − a)Xjβ1}

1 + exp(Xjβ1)
,Φ


Wj − Xjβ2

σ2

 θ(Xj)

a

, (2)

where a ∈ {0, 1} and ω represents the vector of all the parameters involved in the model.
The computational challenges encountered when performing Bayesian inference for the logistic model are alleviated

if one uses a latent variable formulation in which Y ∼ Logistic(Xβ1) and Q = 1(Y ≥ 0), where Logistic(m) has density
fL(y|m) = exp(m−y)/{1+exp(m−y)}2 for any y ∈ R.We extend the above formulation to the conditional copulamodel (2).
Specifically, we assume that the dependence between the latent variable Y andW is characterized by the same conditional
copula C{·, ·|θ(X)} as in (2). If observed, the contribution of the jth sample to the complete data likelihood would be

f (Yj,Wj|Xj, ω) = fL

Yj|Xjβ1

 1
σ2
φ


Wj − Xjβ2

σ2


× c(1,1)


FL


Yj|Xjβ1


,Φ


Wj − Xjβ2

σ2

 θ(Xj)


. (3)

It is not hard to see that (2) can be obtained from (3) by averaging over the latent variables. For instance, sinceQj = 1(Yj ≥ 0),

Pr(Qj = 0,Wj|Xj, ω) = Pr(Yj < 0,Wj|Xj, ω)

=

 0

−∞

fL

Yj|Xjβ1


× c(1,1)


FL


Yj|Xjβ1


,Φ


Wj − Xjβ2

σ2

 θ(Xj)


dYj ×

1
σ2
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−∞

∂

∂Yj
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1

1 + exp(Xjβ1 − Yj)
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dYj ×

1
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Wj − Xjβ2
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1

1 + exp(Xjβ1)
,Φ


Wj − Xjβ2

σ2

 θ(Xj)


1
σ2
φ


Wj − Xjβ2

σ2


,

and the last expression is exactly (2) in which a = 0. Although the twomodels (2) and (3) are equivalent, the latent variable
formulation leads to the efficient data augmentation algorithm that will be discussed in detail in Section 3.

The usual dependence measures can be used in the bivariate continuous and mixed outcome models. However, in the
case in which at least one variable is discrete, the dependence parameters are functions of all the parameters in the model,
as discussed by [21,49]. For instance, conditional on the covariate X , the population value of the Kendall’s tau between Q
and W is

τ(ω|X) = 4E{H(Q ,W |X)|X} − 1 =
3 + 2 exp(β1X)+ 3 exp(2β1X)

{1 + exp(β1X)}2

− 4


R


1
σ2
φ


w − Xβ2

σ2


× C


1

1 + exp(Xβ1)
, Φ


w − Xβ2

σ2

 θ(X)
dw, (4)

where H(·, ·|X) is the conditional joint cdf of (Q ,W ) given X . The integral in (4) is generally intractable but can be
approximated via Monte Carlo integration. Moreover, the parameters θ(x) and τ(x) are no longer in a one-to-one
correspondence, as is the case for continuous outcomes. Implicitly, one has to decide whether the model is parametrized
using θ or τ and in this paper we choose to work with the former.

2.3. Prior specification

While the prior distributions used in a normal regression model are well understood (e.g., see [18]), recent work of
[6,15] has shown that the same vague priors have a very different effect on the coefficients of a logistic regression model.
Therefore, the priors for (β1, β2, σ2) are different for the continuous and mixed outcomemodels. In our simulations we use
only one covariate. For the continuous outcome model we have specified the following priors

β1 ∼ N (0, 10),
β2 ∼ N (0, 10),
σ2 ∼ InvGam(0.1, 0.1).
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In themixed outcome case, we choose the prior distributions for themarginal logistic model so that the a priori marginal
distribution of pQ = Pr(Q = 1) is approximately Unif(0, 1), as recommended by [6].

β1 ∼ N (0, τ 2),
β2 ∼ N (0, 10),
σ2 ∼ InvGam(0.1, 0.1),

where the choice for τ depends on the range of the covariate X . In our simulations, −1 ≤ X ≤ 1 and τ = 3.
For the prior specification of the parameters involved in the cubic spline we follow [16] and fix the maximum number

of knots that one allows in the model, denoted by Kmax. The range spanned by the observed values of covariate X is divided
into Kmax intervals of equal length, I1, . . . , IKmax , and we assume that each interval Ik contains at most one knot. In order
to complete the model specification, we introduce the auxiliary random variables {ζk : 1 ≤ k ≤ Kmax}, where for all
k ∈ {1, . . . , Kmax}

ζk =


1 if there is a knot γk ∈ Ik,
0 otherwise.

The model (1) becomes then

η(z) =

3
j=0

αjz j +
Kmax
k=1

ζkψk(z − γk)
3
+

(5)

and one can see that the number of non-zero terms in the sum depends on the values of ζ1, . . . , ζKmax . We expand themodel
to include the latent variables ζk and define their sampling distributions. Specifically, if we let |ζ | =

Kmax
k=1 ζk be the number

of knots that are used in the model then

p(|ζ | | λ) ∝
λ|ζ |

|ζ |!
1{|ζ |≤Kmax},

i.e., |ζ | follows the right truncated Poisson distribution with parameter λ, and maximum value Kmax. In addition,

p(ζ | |ζ |) =


Kmax

|ζ |

−1

,

p(ζ |λ) = p(ζ | |ζ |)p(|ζ | | λ).

The form of p(ζ | |ζ |) implies that, given a number of knots for the model, all configurations of intervals containing a knot
are equally likely. The priors for all the parameters involved in the spline model for η are chosen regardless of the type of
outcome as

λ ∼ Bin(Kmax, p = 0.5),
αj ∼ N (0, 10), ∀0 ≤ j ≤ 3
ψk ∼ N (0, 10), ∀1 ≤ k ≤ Kmax

γk ∼ Unif[Ik], ∀1 ≤ k ≤ Kmax.

Unlike [16] who pre-select and fix the value for λ, we let the choice be data-driven. Similar hierarchical models used in
Bayesian regression have been shown to correct for multiplicity; see [12,45]. This was motivated by simulations showing
that an unsuitable value for λ can result in poor fits. One can see that the number of parameters grows linearly with Kmax and
we have used throughout our simulations Kmax = 4. Our simulation studies have showed that using a large Kmax does not
improve the fit, but slows down significantly the computational algorithmwe use to sample from the posterior distribution.

3. Estimation and model selection

The Bayesian paradigm dictates that inference must be based on π , the posterior distribution of the parameter vector.
Given the complexity of both the continuous and mixed outcome models, it is no surprise that π is analytically intractable
and its properties can be studied only via Monte Carlo methods. In the next section we describe the Markov chain Monte
Carlo (MCMC) algorithms [7,24] used to sample from π .

3.1. Markov chain Monte Carlo sampling from the posterior distribution

The MCMC algorithms for the continuous and mixed outcomes are very similar. We detail below the sampler for the
mixed outcome and the section ends with a remark concerning the changes required for the model with continuous
outcomes.
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3.1.1. Mixed outcome case
The general form of the algorithm follows the data augmentation (DA) principle [56] based onwhich we build an ergodic

Markov chain with values in the parameter space and whose stationary distribution is π . The DA chain is built by sampling
alternatively from: (a) the conditional distribution of the latent (or missing data), Dmis = (Y⃗ , ζ⃗ ) given the parameters and
the observed data Dobs = (Q⃗ , W⃗ , X⃗), and (b) the conditional distribution of the parameter ω given the complete data,
Dcom = (Dmis,Dobs). Again, the conditional distributions needed for (a) and (b) do not have canonical forms, so we use
either the Random Walk Metropolis (RWM) or the Independent Metropolis (IM) algorithm to update each component in a
systematic-scan Gibbs-like scheme.

Denote (ωt , Y⃗t , ζ⃗t) the state of the Markov chain at time t , where ω = (β1, β2, σ2, γ⃗ , α⃗, ψ⃗, λ), (we use γ⃗ to denote the
vector of all the knots used, and α⃗, ψ⃗ are defined similarly). We detail below the update at time t +1 of each parameter and
missing data value:

β ’s: For each βi, i = 1, 2 we use a RWM-within-Gibbs to sample from the conditional distribution π(βi|ωt \

βi,Dmis,Dobs) ∝ π(ω|Dmis,Dobs). The proposal in this case is N (βi,t , s2t ). During an initialization period of 1000
iterations, the standard deviation of the proposal is kept fixed and afterwards it is adapted as st =


SV (βi,1:t)+ ϵ,

where SV (βi,1:t) is the sample variance of the samples βi,1, . . . , βi,t and ϵ = 0.01 is introduced in order to safeguard
against degenerate situationswhere SV may be zero. Note that the normalizing constant for the conditional distribution
π(βi|ωt \ βi,Dmis,Dobs) does not influence the acceptance probability needed for the RWM transition kernel.
This is generally valid for all the conditional distributions described below and explains why the algorithm can be
implemented even when the conditional distributions have intractable normalizing constants.

σ2: We prefer to work with unrestricted state spaces, so we parametrize the model in terms of ξ2 = ln σ2 and run
the MCMC chain for ξ2. After the sampling is completed, we transform the ξ2-samples back to the σ2 scale. Because
the range of ξ2 is R, we can use the RWM-within-Gibbs transitions to sample from the conditional distribution
π(ξ2|ωt \ ξ2) ∝ π(ω|Dmis,Dobs). The same adaptive procedure is used as for the β updates.

Y ’s: The latent variables Yi are updated using an IM-within-Gibbs. Note that the auxiliary variables Y1, . . . , Yn are different
from the ones used by [42,49]. Without the copula structure in the model, the conditional distribution of Yi|(ωt ,Dmis \

Yi,Dobs) is truncated logistic (truncated to (0,∞) if Qi = 1 and to (−∞, 0) if Qi = 0) and can be sampled using
the inverse cdf method. We use the truncated logistic as the independent proposal distribution in each update. The
observed acceptance rates are above 80%.

α’s: There is no range restriction for each αi and no direct sampling strategy is possible, so we use the RWM-within-Gibbs
with the same adaptive regime as the one described for β .

ψ ’s: If ζk,t = 1 we use the RWM-within-Gibbs strategy to update ψk using the same adaptive regime as the one described
for β . If ζk,t = 0, ψk is not updated and thus ψk,t+1 = ψk,t .

ζ ’s: The updates are performed using the Metropolis-within-Gibbs strategy for the entire latent variable vector ζ⃗ =

(ζ1, . . . , ζKmax). For updating ζ⃗ we use two type of moves: we either add/delete a component (i.e. transforming a zero
component into a one or vice versa) or swap two components. In our applications, we choose with probability 1/2 to
add/delete a component chosen at random andwith probability 1/2 to permute two components of ζ⃗ that are selected
at random.

γ ’s: If ζk,t = 1we use an IM update for γk using as proposal the prior distribution of γk. If ζt,k = 0 then γt+1,k is not updated.
λ: For λwe use an IM update with proposal distribution equal to the prior, i.e. Bin(0.5, Kmax).

This automatic approach to tuning the sampling algorithm leads to a more balanced comparison between the models
that are fit under various copula families. This is desirable because Bayesian model comparison results depend crucially on
the ability of sampling equally well from the posterior distributions produced by all the models considered.

Remark. Samples from the posterior distribution in the continuous case are obtained using an algorithm very similar to
the one we just described. All the parameters and the auxiliary data ζ1, . . . , ζKmax are updated using the same strategies.
However, an important difference is that we do not need to introduce the auxiliary variables Y1, . . . , Yn, so we obtain in this
case a faster MCMC algorithm.

3.2. Model selection

We distinguish two model selection problems associated with the conditional copula models discussed here. The first
one involves the choice of the parametric copula family that is suitable for the observed data. The second problem is
deciding whether a simple parametric specification of the calibration function is suitable for the data at hand. While the
spline formulation is flexible enough, one should be aware that the increased complexity of the spline model comes at
a computational price. The posterior distribution has support of significantly higher dimension than, say, a model with a
constant calibration function.

Among the Bayesian model selection techniques developed for copula-based inference we mention the work of [47]
who examined the performance of the deviance information criterion (DIC; [54]) for copula selection, [44] who discussed
the performance of a number of model selection tools including Bayes factors [33], predictive functions and the CPO statistic
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(see [30,29]) who chose the model with the largest posterior probability. However, some of these methods cannot be
applied directly to the conditional copula model considered here. For instance, a meaningful comparison of the posterior
probabilities obtained for differentmodels relies on stable estimates of the Bayes factors which is often impossible when the
corresponding posterior distributions have supports of different dimensions. This is the case when we compare the models
with different specifications of the calibration functions. Our investigations have indeed shown that the estimates of Bayes
factors in this case are too volatile to be practically useful. In the case of copula selection (when the copula parameter is
constant), [29] use a common prior for the Kendall’s τ across different families. For the models presented here, we could
not adapt a similar approach as the prior specification of τ is done indirectly through the specification of priors for the
parameters defining the cubic spline model. When taking into account the fact that the range of τ is different for different
copula families, one realizes the difficulty to set up the spline model priors so that the models are a priori on equal footing.

We explore here the use of DIC for selecting the copula family and choosing between the general spline and a simple
parametric form for η. The DIC proposed by [54] is defined as

DIC(M) = 2D(ω)− D(ω̄) (6)

where themodel devianceD(ω) = −2 ln p(Dobs|ω,M) is twice the negative observed-data log-likelihood, and the notation
A represents the expectation of Awith respect to the posterior distribution. Models with the lowest DIC value are preferred.
The theoretical properties of DIC have been studied by [8,36,54]. All the required expectations in (6) are generally intractable
analytically so they are computed via Monte Carlo integration.

4. Simulation study

We performed a large number of simulations to study: (1) the spline model’s flexibility in capturing non-linear trends in
the calibration function and (2) the power to select the correct copula model and to determine the form of the calibration
function. Although the model can be implemented for continuous outcomes, we found that the more challenging setup, in
terms of estimation andmodel selection, occurs when the outcomes aremixed, discrete and continuous.We therefore focus
our simulation study solely on the mixed outcome scenario.

We have generated data under the Clayton copula family for two sample sizes, n = 150, 450. Three dependence patterns
are created using the following calibration functions:

C1: η(z) = ln(3);
C2: η(z) = ln{0.07z6 − 0.37(z + 1)(z − 0.5)+ 0.3};
C3: η(z) = ln{4.5 − 1.5 sin(πz)}.

The constant calibration C1 is useful in studying the performance of the spline model under the classical copula setting,
while C2 and C3 represent situations of weak and strong dependence, respectively. Since the focus of our analysis is on the
estimation of the calibration function, we keep the marginal parameters fixed at β1 = β2 = 5, σ2 = exp(0.25) ≈ 1.3 and
throughout the simulation study X ∼ Unif(−1, 1). Our simulations have shown that the goodness-of-fit improvement is
small, but the computational load is growing fast for large values of Kmax. In all our simulations, we have kept Kmax = 4,
although similar inference is obtained for all values in the set {4, . . . , 8}. In general, one can use a Bayesian cross-validation
procedure (see [57]) to find a suitable value of Kmax, but such an approachwill significantly increase the computational load.

The data is analysed using three copula families: Clayton, Frank and Gumbel with the corresponding link functions
gC (x) = ln(1 + x), gF (x) = x and gG(x) = ln(x − 1), respectively.

4.1. Performance of the MCMC algorithm

In all scenarios we have used 4 parallel chains to produce independent Monte Carlo samples that are used for the
Gelman–Rubin convergence diagnostics (see [19] for details). More precisely, each chain is used to draw 70,000 samples
from the posterior distribution and, after discarding the first 15,000 samples as burn-in, we retain every 20th sample for
computing the parameter estimates. While we could have used all the samples, the computation time of each estimate and
DIC value would have been much longer, but without much of a gain in efficiency, due to the high autocorrelation. The
burn-in and run time have been decided based on the Gelman–Rubin diagnostics. We have also used a much longer run
period of 200,000 samples for each chain in one scenario as a benchmark. The small differences observed (reported in the
Appendix) suggest that there is little Monte Carlo efficiency to be gained from running the chains longer. Different users
who would like to implement this approach to different data should run their own diagnostic tests and, based on them,
decide on the number of Monte Carlo samples. The initialization values for each chain are sampled at random using the
initial distributions: βi ∼ Unif(−2, 2), i = 1, 2, ξ2 ∼ Unif(0, 2), αj ∼ Unif(0, 0.1) for i = 0, 1, 2, 3, λ ∼ Unif{1, 2, 3} and
for each k ∈ {1, . . . , Kmax}, γk ∼ Unif(Ik), ζk ∼ Bernoulli(0.5) and ψk ∼ Unif(0, 0.1). It takes about 8 min and 25 min to
generate 100,000 draws from the posterior on a Dual Xeon X5680 CPU (3.33 GHz) for n = 150 and n = 450, respectively.

The posterior mean spline function η̂(z) is the Monte Carlo average of all ηi(z) that are obtained by plugging in the i-th
sampled values of α⃗, ψ⃗, γ⃗ and ζ⃗ in (5). The algorithm’s performance is quite robust to the choice of prior distribution for λ,
as we have registered very similar performance and estimateswhenwe changed the prior to uniform or a different binomial.
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Fig. 1. Values of the Gelman–Rubin when data of size n = 150 is generated using a Clayton copula under scenario C3.

The influence of ζ and (γ ,ψ) samples on the posterior estimations of η is complex. For instance, due to the form of (5), the
knots γk situated in the leftmost intervals Ik have a diminished influence on the final estimate. During simulations, we have
observed that switching a knot from say, I1 to I2 has little influence on the posterior mean of η(x) but certainly affects the
convergence diagnostic for the corresponding γ and ψ components. For this reason, we choose to produce Gelman–Rubin
diagnostic plots for the θ function itself. We illustrate these at four values of the covariate X, {−0.75,−0.25, 0.25, 0.75}.
Since the performance of theβ2 component of theMarkov chain is superior to that ofβ1, we have decided to present only the
latter one as it represents the ‘‘worst case scenario’’ for convergence. Herewe present some of the simulation diagnostics and
plots under Scenario C3. The corresponding figures for Scenarios C1 and C2 are included in the Appendix. The simulation
diagnostics do not change for the two sample sizes used so we report here the case n = 150. In Fig. 1 we present the
Gelman–Rubin diagnostic plots for β1, σ2, θ(−0.75), θ(−0.25), θ(0.25), and θ(0.75). One can see that even immediately
after burn-in, the R statistic is close to 1 which indicates that the chains mix well. The acceptance rates are between 10%
and 50%. The lower acceptance rates, around 10%, are registered for components of γ situated in the leftmost intervals
(lower values of the covariate) and the highest acceptance rates, around 50% are for the components of gamma situated
in the rightmost intervals (largest values of the covariate values). The transition kernels for the remaining parameters and
auxiliary variables exhibit acceptance rates between 20% and 35%.

Fig. 2 shows the autocorrelation plots for the same parameter values. The Appendix contains additional simulations
indicating that weaker dependence between the responses (under scenario C2) leads to smaller within-chain correlations.

The trace plots obtained from samples produced by one of the parallel chains are shown in Fig. 3.
In practice, one can combine the samples obtained from all the parallel chains to produce estimates for the parameters

of interest. In Fig. 4 we present the histogram of samples obtained for the parameters considered. Fig. 5 shows the Bayesian
posterior mean of θ(z) (dashed line) against the true function (solid line) and the 95% pointwise credible bands (dotted
lines).

4.2. Estimation

The plots presented show typical realizations of a single analysis. In order to get a more general view, we have analysed
100 data sets replicated under each scenario, C1, C2 and C3. The results are summarized in Table 1 where we show the
integrated squared bias (IBias2) the integrated variance (IVar) and the integrated mean squared error (IMSE) incurred
when estimating θ(z). The sample size affects significantly the efficiency of the estimator, a fact observed also in [3]. Not
surprisingly, using the correct copula to fit the data results in more precise estimates of θ(z), thus making the copula choice
an essential ingredient of the methodology proposed here. In the next section we illustrate the performance of the DIC
criterion for copula selection.

Table 2 reports the squared bias, variance and mean squared errors observed for the posterior means of β1, β2, σ2 in the
casewithn = 150 andn = 450.We can see fromTable 2 that inference for themarginal parameters is less sensitive to copula
selection. While the largest statistical efficiency is obtained under the correct copula, the ranking of the competing models
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Fig. 2. ACF plots when data is generated using a Clayton copula under scenario C3.

Fig. 3. Trace plots for samples obtained using one of the four parallel MCMC chains when data is generated using a Clayton copula under scenario C3.

depends on the calibration function. For instance, under C2, Clayton and Frank copulas produce similar performances, while
under C1 and C3 Clayton and Gumbel lead to better efficiency than the Frank family. We also note the significantly larger
MSE for β1 than β2, as the discrete response is less informative about the regression parameter.
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Fig. 4. Histograms of posterior samples obtained from all the parallel MCMC chains when data is generated using a Clayton copula under scenario C3. The
solid line marks the true parameter value.

Fig. 5. Posterior of θ(z) (dashed line) against the true function (solid line) and the 95% pointwise credible bands (dotted lines) when data is generated
using a Clayton copula under scenarios C1 (top row, left panel), C2 (top row, right panel) and C3 (bottom row). The fit is based on samples obtained from
all the parallel MCMC chains.
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Table 1
Integrated squared bias, variance andmean squared error computed from100 replicated data sets generated using the Clayton copula for the three scenarios
C1, C2 and C3. The figures shown in bold are obtained under the correct copula family.

Copula n = 150 n = 450
IBias2 IVar IMSE IBias2 IVar IMSE

Scenario C1

Clayton 8.72 27.77 36.49 3.00 16.80 19.80
Frank 395.45 62.46 457.91 352.04 59.77 411.81
Gumbel 2657.07 2172.18 4829.25 1100.38 315.37 1415.75

Scenario C2

Clayton 1.79 12.72 14.51 0.03 0.27 0.30
Frank 6.85 34.07 40.92 3.47 2.00 5.47
Gumbel 721.09 1550.19 2271.28 298.78 492.47 791.25

Scenario C3

Clayton 14.96 65.38 80.34 8.43 48.66 57.09
Frank 426.93 64.86 491.80 378.11 69.41 447.52
Gumbel 1862.32 1890.08 3752.4 1299.28 303.66 1602.94

Table 2
Squared bias, variance and mean squared error (×100) computed from 100 replicated data sets generated using the Clayton copula for the three scenarios
C1, C2 and C3.

Copula n Bias2 Var MSE
β1 β2 σ2 β1 β2 σ2 β1 β2 σ 2

2

Scenario C1

Clayton 150 1.00 0.10 0.003 46.80 2.35 0.48 47.80 2.45 0.48
450 0.2 0.01 0.001 17.6 1.23 0.17 17.6 1.24 0.16

Frank 150 47.30 7.33 1.24 250.74 100.63 18.28 298.05 107.97 19.52
450 9.1 1.74 0.27 107.96 45.85 9.26 117.06 47.59 9.53

Gumbel 150 9.50 0.59 0.02 97.88 5.73 1.08 107.39 6.33 1.09
450 0.12 0.78 0.02 49.22 40.41 0.38 49.34 41.18 0.40

Scenario C2

Clayton 150 0.56 0.04 0.09 42.00 2.85 0.72 42.56 2.89 0.81
450 0.04 0.03 0.01 18.60 1.08 0.16 18.63 1.10 0.17

Frank 150 0.78 0.03 0.04 42.10 3.02 0.73 42.87 3.04 0.77
450 0.06 0.02 0.01 18.46 1.10 0.16 18.52 1.12 0.17

Gumbel 150 0.05 0.002 0.03 72.05 4.48 0.95 72.10 4.48 0.98
450 0.07 0.05 0.01 29.83 1.37 0.22 29.91 1.42 0.23

Scenario C3

Clayton 150 0.01 0.53 0.01 63.80 41.91 0.52 63.82 42.44 0.53
450 0.07 0.001 0.001 11.79 1.27 0.18 11.86 1.27 0.18

Frank 150 45.45 11.54 1.49 2.21 97.91 15.89 266.78 109.45 17.39
450 5.29 1.37 0.11 73.49 32.88 3.19 78.78 34.25 3.30

Gumbel 150 11.33 0.37 0.29 114.81 10.51 1.49 126.14 10.88 1.78
450 6.19 0.17 0.03 36.44 2.72 0.35 42.63 2.89 0.38

4.3. Copula selection and hypothesis testing

In this section we investigate the power of the DIC criterion to select among a number of copula families the one that
fits best the data at hand. In order to assess the performance of DIC we have simulated 100 independent data sets of size
n = 150, 450 under scenarios C1, C2 and C3.

4.3.1. Copula selection
Each generated data set has been fitted using the Clayton, Frank and Gumbel copula families. In the left and right panels

of Fig. 6 we plot the DIC values obtained when using the full model based on Frank and Clayton, and Gumbel and Clayton
families, respectively, for n = 450. One can see that the DIC criterion does a good job at separating the three families and
the Clayton family is chosen in over 90% of the cases over its two competitors. The similar plot for n = 150, shown in Fig. 7,
indicates that with smaller sample sizes it is harder to select the correct copula. This is in agreement with [2] where it was
also noticed a 5%–10% decrease in the probability of selecting the correct copula when the sample size is decreased from
n = 500 to n = 200.
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Fig. 6. DIC values for the three copula families considered under scenario C1 (top row), C2 (middle row) and C3 (bottom row) for n = 450. Shown are
plots of the DIC values for Frank family (left panel) and Gumbel family (right panel) against DIC values for Clayton family.

4.3.2. Hypothesis testing for θ(z)
We have also evaluated the DIC’s power to detect whether a parametric form for the calibration function is suitable. Data

were simulated under scenarios C1, C2 and C3 and the DIC was computed for the full model using a spline specification
of η(z) and a constant or quadratic calibration function. Fig. 8 shows plots of the DIC computed under the two competing
models for 100 replicated data points under each scenario. The DIC chooses the constant calibration model about 50% of
the times under C1, as can be seen in the top panel of Fig. 8 and detects departure from the constant model in 75%–80% of
replicated data sets under scenarios C2 and C3. Onemay interpret the difficulty of choosing the constant calibration function
over the spline as confirmation of the latter’s good performance, since the constant is a degenerate splinewith all coefficients
equal to zero except for α0. The same simulations performed under n = 150 sample size (corresponding plots are included
in the Appendix) indicate that the power to separate the parametric and the spline calibration functions decreases when
samples are smaller.

One may wonder whether the additional effort required to compute the full spline model is justified. In Table 3 we
summarize 100 replicated data to illustrate the absolute relative bias induced when estimating Pr(Q = 1|W , X) under the
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Fig. 7. DIC values for the three copula families considered under scenario C1 (top row), C2 (middle row) and C3 (bottom row) for n = 150. Shown are
plots of the DIC values for Frank family (left panel) and Gumbel family (right panel) against DIC values for Clayton family.

constant and spline copula models. One can see that, under scenario C3, for different values of X and β = β1 = β2, the
relative bias of the predictions produced by the constant copula model can be significantly larger.

We have also tested DIC for its ability to select the spline model over a quadratic calibration function η(z) = a0 + a1z +

a2z2. We have included in the Appendix the plots corresponding to those in Fig. 8. They suggest that DIC favours the spline
model under scenario C3. This is not surprising as the calibration function under both C1 and C2 can be well approximated
by a quadratic, albeit a degenerate one in the case of C1.

In general though, once the constant calibration function is deemed inappropriate for the data at hand, one would be
hard put to decide on a particular polynomial degree to fit the data. The cubic spline model considered has the advantage of
fitting a wide range of functions η in automatic fashion. With smaller sample sizes one has to find alternative ways to select
the calibration function.

5. Conclusion and future work

We propose an approach for performing joint Bayesian inference for a conditional copula model for studying the
dependence between continuous ormixed outcomes. The approach proposed in the paper can be extended to othermarginal
models (e.g. probit regression and linear regression with Student-distributed errors). However, as in any Bayesian analysis,
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Table 3
Absolute relative bias estimates for θ(x) for the constant and spline copula models calculated under scenario C3 from 100 independent data replicates. The
values shown in bold are the true values of the parameters.

Model θ(−0.75) θ(−0.25) θ(0.0) θ(0.25) θ(0.75)

β1 = β2 = 5

True 0.135 0.783 0.954 0 1
Constant 0.452 0.170 0.0203 0 0
Spline 0.007 0.029 0.011 0 0

β1 = β2 = 2

True 0.062 0.696 0 0.022 0.832
Constant 0.483 0.010 0 3.400 0.130
Spline 0.069 0.005 0 0.222 0.013

β1 = β2 = 1

True 0.137 0.028 0 0.066 0.184
Constant 0.221 0.417 0 2.173 1.000
Spline 0.113 0.217 0 0.158 0.042

Fig. 8. Plot of DIC values for the model with a constant calibration function against values obtained for the model using a spline-specified calibration. The
plots are obtained under scenario C1 (top row, left panel), C2 (top row, right panel) and C3 (bottom row) with n = 450.

one must adapt to each new setting the computational algorithm required for posterior sampling. From this point of view
our analysis is restricted to the logistic and Gaussian marginals. The functional dependence between the covariate and the
copula parameter is modelled using a cubic spline model. In our simulations we have assumed that θ(x) ∈ R. We believe
that the method can be applied to copulas with multivariate parameters, but due to space and time limitations we have
not tackled such an extension. The DIC performs well when selecting the correct copula, but an alternative criterion is
required to determine whether a parametric calibration function is suitable for the data at hand. We are currently working
on extending this paper’s framework to additive models [27] that would allow us to handle more than one covariate while
keeping the computational burden within reasonable limits. We also investigate methods to expand the Bayesian approach
to more than two response variables. A promising direction is offered by the vine copula representation that has been used
successfully in constant copulamodels by [1,4,37,49,51]. However, for such complex structures, themodel selection problem
represents a serious obstacle which may require a different approach. We hope to report on these developments in a future
communication.
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Appendix A. Additional simulation results

Supplementary simulations related to this article can be found online at doi: to be provided by the journal.

Appendix B. Supplementary data

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.jmva.2012.03.010.
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