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9.1 Background and Introduction

Statistical genetics is a scientific discipline that covers any statistical analy-
sis of genetic data. The interplay between statistics and genetics has a long
history, dating back to the seminal work by Fisher almost a century ago to
confirm the genetic theory of chromosomal inheritance (Piegorsch, 1990). Re-
cent advancements in genotyping (i.e., collecting genetic data) technologies
have produced vast amounts of data, offering statisticians great opportunities
in methodological development, implementation and application. For exam-
ple, the high-dimensional genome-wide association studies conducted in the
last few years have led to the development of a catalog of novel statistical
methods for dissecting the genetic architecture of complex human traits; see,
e.g., Thomas et al. (2009) and Begum et al. (2012).

The types of genetic data available are quite diverse; they include micro-
satellites, single-nucleotide polymorphisms, copy number variations, DNA
methylation, and gene expression. The corresponding statistical methodolo-
gies are equally diverse, as illustrated by Bull et al. in Chapter 8. For clarity
and a more focused discussion, this expository piece is centered around studies
of genetic association between single-nucleotide polymorphisms and heritable
human traits. In the following, we first provide relevant genetic terminology.
We then formulate genetic association studies in terms of regression models in
which inferences on the regression coefficients are of interest. Using a published
genome-wide association study as an example, we first describe the commonly
used frequentist approaches to achieve testing and estimation objectives, and
we then discuss alternative Bayesian methods and associated advantages as
well as challenges. We conclude with discussions of other recent developments
in Bayesian statistical genetics, focusing on contributions made by Canadian
statisticians, and comment on future directions.
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9.1.1 Basic Genetic Terminology

The building blocks of the human genome are base pairs, which are part of
the DNA in each person’s chromosomes. There are about three billion base
pairs and over 99% are identical between individuals. A base pair that varies
in a population and has two variants (alleles) is called a single-nucleotide
polymorphism (SNP).

Let A and a denote the two alleles, and without loss of generality, let a be
the minor allele for which the population allele frequency, p(a), is such that
p(a) ≤ .5. This frequency is called the minor allele frequency (MAF) and some
terminology is based on this: a common SNP has MAF ≥ .05, a low frequency
SNP has .01 < MAF < .05, and a rare SNP or rare variant has MAF ≤ .01.

Although the exact number is a moving target, it is believed that there
are over 10 million common SNPs and even more rare variants (1000Genome-
sProjectConsortium, 2012). Human chromosomes are paired, with one inher-
ited from the mother and the other from the father. Therefore, at each SNP
location along the genome, there are two alleles forming a person’s genotype,
which can be AA, Aa, or aa.

9.1.2 Statistical Set-Up of Genetic Association Studies: Two
Intertwined Issues

Let Y be the trait (i.e., phenotype) of interest, e.g., the presence of Type 1
diabetes (T1D) or blood glucose level, and let X represent the genotype of
a SNP under study. Genetic association studies assess whether the response
variable Y varies between different levels of X.

For example, if individuals with genotype aa tend to have a higher risk of
developing T1D than individuals with genotype AA, then there is an associa-
tion between X and Y . To statistically assess the relationship between Y and
X, a so-called simple linear regression model can be considered if the trait is
(approximately) normally distributed (e.g., blood glucose level), viz.

Yi = α+ βXi + εi, εi ∼ N (0, σ2), (9.1)

where Yi is the trait value for individual i, Xi is the SNP genotype for this
individual, and ε1, . . . , εn represent independent random variations, which are
assumed to follow a Normal distribution with mean 0 and variance σ2.

In many applications, the three genotypes, AA, Aa and aa, are coded
numerically (additively) as X = 0, 1 and 2 to represent the number of copies
of the minor allele a. In that case, model (9.1) assumes that increasing X
by one unit will increase the Y value, on average, by β. This is also called
the linear additive model because the effect of two copies of the minor allele
(genotype aa, X = 2) is assumed to be twice the effect of 1 copy (genotype
Aa, X = 1). In some genetic settings, other genotype models may be used,
which we discuss in Section 9.1.3.
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If the trait of interest is binary (e.g., the presence of Type 1 diabetes,
T1D), the classical logistic regression can be used (Agresti, 2002),

logit{E(Yi)} = α+ βXi, (9.2)

where Yi indicates whether individual i has the disease (Yi = 1) or not (Yi =
0), E(Yi) = Pr(Y = 1) and

logit{Pr(Y = 1)} = log

{
Pr(Y = 1)

1− Pr(Y = 1)

}
is called the log odds. Model (9.2) implies that when increasing X by 1 unit
we expect an increase in the log odds value of Y by β, and the interpretation
of β is the well known log odds ratio (log OR). The log odds, rather than
just E(Yi), is used in (9.2) because it tends to give a better description of the
relationship between Yi and Xi.

In either regression setting, the primary objective of an association study is
to identify which SNPs are related to the trait; this is equivalent to comparing
the two hypotheses for each SNP, viz.

H0 : β = 0, H1 : β 6= 0.

It is in this context that we will describe in Section 9.2 the commonly used
frequentist and Bayesian approaches to assess whether the evidence provided
by the data supports H0 or H1.

To a statistician, this may seem like an exceedingly simple problem. How-
ever, significant complications arise in applications. For example:

a) additional variables (also known as covariates) such as sex and age may
need to be included in the regression models (9.1) or (9.2);

b) measurement errors occur in both X and Y ;

c) individuals’ phenotypes and genotypes can be correlated;

d) individuals may come from different populations;

e) multiple (common or rare) SNPs need to be jointly analyzed to increase
power; and

f) multiple (binary, continuous or both) traits can be of interest.

Proper statistical treatment for any of these issues requires experience in sta-
tistical genetics and genetic epidemiology. Since we do not assume here that
the reader has such prior knowledge, we will focus on explaining some of the
basic statistical techniques used for genetic association studies. We briefly
discuss some more complex issues in Section 9.4.

Once a trait-associated SNP has been identified, it is of interest to report
the corresponding genetic effect size such as log OR, β in (9.2), and to plan
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follow-up studies that seek to replicate the initial finding. An interesting sta-
tistical question arises here. Let us assume that β is the true log OR of an
associated SNP, and without loss of generality, assume that the minor allele of
the SNP increases the risk of the disease under study (i.e., OR > 1 and β > 0).

Let β̂ be an estimated value reported from a study based on (9.2). It is known

that β̂ is unbiased, which means that if we were to repeat the experiment
over and over again by collecting a different sample from the same popula-
tion and applying the same statistical analysis, then the average of all the
values of β̂ would be β. However, not all studies are successful in identifying
the association and only studies with sufficiently large β̂ values are significant
(i.e., result in rejecting H0). Therefore, β̂ reported from a significant study
is on average bigger than the true value. How to correct for this upward bias
requires non-trivial statistical remedies, which we discuss in Section 9.3.

9.1.3 GWAS and an Example

Many current “high-throughput” genetic studies, such as the genome-wide as-
sociation studies (GWAS) or next generation sequencing (NGS) studies, com-
prehensively investigate the whole genome to identify trait-associated SNPs.
In that case, the scientific objective is to look for association between a trait
and genotypes of hundreds of thousands or millions of SNPs.

Let Xij be the genotype for individual i at SNP j with i ∈ {1, . . . , n} and
j ∈ {1, . . . , p}. One of the key features of GWAS and NGS is n � p, where
n is in the range of 1,000 to 10,000 while p is in the range of 1 million for
GWAS (or 10 millions for NGS). Although joint analyses of multiple SNPs
have recently been tackled using more advanced regression methods such as
the Lasso (see Chapter 5 by Tibshirani), single-SNP association analysis is still
predominant due to its simplicity and interpretability. In that case, regression
models (9.1) or (9.2) are fitted repeatedly for each SNP j ∈ {1, . . . , p}, and the
corresponding (frequentist) decision rule concerning H0 is based on a p-value,
which is the probability, computed assuming that H0 is true, that the test
statistic is as extreme as the one observed.

Intuitively, the smaller the p-value, the smaller the evidence in favor of H0

provided by the data. Traditionally, if the p-value is less than .05 we reject
the null hypothesis H0. However, even if the SNP is not associated with the
trait, there is a 5% probability of wrongly rejecting H0; this is known as the
Type 1 error. In the GWAS setting, we perform millions of tests in one analysis
and errors accumulate. In order to control the overall (i.e., genome-wide or
family-wise) Type 1 error rate at 5%, a stringent criterion such as p-value
< 5 × 10−8 is typically used for each SNP included in the study (Dudbridge
and Gusnanto, 2008).

WTCCC (2007) by the Wellcome Trust Case Control Consortium is a land-
mark work in which a GWAS was conducted for each of the seven common
diseases, including coronary heart disease, Type 1 diabetes (T1D), Type 2
diabetes, rheumatoid arthritis, Crohn’s disease, bipolar disorder and hyper-
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tension, with a total sample size of 16,179. Here we focus on the T1D study for
which the sample consisted of 1,926 individuals with T1D (cases) and 2,872
subjects without T1D (controls). Genotype data were collected for these indi-
viduals at 469, 557 SNPs (after data quality control). To assess the association
evidence between T1D and each of the SNPs, WTCCC (2007) calculated p-
values for testing H0 : βj = 0 for 1 ≤ j ≤ 469,557, and reported the findings
in their Table 2 (five SNPs with p-values < 5 × 10−7) and Table 3 (seven
additional SNPs with p-values < 10−5). They also provided Bayes factors for
each of the 12 SNPs (Section 9.2.2).

Section 9.2 describes the details of their frequentist and Bayesian associa-
tion analyses. Section 9.3 discusses the upward bias inherent in their reported
βj estimates and reviews different approaches for reducing the estimation bias
using only the summary statistics.

9.2 Identification of Trait-Associated SNPs

9.2.1 p-value

To identify SNPs associated with T1D using as an example the WTCCC
(2007) study, first consider the logistic regression model

logit{E(Yi)} = α+ βjXij ,

where Yi indicates whether individual i in the sample has T1D (Yi = 1) or
not (Yi = 0), and Xij = 0, 1 or 2 if the genotype of SNP j for individual i
is, respectively, AA, Aa or aa. This is the additive model as discussed in Sec-
tion 9.1.2. The p-value for testing H0 : βj = 0 is denoted as pj,add. Covariates
such as age at onset of T1D were not included in the WTCCC analysis.

To discover SNPs with non-additive genetic effects, it is also important to
consider the more flexible genotypic model, where the genotype of a SNP is
treated as a categorical variable with three levels. For the genotypic model,

logit{E(Yi)} = α+ β1jX1ij + β2jX2ij

can be used, where X1 and X2 are the standard dummy variables: (X1ij =
0, X2ij = 0) for genotype AA, (X1ij = 1, X2ij = 0) for Aa and (X1ij =
0, X2ij = 1) for aa. The p-value for testing H0 : β1j = β2j = 0 is denoted as
pj,geno. WTCCC (2007) then defined SNPs with strong evidence of association
with T1D as SNPs with min(pj,add, pj,geno) < 5×10−7, and moderate evidence
of association as min(pj,add, pj,geno) < 10−5. We summarize their key results
in Table 9.1. Although the two models generally give similar results, SNP
rs17166496 clearly did not follow the additive assumption and would have
been missed without the consideration of the alternative genotypic model.
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TABLE 9.1: Results of the WTCCC genome-wide association study (GWAS)
of Type 1 diabetes (T1D). All values except the ranks are restated here based
on Tables 2 and 3 of WTCCC (2007). Note that the ranks in the table are
within these 12 SNPs not at the genome-wide level involving all 469,557 SNPs.

Additive Model
Chromo- SNP MAF Frequentist Bayesian

some p-value Rank log10BF Rank
6 rs9272346 .387 2.42 E-134 1 141.93 1
1 rs6679677 .096 1.17 E-26 2 23.07 2

12 rs17696736 .424 2.17 E-15 3 12.53 3
12 rs11171739 .423 1.14 E-11 4 8.89 4
16 rs12708716 .350 9.24 E-08 5 5.15 5
4 rs17388568 .260 5.00 E-07 6 4.42 6

18 rs2542151 .163 1.89 E-06 7 3.91 7
10 rs2104286 .286 7.97 E-06 8 3.31 9
5 rs2544677 .242 8.23 E-06 9 3.32 8
1 rs2639703 .276 8.46 E-06 10 3.25 10

12 rs11052552 .486 1.02 E-04 11 2.22 11
5 rs17166496 .391 6.06 E-01 12 −.97 12

Genotypic Model
Chromo- SNP MAF Frequentist Bayesian

some p-value Rank log10BF Rank
6 rs9272346 .387 5.47 E-134 1 139.77 1
1 rs6679677 .096 5.43 E-26 2 22.83 2

12 rs17696736 .424 1.51 E-14 3 11.56 3
12 rs11171739 .423 9.71 E-11 4 8.24 4
16 rs12708716 .350 4.92 E-07 5 4.71 5
4 rs17388568 .260 3.27 E-06 7 3.89 6

18 rs2542151 .163 1.16 E-05 9 3.52 8
10 rs2104286 .286 4.32 E-05 11 2.88 11
5 rs2544677 .242 4.43 E-05 12 2.70 12
1 rs2639703 .276 1.74 E-05 10 3.06 10

12 rs11052552 .486 7.24 E-07 6 3.80 7
5 rs17166496 .391 5.20 E-06 8 3.25 9

9.2.2 Bayes Factor

The previous section showed that alternative models may lead to different
conclusions regarding the association of a SNP with a given trait. Combin-
ing analyses produced by different models is desirable when there is no clear
evidence supporting a specific model. However, this is difficult under the fre-
quentist framework and leads us to consider Bayesian alternatives. WTCCC
(2007) were among the first who considered a Bayesian framework for GWAS,
and in particular they relied on Bayes factors (Kass and Raftery, 1995) to
rank SNPs. Other early Bayesian work in the GWAS context includes Mar-
chini et al. (2007) and Wakefield (2007), and Stephens and Balding (2009)
gave an excellent review on this topic.

The Bayesian approach treats the parameter of interest, θ, as a random
variable for which a prior distribution, p(θ|M), is first defined under assumed
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model M . The prior distribution can be interpreted as a summary of our
information about the parameter θ before the data is collected. Inference is
developed based on the corresponding posterior density which is conditional
on the observed data D and is calculated using

p(θ|D,M) =
f(D|θ,M)p(θ|M)

p(D|M)
=

f(D|θ,M)p(θ|M)∫
Θ
f(D|θ,M)p(θ|M)dθ

. (9.3)

The denominator of (9.3) is the probability of data under model M . We can
interpret p(D|M) as the weighted average probability of observing the data
under the assumed model M , over all possible values of the parameter θ.

Let us revisit the logistic additive model (9.2). For a given SNP, let M0

(H0 : β = 0) denote the null model of no association and M1 (H1 : β 6= 0) the
alternative model. To decide which of the two competing models, M0 and M1,
is more suitable, a natural choice is to rely on the Bayes factor of M1 against
M0, viz.

BF10 =
p(D|M1)

p(D|M0)
.

In the WTCCC (2007) application, θ0 = (α, 0), θ1 = (α, β), α ∼ N (0, 1)
and β ∼ N (0, .2). The prior for β reflects the belief that genetic effects (ex-
pressed as the odds ratio, OR = exp(β)) of SNPs associated with complex
human traits are in the range of .5 to 2 and most likely between .67 and 1.5;
see the Supplementary Figure 1 of WTCCC (2007). The choice of prior is
study specific and subjective, which contributes to scientists’ reluctance to
using Bayesian methods; see Chapter 10 by Gustafson on Bayesian methods
in observational epidemiology studies. However, techniques such as model-
averaging (see below) can alleviate some of the concerns that different prior
specifications might lead to different conclusions.

Let BF10(add) denote the Bayes factor for SNP j under the additive model
and BF10(geno) under the genotypic model. In the latter case, θ0 = (α, 0, 0)
and θ1 = (α, β1, β2), and prior distributions are specified for both β1 and β2;
see WTCCC (2007) for more details on the choice of prior. For each of the 12
SNPs selected based on the p-value criterion as described in Section 9.2.1, the
corresponding Bayes factors, BF10(add) and BF10(geno) were also calculated
and are restated (on the log10 scale) in Table 9.1.

9.2.3 Additional Considerations

The immediate conclusion from Table 9.1 is that rankings of the SNPs are
remarkably consistent between p-value and Bayes factor. This consistency has
been steadily reported in the GWAS literature; see, e.g., Strömberg et al.
(2009). It has been theoretically justified by Wakefield (2009) for case-control
GWAS. However, such conclusions depend on several assumptions, an impor-
tant one being that the MAFs are not too small. Although SNPs analyzed by
GWAS are usually common SNPs, this is not the case for the emerging NGS
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TABLE 9.2: Results of WTCCC GWAS of T1D after “Model Averag-
ing.” Here, min(p-value) = min(p-valueadd, p-valuegeno), log10 BF(.8, .2) =
log10{.8 BF(add) + .2 BF(geno)}, p-valueadd, p-valuegeno, BF(add) and
BF(geno) are from Table 9.1.

Chro- Frequentist Bayesian
mosome SNP MAF min(p-value) Rank log10 BF(.8, .2) Rank

6 rs9272346 .387 2.42 E-134 1 141.83 1
1 rs6679677 .096 1.17 E-26 2 23.03 2

12 rs17696736 .424 2.17 E-15 3 12.44 3
12 rs11171739 .423 1.14 E-11 4 8.82 4
16 rs12708716 .350 9.24 E-08 5 5.09 5
4 rs17388568 .260 5.00 E-07 6 4.35 6

18 rs2542151 .163 1.89 E-06 8 3.86 7
10 rs2104286 .286 7.97 E-06 10 3.25 8
5 rs2544677 .242 8.23 E-06 11 3.25 9
1 rs2639703 .276 8.46 E-06 12 3.22 10

12 rs11052552 .486 7.24 E-07 7 3.14 11
5 rs17166496 .391 5.20 E-06 9 2.55 12

area. For analysis of rare variants, it is unclear if the traditional frequentist
approaches (e.g., Lee et al., 2012; Derkach et al., 2014) and Bayesian methods
(e.g., Yi and Zhi, 2011) lead to similar rankings.

Let us reconsider SNP rs17166496 in Table 9.1 for which different genetic
model assumptions (additive vs genotypic) resulted in strikingly different re-
sults. Let p(M) denote the prior distribution for genetic model M , and for
simplicity consider only two models, M ∈ {add, geno}, with user-specified
prior probabilities

Pr(M = add) = p(add),

Pr(M = geno) = p(geno) = 1− p(add).

Under the Bayesian framework, we can define an overall Bayes factor as a
weighted average of the individual Bayes factors, viz.

BF10 = p(add)× BF10(add) + p(geno)× BF10(geno).

For a more detailed discussion we refer the readers to Stephens and Bald-
ing (2009). Therefore, instead of selecting one “best” model and reporting
the corresponding finding, the Bayesian analysis provides a principled way to
combine the evidence from each model, weighted by the prior belief in that
model. For the SNPs in Table 9.1, Table 9.2 provides the Bayes factors after
model averaging (see Section 9.3.1), with more weight (p(add) = .8) given to
the additive genetic model reflecting the common belief that most SNPs act
in an (approximately) additive manner (Hill et al., 2008).
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9.3 Replication of a Significant Finding

In most scientific studies, a negative result is usually not published and a
positive finding needs to be replicated in an independent sample. For exam-
ple, other investigators might want to validate the association between SNP
rs2542151 and T1D found by WTCCC (2007), and they would typically use

the reported genetic effect size (i.e., exp(β̂)) to calculate the sample size needed
for a replication study (e.g., with 80% power at the .05 level). However, as
discussed in Section 9.1.2, the use of the same data first for testing and then
for estimation leads to an upward-biased estimate of the effect size and, there-
fore, an under-powered replication study. This phenomenon is also known as
the winner’s curse and is ubiquitous in GWAS. In the following, we discuss
the frequentist and Bayesian approaches to correcting such bias using only
the summary statistics that are typically reported.

9.3.1 Conditional MLE vs. Bayesian Model Averaging

Consider β̂, the estimator of β, ŜE(β̂), the standard error of β̂, and

T = β̂/ŜE(β̂) ,

the test statistic for testing H0 as defined in Section 9.1.2. To simplify the
discussion, assume that β > 0 for a truly associated SNP. Since we focus
attention on estimates for which the associated test was significant (i.e., T >

c, where c is some specified value), β̂ is not an (approximately) unbiased

estimator of β; in fact, E(β̂|T > c) ≥ β.
Ghosh et al. (2008) proposed to obtain the maximum likelihood estimate

(MLE) based on the conditional likelihood that incorporates the fact that the
observed test statistic exceeded the significance criterion. Specifically, under
the Normal assumption that T follows the N [β/SE(β̂), 1] distribution, the
conditional MLE of β is the parameter value that maximizes the likelihood

L(β) = p(T |T > c) =
φ{T − β/ŜE(β̂)}

Φ{−c+ β/ŜE(β̂)}
, (9.4)

where φ and Φ are respectively the density and cumulative distribution func-
tion of N (0, 1) (Ghosh et al., 2008). The L(β) in (9.4) is a conditional like-
lihood because it quantifies the conditional probability of the observed data
given that they yielded a significant finding for β. Conditioning on the signif-
icant result creates a more realistic statistical framework. Indeed, compared
with the unconditional β̂, the estimate obtained from this conditional MLE
approach is, on average, closer to the true value β. However, it is difficult to
incorporate prior information on β into (9.4) in settings where it might be
available.
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As an alternative, Xu et al. (2011) considered the Bayesian approach that
specifies a prior distribution for the parameter of interest, θ = β (i.e., the
log OR), and infers the posterior as in (9.3). In the same vein as the conditional
likelihood approach, the Bayesian inference is performed conditional on the
significant finding for β. Therefore, the prior specification can incorporate this
information. In this setting, Xu et al. (2011) specified the prior distribution
for β as a mixture of a discrete distribution that places all probability mass
at 0 and a continuous distribution g with support on R,

p(β) = ξδ{0}(β) + (1− ξ)g(β). (9.5)

Priors such as (9.5) are known as spike-and-slab priors and have been used
repeatedly in Bayesian variable selection and shrinkage estimation; see, e.g.,
Kuo and Mallick (1998). In this application, the mixture parameter ξ allows
the possibility that the observed significance is due to chance (i.e., β = 0); the
g(β) density function reflects the prior belief about the range and distribution
of the effect of a truly associated SNP. The Bayesian estimator of β is the
posterior mean E(β|D). The spike at 0 will shrink the posterior mean and
reduce the posterior variance of β. The prior distribution p(ξ) assigned to ξ
allows us to quantify the uncertainty about a discovery being true or false and
influence the amount of shrinkage in the posterior. For instance, if we use a
Beta prior for ξ, denoted B(a, b), and if the sample size of the discovery study
was small, we may choose large a and small b values (e.g., a = 8 and b = .5)
to represent our initial skeptical view on the significance of any finding from
such a study.

In practice, a researcher may have a difficult time deciding which particular
prior to use for the analysis. In many cases, the analysis can be better served
by considering several priors rather than choosing just one of them. Suppose
M1 is the model with p(ξ) = B(8, .5) and M2 with p(ξ) = B(.5, 8), and let
p(M1) and p(M2) be the prior probabilities for the two models; see Xu et al.
(2011) for the specification of p(M1) and p(M2). Then the Bayesian model
averaging (BMA) paradigm offers a consistent method to combine the two
models by using

p(θ|D) =
2∑
k=1

p(θ|D,Mk)p(Mk|D), (9.6)

where p(Mk|D) is the posterior probability of model Mk and is proportional
to p(Mk|D) ∝ p(D|Mk)p(Mk). Formally, the Bayesian BMA estimator is the
mean of the distribution p(θ|D), but in practice, the theoretical mean is not
available in closed form and it is approximated via the Monte Carlo method
as discussed in Section 9.3.2.

Using SNP rs2542151 as an example, the genetic effect reported by
WTCCC (2007) was

β̂naive = .285, ÔRnaive = 1.33.
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However, estimates were substantially smaller after bias correction by both
the frequentist approach,

β̂freq = .140, ÔRfreq = 1.15,

and the Bayesian method,

β̂Bayes = .117, ÔRBayes = 1.12.

This reduction in genetic effect estimate (OR from 1.33 to just over 1.1)
is practically meaningful and important because a) the sample size needed
for a successful replication study would not be underestimated; and b) the
potential clinical importance of this SNP would not be overestimated. Between
the two correction methods, Xu et al. (2011) have shown that the Bayesian
estimator has better accuracy (as measured by the mean squared error) than
the conditional MLE in studies with low power, where the winner’s curse is
more likely to impact the conclusions of the analyses.

9.3.2 Computational Considerations

Realistic Bayesian modeling and analysis have been made possible thanks to
significant advances in computational algorithms, particularly Markov Chain
Monte Carlo (MCMC) samplers. Note that the integral that appears in the
denominator of (9.3) is often intractable. For example, the model considered
here along with the prior (9.5) and a uniform prior on β (i.e., θ) yields a
posterior distribution that cannot be studied analytically, e.g., one cannot
compute in closed form the posterior mean, viz.

E(θ|D,M) =

∫
θ p(θ|D,M)dθ.

However, we can still approximate E(θ|D,M) as long as we can draw from
p(θ|D,M). For instance, if we can generate a sample θ1, . . . , θK from the
posterior p(θ|D,M) we can then estimate E(θ|D,M) by

̂E(θ|D,M) =
1

K

K∑
i=1

θi.

Due to space constraints, we cannot get into the details of constructing the
algorithms used to sample from posterior distributions, but we refer the reader
to the review article of Craiu and Rosenthal (2014) and Rosenthal’s review of
Metropolis algorithms in Chapter 6.

The tight connection between Bayesian inference and computational algo-
rithms has also been exploited in situations in which the likelihood cannot
be calculated in closed form (e.g., Tavaré et al., 1997) or when it may be too
expensive to compute; see, e.g., Wegmann et al. (2009) and Row et al. (2011).
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9.4 Conclusion and Discussion

The collection of vast amounts of genetic data in recent years has provided
statisticians with numerous challenges and opportunities. In the effort to un-
derstand the genetic architecture of complex human traits, one important area
of research has focused on genetic association studies which are the central
theme of the discussion here. In addition to the frequentist framework we have
emphasized the value of the alternative Bayesian paradigm. For many, a major
hurdle in a Bayesian analysis comes from the computational and methodolog-
ical challenges involved in the study of the posterior distribution via MCMC
sampling. However, the increase in computational expertise among statisti-
cal geneticists and the advent of user-friendly software has spurred renewed
interest in Bayesian methods.

The frequentist and Bayesian bias-correction methods discussed in Section
9.3 assume that only the summary statistics are available and only for the re-
ported significant SNPs. When genome-wide results are available, it might be
beneficial to let the empirical distribution of the estimated effects influence the
specification of the prior. Built upon the work by Efron (2011), this empirical
Bayes approach has been used by Ferguson et al. (2013) to tackle the winner’s
curse in a setting where multiple genetic effects are dealt with jointly. When
the original data are available, one could use the alternative bootstrap-based
method reviewed by Bull et al. in Chapter 8.

Bayesian methods have also been successfully used in other genetic set-
tings. For example, Lo and Gottardo (2007) coupled a hierarchical Bayesian
model with an empirical Bayes specification of the prior to produce inference
about differential expression in microarray studies; Gottardo et al. (2008) pro-
posed a Bayesian analysis of Chromatin-immunoprecipitation microarrays in
which the hierarchical structure of the model accounts for the spatial correla-
tion present between neighboring probes; Wu et al. (2009) proposed a Bayesian
segmentation approach that identifies copy number variations (DNA segments
that exhibit duplications and deletions when compared to a reference genome);
and Scott-Boyer et al. (2012) introduced a Bayesian hierarchical model that
can combine genotypic and gene expression data to detect the so-called “ex-
pression quantitative trait loci (eQTL).”

Recent progress in genetic association studies has taught us some lessons.
Although simple statistical techniques can identify many trait-associated ge-
netic variants, these “low hanging fruits” are only a few small pieces of a much
bigger puzzle. To solve the remaining puzzle, more sophisticated methodol-
ogy is needed to mine the already available data, to analyze new kinds of
data, and to combine different sources of data. We believe that the Bayesian
methodology can play an important role in solving some of these issues. Dialog
between statisticians and other scientists is becoming a critical component of
the analytical process for these emerging studies.
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