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MULTIPROCESS PARALLEL ANTITHETIC COUPLING
FOR BACKWARD AND FORWARD
MARKOV CHAIN MONTE CARLO1

BY RADU V. CRAIU AND XIAO-LI MENG

University of Toronto and Harvard University

Antithetic coupling is a general stratification strategy for reducing Monte
Carlo variance without increasing the simulation size. The use of the anti-
thetic principle in the Monte Carlo literature typically employs two strata via
antithetic quantile coupling. We demonstrate here that further stratification,
obtained by usingk > 2 (e.g.,k = 3–10) antithetically coupled variates, can
offer substantial additional gain in Monte Carlo efficiency, in terms of both
variance and bias. The reason for reduced bias is that antithetically coupled
chains can provide a more dispersed search of the state space than multiple
independent chains. The emerging area of perfect simulation provides a per-
fect setting for implementing thek-process parallel antithetic coupling for
MCMC because, without antithetic coupling, this class of methods delivers
genuine independent draws. Furthermore, antithetic backward coupling pro-
vides a very convenient theoretical tool for investigating antithetic forward
coupling. However, the generation ofk > 2 antithetic variates that arenega-
tively associated, that is, they preserve negative correlation under monotone
transformations, andextremely antithetic, that is, they are as negatively cor-
related as possible, is more complicated compared to the case withk = 2. In
this paper, we establish a theoretical framework for investigating such issues.
Among the generating methods that we compare, Latin hypercube sampling
and its iterative extension appear to be general-purpose choices, making an-
other direct link between Monte Carlo and quasi Monte Carlo.

1. Paired antithetic coupling. Monte Carlo estimation of the expectation of
an estimand functionf with respect to a probability measureπ , µ = ∫

f (x)π(dx),
can be done in many ways. The simplest method, known as “crude Monte Carlo,”
proceeds by simulating a (not necessarily independent) sampleX1,X2, . . . ,Xn

from π and estimatingµ by the sample averagêµn = 1
n

∑
i f (Xi). More refined

methods, collectively known asswindles, take advantage of well-known statistical
principles to construct more efficient designs and/or more efficient estimators. In
this paper we focus on antithetic coupling, which can be viewed as a way to induce
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stratification. For other type of swindles see Hammersley and Handscomb (1965),
Simon (1976), Kennedy and Gentle (1980) and Gentle (1998), among others.

In the context of classic independent sampling, antithetic coupling [Hammersley
and Morton (1956)] is commonly described as a method of producing two nega-
tively correlated copies of an unbiased estimator. The average of the two, each
based onm draws, will then have smaller variance compared to the estimator
based on then = 2m independent draws. Substantial reductions have been doc-
umented throughout the literature from early works, such as Page (1965) and
Fishman (1972), to most recent ones such as Frigessi, Gåsemyr and Rue (2000),
who demonstrate the power of the antithetic principle in the more complicated
(forward) MCMC setting.

The negative correlation between the two copies is typically induced via
antithetic quantile coupling by using a pair{U,1−U}, whereU ∼ Uniform(0,1),
in the sample generating process. The amount of variance reduction is governed
by the degree of symmetry in the distribution of our estimator. In the extreme
case when this distribution is symmetric, the use of paired antithetic variates
can entirely eliminate the Monte Carlo variance when the underlying draws are
independent or reduce the variance from the usualn−1 rate ton−2 rate when the
draws are realizations of a genuine MCMC algorithm, as observed by Frigessi,
Gåsemyr and Rue (2000). This emphasizes the stratification aspect of the antithetic
principle as a way to divide the sample space into a “negative” stratum and a
“positive” stratum. The equal amount of draws from each stratum ensured through
pairing brings in further variance reduction compared to using simple random
sampling within each stratum. Generalizing the antithetic coupling fromk = 2 to
k > 2 processes is quite natural from this stratification point of view, as often more
than two strata can produce substantial additional gain. A main goal of this paper
is to demonstrate such gains in the context of MCMC, as well as the additional
benefit of improving the mixing of the original Markov chains.

The paired quantile coupling via{U,1−U} has the followingextreme antithesis
(EA) property that is usually not emphasized in the literature. Specifically, ifF is
anarbitrary univariate cumulative distribution function (CDF), andX1 = F−1(U),
X2 = F−1(1 − U), whereU ∼ Uniform(0,1), then Corr(X1,X2) achievesthe
minimal possible value subject to the constraint thatX1,X2 ∼ F . The proof
[Moran (1967)] relies on the elegant Hoeffding identity

Cov(X1,X2) =
∫ ∫

[F(x1, x2) − F(x1)F (x2)]µ(dx1 dx2),(1.1)

and the equally elegant Fréchet (1951) inequality

max{F(x1) + F(x2) − 1,0} ≤ F(x1, x2) ≤ min{F(x1),F (x2)},(1.2)

where F(x1, x2) is the joint CDF. The fact that the single strategy of using
{U,1 − U} achieves EAsimultaneously for all F also implies that it achieves
EA for Corr(g(X1), g(X2)), where g is any monotone function such that
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g2(x)F (dx) < ∞. It is known that negative correlation is not even preserved by

monotone transformations, so the above discussion implies that{U,1 − U} must
satisfy a stronger condition,negative association (NA) [Joag-Dev and Proschan
(1983)], which requires exactly that the negative correlation be preserved by
monotone functions of the variates (see Section 3.1). The fact that{U,1 − U}
is automatically NA appears to be responsible for the general silence of the NA
requirement in the literature of antithetic coupling, but once we move beyond
k = 2, NA (as well as EA) becomes a key notion in our general theoretical
foundation.

The rest of the paper is divided into three sections. Section 2 presents the general
k-process parallel antithetic coupling technique, illustrated with a backward
MCMC mixture sampling and two forward MCMC sampling schemes. However,
for k > 2, as we demonstrate in Section 3, there is no general strategy that achieves
EA simultaneously even just for uniform and normal distributions. As a result, it is
harder to ensure NA and EA for a given problem, especially in theory. Section 3
is thus devoted to a general theory for ensuring NA and EA for arbitraryk, which
is our main theoretical contribution. Section 4 discusses several common methods
for generatingk antithetic variates and their general properties with respect to
achieving EA and NA.

2. k-process parallel antithetic coupling and illustration.

2.1. Perfect simulation and time-backward dual sequence. Since the seminal
work by Propp and Wilson (1996) oncoupling from the past (CFTP), there
has been an array of methodological and theoretical papers on how to use
backward coupling methods for exact MCMC sampling. David Wilson’s web
site (http://dimacs.rutgers.edu/˜dbwilson/exact) is the most comprehensive single
source for learning about the fast-growing field ofexact sampling or perfect
simulation, so named because, for this class of sampling methods, the thorny
issue of deciding the running time for an acceptable error in approximating the
distribution of interest,π , completely vanishes. A CFTP algorithm, or Fill’s
algorithm (1998), or many of their variations and generalizations [e.g., Fill,
Machida, Murdoch and Rosenthal (2000), Meng (2000) and Wilson (2000b)]
will terminate itself with probability 1 in a finite amount of time and yet
delivers authentic (and henceexact/perfect) independent draws from the limiting
distribution.

This can be achieved by constructing, for a Markov chain{Xt }t≥0 with
stationary distributionπ , the “dual” sequenceX̃t such that it has the same
distribution asXt but it purposely violates the Markovian property. This is perhaps
most easy to illustrate by first consideringa time-inhomogeneous Markov chain
defined byXt = ψt(Xt−1,Ut ), where{Ut, t ∈ N } are i.i.d. random variables. For
any t > 0 and any starting valueX∗, we can compute atime-forward sequence

Xt = ψt

(
ψt−1

(
. . .ψ1(X

∗,U1) . . . ,Ut−1
)
,Ut

)
,(2.1)
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as well as atime-backward sequence

X̃t = ψ1
(
ψ2

(
. . .ψt (X

∗,Ut ) . . . ,U2
)
,U1

)
.(2.2)

Clearly,Xt is Markovian becauseXt = ψt(Xt−1,Ut ), but X̃t is not.
Evidently, whenψt is time-homogeneous,Xt and X̃t have identical distribu-

tions for anyt . What is gained by giving up the Markovian property is that the
backward sequencẽXt can “hit and stay at” the limit [Thorisson (2000), Chap-
ter 1] in a finite amount of time when its forward counterpartXt cannot. This
is easiest to see in an extreme case whereψ(X,U) = U , which, say, is uniform
on (0, 1). Then it is obvious thatXt = Ut , but X̃t = U1, for all t ≥ 1. In other
words, while bothXt andX̃t converge, trivially, to Uniform(0,1) in distribution,
Xt wanders off fromUt to Ut+1, even if it hits the right limiting distribution al-
ready att = 1. In contrast,X̃t stays at the exact same valueU1 for all t ≥ 1. In
general, assumingXt is uniformly ergodic, one can conclude that whileXt con-
vergesin distribution, there exist an updatingψ and a finite stopping timeT such
thatX̃T hits the same limitwith probability 1 [Foss and Tweedie (1998)]. By map-
ping t to −t in (2.2), and thereby creating a convenient forward execution of the
time-backward sequence given in (2.2), Propp and Wilson (1996) devise the CFTP
method for finding such aT .

At the crux of CFTP implementation is the ability to follow a large, possibly
infinite, number of paths in time and to assess whether these paths have all merged
after a certain timeT . For a good introduction to CFTP we refer to Casella, Lavine
and Robert (2001). In real applications, the most challenging problem is that for
many routine statistical problems, such as posterior sampling, the state space is
both uncountable and unbounded. Although intense work has been done in this
area, in terms of both general strategies and specific implementation [e.g., Kendall
(1998), Murdoch and Green (1998), Møller and Nicholls (1999), Møller (1999),
Murdoch (2000), Hobert, Robert and Titterington (1999), Casella, Mengersen,
Robert and Titterington (2002) and Philippe and Robert (2003)], the difficulties
exhibited in Murdoch and Meng (2001) in the context of posterior sampling with
a t likelihood and normal mixture priors indicate that much more research is
needed before CFTP and its variants and extensions can become a method of
choice in common statistical applications.

2.2. Multiprocess antithetically coupled CFTP. Since CFTP delivers i.i.d.
draws from the target density, when viewed as a “black box,” it is no different from
many classical Monte Carlo sampling methods, such as inverse CDF transform
or rejection sampling. It is then natural to consider antithetic coupling for CFTP.
However, unlike classical methods, the CFTP black box is a mapping from an
infinite product space for{Ut, t ≤ 0} to the state spaceS, which makes the
underlying theory for guaranteeing NA (and EA) of the samples more complicated
than those available in the literature. A theoretical foundation is therefore needed,
and this is established in Section 3. Here we focus on the description of the method
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itself.
At the core of our method is the generation ofk negatively associated

{U(1), . . . ,U(k)}, each having the same marginal distribution as theU required
by ψ(·,U). There are many ways for doing so for a given distribution ofU ; see
Section 4. Given such a method, one can runk CFTP processes in parallel, the
j th one using{U(j)

t , t ≤ 0}, j = 1, . . . , k, where{U(1)
t , . . . ,U

(k)
t }, t ≤ 0, are i.i.d.

copies of{U(1), . . . ,U(k)}, as sketched in Figure 1. Within thej th process of CFTP
all paths are positively coupled because they use the same{U(j)

t , t ≤ 0}. At each
update,{U(1)

t , . . . ,U
(k)
t } are NA, a property that clearly does not alter the validity

of each individual CFTP process.
To obtain n = km draws, we repeat the above procedureindependently m

times and collect{X(j)
i ,1 ≤ i ≤ m;1 ≤ j ≤ k}, where i indexes the repli-

cation, as our sample{X1,X2, . . . ,Xn}. Let σ 2
f = Varπ [f (X)] and ρ

(f )
k =

Corrπ(f (X
(1)
1 ), f (X

(2)
1 )), which is intended to be negative. Then

Var

(
1

n

n∑
i=1

f (Xi)

)
= σ 2

f

n

[
1+ (k − 1)ρ

(f )
k

]
.(2.3)

Consequently, thevariance reduction factor (VRF) relative to the independent
samplingwith the same simulation size, is

S
(f )
k = 1+ (k − 1)ρ

(f )
k .(2.4)

We emphasize here the dependence ofS
(f )
k on k and more importantly onf , and

FIG. 1. Parallel antithetic backward CFTP processes.
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thus the actual gain in reduction can be of practical importance for somef but not
for others.

The size-fixed VRFS(f )
k ignores the possible different computational require-

ments between generatingk independent draws andk antithetically coupled
draws. A completely fair comparison is typically impossible with any simula-
tion study because the overall computational time is seldom exactly linear in
size and it can depend critically on software, hardware, programming skill and
the actual implementation. Nevertheless, a useful approximation can be derived
by assuming linearity and by ignoring any “overhead.” Specifically, letτk be
the average CPU time needed to make ajoint draw from a particular antithetic
k-process. Then, under our assumptions, for a given total CPU timeT , the av-
erage number of dependent draws we can make isndep = T k/τk , and the num-
ber of independent draws isnindep= T/τ1. Consequently, thetime-fixed VRF is
given by

T
(f )
k = CkS

(f )
k whereCk = τk/k

τ1
.(2.5)

Note Ck is free of f , but a largeCk may offset the gain inS
(f )
k (i.e.,

by making T
(f )
k > 1), as seen in the next section. Also note that, although

we use theτ1 notation for consistency, there can be a substantial difference
between settingk = 1 in a generalk-process subroutine and using a specifically
designed subroutine for making independent draws; the latter was used in all our
examples.

2.3. An illustration with a mixture CFTP. Hobert, Robert and Titterington
[HRT (1999)] considered the mixture modelpf0(x) + (1 − p)f1(x) where
0< p < 1 is the estimand. Given i.i.d. observations{x1, x2, . . . , xn} from this
model, and a flat prior onp, the posterior forp is proportional to

∏n
i=1[pf0(xi) +

(1 − p)f1(xi)]. To deal with the continuous distribution ofp, HRT use the
natural discrete data augmentation that comes with the latent mixture indicator
{z1, z2, . . . , zn}, wherezi = 0 if xi is from f0 andzi = 1 if xi is from f1. Starting
from T = 1, the following steps define the HRT algorithm:

1. Start a “bottom chain” atp(1)
−T = 0 and a “top chain” atp(2)

−T = 1.
2. At each −T ≤ t ≤ −1 and for j = 1,2: generaten i.i.d. uniform r.v.’s

{ut1, ut2, . . . , utn} ≡ ut , and then setz(j)
ti = 0 if uti ≤ p

(j)
t f0(xi )

p
(j)
t f0(xi )+(1−p

(j)
t )f1(xi )

andz
(j)
ti = 1 otherwise.

Let m be the number ofz(j)
ti ’s equal to 0 and letwt = {wtr, r = 1, . . . , n+2},

where thewtr ’s are i.i.d. samples from an exponential distribution with mean 1.
Computep(j)

t+1 = ψ(p
(j)
t , ut ,wt ) = ∑m+1

r=1 wtr/
∑n+2

r=1 wtr .
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3. If p
(1)
0 = p

(2)
0 = p0, then p0 is our sample. If not, setTold = T and go to

step 2 withT = 2Told while keepinguti,wtr for all −Told ≤ t ≤ 0, 1≤ i ≤ n,
1≤ r ≤ n + 2 unchanged.

Although ψ(p,u,w) of step 2 is not monotone (in the same direction) in all
its arguments, the variance reductions obtained with antithetic variates are still
significant in all the simulation examples we have looked at. Figure 2 gives an
illustration based on 0.33·N (3.2,3.2) + (1 − 0.33)·N (1.4,1.4). The first two
columns in Figure 2 plot the size-fixed VRFS(f )

k againstk. The plots on each
row correspond to a different generating method: the permuted displacement (PD)
method, Latin hypercube sampling (LHS) and iterative Latin hypercube sampling
(ILHS); see Section 4. The simulation size here is 7500 for eachk, and the
Monte Carlo variance for estimatingS(f )

k is on the order of 10−6. We see that

S
(f )
k decreases from 0.5–0.6 withk = 2 to 0.2–0.3 whenk ≥ 6 (all numbers

are from the ILHS method, which performs best). It appears thatS
(f )
k stabilizes

after aboutk = 10. The second column shows the results for three nonmonotone

FIG. 2. Normal mixture example. Size-fixed variance reduction factor (left) and time-fixed variance
reduction factor (right) plotted against the number of parallel chains for different functions. Note the
values of the time-fixed VRF for PD at k = 15 are too large for the plotting range.
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estimand functions. The theoretical guarantee given in Section 3 does not apply

to such functions, but nevertheless allS
(f )
k < 1. Even forf (x) = sin(5x), S

(f )
k is

around 0.4, implying a 60% reduction in variance whenk ≥ 6.
The last two columns in Figure 2 plot the time-fixed VRF,T

(f )
k of (2.5). From

the first row, it is seen that usingk ≥ 10 becomes too costly for PD, at least in
our implementation. In contrast, the monotone patterns for the second and third
rows resemble that forS(f )

k , albeit the reduction is less because theCk factor

tends to be more than 1. Nevertheless, we still see thatT
(f )
k reduces from 0.8

with k = 2 to about 0.5 whenk ≥ 6, and the empirical finding that usingk ≥ 10
is not practically beneficial remains true. These conclusions are based on the best
performing method, LHS (ILHS is obviously more costly because of the iteration).
However, we emphasize that in our implementation we have made no attempt to
optimize our code. It is thus important to separate the gain in statistical efficiency,
as measured byS(f )

k , which does not depend on the particular implementation,
from the possible offset, as measured byCk , which depends critically on the
particular implementation and thus could be further reduced with a more refined
code/implementation.

2.4. Forward antithetic coupling and slice sampling. The next application
used for illustration is a forward slice sampler. A graphical scheme of the antithetic
principle applied to forward chains is shown in Figure 3. In this situation the
parallel chains are started from different points in the sample space. After the so-
calledburn-in period, the realizations of each path are used, typically as positively
correlated samples from the stationary distribution of the chain. Like CFTP, we

FIG. 3. Parallel antithetic forward MCMC chains.
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can updatek chains usingk antithetically coupled variates. However, unlike
CFTP, the within-chain autocorrelation for the forward implementation makes
the determination of the VRF a bit more complicated. Specifically, we need to
generalize (2.4) to

S
(f )
k = 1+

∑k
j1 �=j2

Cov(
∑m

t=1 f (X
(j1)
t ),

∑m
t=1 f (X

(j2)
t ))∑k

j=1 Var(
∑m

t=1 f (X
(j)
t ))

(2.6)

= 1+
∑k

j1 �=j2

∑m
t1,t2

β
(f )
t1,t2;j1,j2∑k

j=1
∑m

t1,t2
γ

(f )
t1,t2;j

,

whereγ
(f )
t1,t2;j andβ

(f )
t1,t2;j1,j2

are respectively, thewithin-chain andbetween-chain
autocovariance, that is,

γ
(f )
t1,t2;j = Cov

(
f

(
X

(j)
t1

)
, f

(
X

(j)
t2

))
,

(2.7)
β

(f )
t1,t2;j1,j2

= Cov
(
f

(
X

(j1)
t1

)
, f

(
X

(j2)
t2

))
.

In many applications expression (2.6) can be greatly simplified because of the
ergodicity of the antithetically coupled joint chain (which isnot an automatic
consequence of the ergodicity of the marginal chains; see Section 3.2). Here we
retain the full generality of (2.6) to show that as long as all the between-chain
covariances are nonpositive, the use of antithetic coupling will always guarantee
S

(f )
k ≤ 1 regardless of the mixing properties of the individual chains (e.g., still

in burning periods) or its within-covariance structure—that is, using antithetic
coupling cannot hurt as long asβ(f )

t1,t2;j1,j2
≤ 0 for all (t1, t2, j1, j2); see Section 3

for conditions to guarantee this. The definition of time-fixed VRF remains the same
as in (2.5) becauseCk is unaffected by the autocorrelation.

To illustrate possible gains, we adopt an example of Damien, Wakefield and
Walker (1999), who use slice sampling [Neal (2003)] to draw fromπ(x) ∝
x2e−ex

I{x≥0}. The resulting Gibbs sampler has the updating function,

Xt+1 = ψ(Xt, ξ1, ξ2) = ξ
1/3
1 log

(
eXt − log(1− ξ2)

)
,(2.8)

where ξ1 and ξ2 are i.i.d. Uniform(0,1). Sinceψ(x, ξ1, ξ2) is nondecreasing,
Theorem 1 of Section 3 guarantees thatS

(f )
k ≤ 1 for any monotone functionf .

Note (2.8) is an example whereψ is made to be nondecreasing by using 1− ξ2
instead ofξ2 inside the second logarithm.

Figure 4 is the counterpart of Figure 2 for the forward case, with similar general
patterns (the simulation size here is 5000). In particular, for monotone functions
S

(f )
k decreases from between 0.35–0.45 withk = 2 to 0.1–0.15 whenk ≥ 6. For

highly nonmonotonef (x) = sin(5x), in contrast tok = 2, S
(f )
k ≤ 1 whenk ≥ 3.

For less variable nonmonotone functionsf (x) = 2x(1+ x2)−1 andf (x) = x(1−
5x), S

(f )
k goes below 0.5. Partial theoretical support for this phenomenon can be
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FIG. 4. Slice sampling example. Size-fixed variance reduction factor (left) and time-fixed variance
reduction factor (right) plotted against the number of parallel chains for different functions. Note the
change of scale in the vertical axis from the sized-fixed VRF to time-fixed VRF.

found in Owen (1997), whose result implies that, under LHS,S
(f )
k ≤ k/(k − 1) for

any square-integrablef . This suggests that there is more room forS
(f )
2 to exceed 1

than forS(f )
k with k > 2. However, in terms of the time-fixed VRF, the clear winner

is the LHS method with monotone functions. For highly nonmonotone functions,
our implementation becomes too costly, suggesting that if such estimand functions
are of main interest, then it would be generally safer to just use the independent
implementation of multiple chains, as recommended in Gelman and Rubin (1992).

2.5. A real-data application with Bayesian probit regression. We conclude
our empirical investigation by presenting a multidimensional real-data application.
The data are taken from van Dyk and Meng (2001) and consist of measurements
on 55 patients, of whom 18 have been diagnosed with latent membranous lupus.
Table 1 shows the data with two clinical covariates, IgA and IgG, that measure
the levels of immunoglobulin of type A and of type G, respectively. Of interest
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TABLE 1
The number of latent membranous lupus nephritis cases, the numerator,
and the total number of cases, the denominator, for each combination

of the values of the two covariates

IgA

IgG3 − IgG4 0 0.5 1 1.5 2

−3.0 0/1 — — — —
−2.5 0/3 — — — —
−2.0 0/7 — — — 0/1
−1.5 0/6 0/1 — — —
−1.0 0/6 0/1 0/1 — 0/1
−0.5 0/4 — — 1/1 —

0 0/3 — 0/1 1/1 —
0.5 3/4 — 1/1 1/1 1/1
1.0 1/1 — 1/1 1/1 4/4
1.5 1/1 — — 2/2 —

is the prediction of disease occurrence using the two covariates IgG3− IgG4
and IgA. As in van Dyk and Meng (2001), we consider a probit regression
model. For each patienti, we model the disease indicator variables as independent
Yi ∼ Bernoulli(	(xT

i β)), where	(·) is the CDF ofN(0,1), xi is the vector of
the covariates andβ is a 3× 1 vector of parameters. We want to sample from the
posterior distribution corresponding to the flat prior forβ.

To illustrate the impact of antithetic coupling on mixing, we adopt the standard
Gibbs sampler with the latent variablesψi ∼ N(xT

i β,1), of which only the sign
Yi is observed, as the augmented data [e.g., Albert and Chib (1993)]. LetX be
the n × p matrix whoseith row is xi and ψ = (ψ1, . . . ,ψn); for our example
n = 55 andp = 3. The resulting Gibbs sampler alternates between sampling from
(i) β|ψ ∼ N(β̃, (XT X)−1) with β̃ = (XT X)−1XT ψ and from (ii) ψi |β,Yi ∼
T N(xT

i β,1, Yi), where T N(µ,σ 2, Y ) is N(µ,σ 2) truncated to be positive if
Y > 0 and negative ifY < 0. Our parallel chains are then coupled antithetically
at each of these two updating steps.

In the first step we want to generate exchangeable{β(1), . . . , β(k)} with
β(j) ∈ Rp for all 1≤ j ≤ k, such that marginallyβ(j) ∼ N(β̃,
 = (XT X)−1) and

Corr(β(j)
i , β

(j ′)
i ) is minimum possible, for all 1≤ i ≤ p and all 1≤ j �= j ′ ≤ k.

This can be realized by generatingp i.i.d. multivariate normal(Z(1)
i , . . . ,Z

(k)
i )�

such thatZ(j)
i ∼ N(0,1) and Corr(Z(j)

i ,Z
(j ′)
i ) = −1/(k − 1). We then let

β(j) = 
1/2Z(j) + β̃, whereZ(j) = (Z
(j)
1 , . . . ,Z

(j)
p )� and
1/2 is the Choleski

decomposition of
.
In the second step, we use the inverse CDF method suggested by Gelfand,

Smith and Lee (1992) to sample fromT N(µ,σ 2,1). Namely, we simulate
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U ∼ Uniform(0,1) and then take

Z = µ + σ	−1[	(−µ/σ) + U
(
1− 	(−µ/σ)

)]
.(2.9)

The methods of Lew (1981) and Bailey (1981) were used to approximate	(x) and
	−1(x) needed for (2.9). The antithetic coupling is then realized vian independent
vectors of NA uniform random variables{U(1)

i , . . . ,U
(k)
i ;1≤ i ≤ n} so that for the

j th chainψ(j)
i is generated by usingU = U

(j)
i in (2.9). We used only two iterations

of ILHS, to increase the speed of the antithetic sampler. The computational
overhead is small even in the first step as all the matrix inversions required there
were performed once outside the inner loop of the stochastic algorithm.

The improvement brought about by the antithetic coupling is twofold because
it can reduce both the variance and the bias of the original sampler. Van Dyk and
Meng (2001) demonstrate the slow mixing of the standard algorithm and propose
a much more reliable marginal data augmentation algorithm. Our antithetic
implementation does not, and cannot, remedy all the problems with the original
sampler, but it can provide noticeable improvement without requiring a new
algorithm or a substantial increase in the computational load. This is seen in
Figure 5, which contains scatter plots of(β0, β1) using draws fromk independent
chains of the original sampler (left column) and fromk antithetic chains (right
column). The true contour plots, obtained via numerical methods, are from van
Dyk and Meng (2001). Each scatter plot is based on 9000 sample points, divided
equally among thek chains used. All the starting points were set to the same MLE;
we did this on purpose to see to what extent the antithetic coupling can “spread out”
despite the fact that all chains are started at the same point. Although the antithetic
chains still have the serious problem of missing a good part of the “right tail,”
a problem that was avoided by van Dyk and Meng’s (2001) algorithm, in all rows
the scatter plot in the right column extends to the “right tail” no less, and sometime
substantially more, than the scatter plot in the left column.

To represent quantitatively the benefit of antithetic coupling, Figure 6 plots,
againstk, the relative bias, relative standard error (SD) and relative root mean
square error (RMSE) from antithetic chains, in estimating six posterior quantities,
with the results from independent chains as the baseline (e.g., a relative bias
0.4 means the antithetic implementation reduces the bias, in magnitude, by
1− 0.4 = 60%). The six quantities we choose are, in the order of the rows in
Figure 6, E[β0|D], E[β1|D], Var[β0|D], Var[β1|D], E[−β0/β1|D] and E[Q|D],
whereQ = [	(β0 −0.5β2 +1.5β2)]/[1−	(β0 −0.5β2 +1.5β2)] andD denotes
the observed data(X,Y ). Whereas the first four are usually required in a Bayesian
analysis, the last two are specific to the example at hand:−β0/β1 is the so-called
LD50 level (i.e., with 50% chance the corresponding dosage becomes lethal) for
covariatex1 whenx2 = 0, andQ represents the odds of having the disease when
x1 = −0.5 andx2 = 1.5. In particular, four out of these six estimand functions are
nonmonotone.
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FIG. 5. Bayesian probit regression example. Scatter plots of (β0, β1) generated by using k

independent chains (left) and k antithetic chains (right) for different values of k; the contour lines
are from the targeted bivariate posterior distribution. Each plot contains 9000draws.

The simulation sizes in Figure 6 are the same as in Figure 5, and the reduction
factors are then computed using 1000 replicates of the simulation process. No
burn-in period was discarded because we are interested in comparing the mixing
properties of the two implementations. Because the total sample size is fixed at
9000 for each plot, using a largerk means a smaller within-chain sample sizem,
and hence possibly more strong influence of the starting point. To investigate the
effect of the starting point, we use three starting strategies: 1. MLE (columns 1–3
in Figure 6). 2. At two standard deviations (SD) from the MLEs, in this case,
β0+2SD andβi −2SD, i = 1,2 (columns 4–6). 3. From extreme points (more than
three SD away from the MLE) in the support of the distribution (columns 7–9). In
general it is seen that the RMSE is reduced due to a decrease in variance, bias or
both. Best results correspond to 3≤ k ≤ 6, reflecting the aforementioned trade-off
betweenk andm. As expected, the reduction factors vary with the starting points,
as well as the estimand of interest. Nevertheless, withk ≥ 3 the antithetic coupling
in general does not inflate the RMSE and may result in reduction factors as low as
0.1, that is, up to 90% of saving.
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FIG. 6. Relative Monte Carlo bias, standard error (SD) and root mean squared error (RMSE), from
the antithetic chains, relative to that of independent chains, as functions of k, the number of parallel
chains. Same simulation configurations as in Figure 5, and with 1000replication for each k. Each
row represents a different estimand function; from top to bottom: E[β0|D]; E[β1|D]; Var(β0|D);
Var(β1|D); E[−β0/β1|D]; E[Q|D]. Columns 1–3 use MLE as the starting points, 4–6 use MLE
±2 SD, and 7–9use some extreme points situated more than three SD away from the MLE.

3. A theoretical foundation.

3.1. Negative association and dependence. In general, a qualitative measure
of negative dependence should adequately reflect the following intuitive behav-
ior among a set of variables: if one subset of the variables is “high,” then a
disjoint subset of the variables is “low.” Different ways to define such negative
dependence have received a great deal of attention in the last twenty years or
so. Due to the success of thepositive association concept of Esary, Proschan and
Walkup (1967), the main challenge has been to build the negative association con-
cepts as “duals” of the positive ones, but so far there has not been a universally
acceptable construction [e.g., Pemantle (2000)]. Specifically, the set of random
variables{X1, . . . ,Xn} is said to bepositively associated (PA) if for any non-
decreasing (or nonincreasing—we will not state both hereafter) functionsf1, f2,
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Cov(f1(X1,X2, . . . ,Xn), f2(X1,X2, . . . ,Xn)) ≥ 0. Here a functionf : Rn → R
is called nondecreasing if it is nondecreasing in all of its arguments.

The closest negative counterpart of positive association we can find is the
negative association concept introduced by Joag-Dev and Proschan (1983).

DEFINITION 1. The random variables{Xi}1≤i≤n, where eachXi can be
of arbitrary dimension, are said to be negatively associated (NA) if for every
pair of disjoint finite subsetsA1,A2 of {1,2, . . . , n} and for any nondecreasing
functionsf1, f2

Cov
(
f1(Xi, i ∈ A1), f2(Xj , j ∈ A2)

) ≤ 0(3.1)

whenever the above covariance function is well defined.

The following equivalence result is important for some of our subsequent
theoretical investigation.

PROPOSITION 1. The random variables {Xi}1≤i≤n are NA if and only
if (3.1)holds for every pair of nonnegative, bounded and nondecreasing functions
f1 and f2.

PROOF. The “only if” part is obvious. To prove the “if” part, letfm(Xi,

i ∈ Am), m = 1,2, be the two functions in (3.1). For any positive integerl, let
f

(l)
m be the truncation offm to [−l, l], that is,f (l)

m = fm when |fm| ≤ l, and
f

(l)
m = ±l depending onfm > l or fm < −l. Clearly, |f (l)

m | ≤ |fm|, and thus
by the dominated convergence theorem, liml→∞ Cov(f (l)

1 (Xi, i ∈ A1), f
(l)
2 (Xj ,

j ∈ A2)) = Cov(f1(Xi, i ∈ A1), f2(Xj , j ∈ A2)). This allows us to conclude (3.1)
because

Cov
(
f

(l)
1 (Xi, i ∈ A1), f

(l)
2 (Xj , j ∈ A2)

)
= Cov

(
f

(l)
1 (Xi, i ∈ A1) + l, f

(l)
2 (Xj , j ∈ A2) + l

) ≤ 0,

where the last inequality holds becausef
(l)
m + l is a nonnegative, bounded and

nondecreasing function form = 1,2. �

The notion of NA is most useful for our purposes primarily because, like PA, it
is closed under the independent union operation as well as monotone transforma-
tions, as proved in Joag-Dev and Proschan (1983). Specifically, we have:

PROPOSITION2. If {X1, . . . ,Xn1} and {Y1, . . . , Yn2} are two independent sets
of NA (PA) random variables, then their union, {X1, . . . ,Xn1, Y1, . . . , Yn2}, is a set
of NA (PA) random variables.
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PROPOSITION 3. If {Xi}1≤i≤n is a sequence of NA (PA) random variables
and (ψi)1≤i≤n are all nondecreasing functions, then (ψi(Xi))1≤i≤n is a sequence
of NA (PA) random variables.

These two results enable us to prove the following fundamental result on
antithetic coupling of homogeneous and nonhomogeneous Markov chains.

THEOREM 1. Suppose we run a k-process antithetically coupled chain,
Xk

t = {X(1)
t , . . . ,X

(k)
t }, forward for T iterations, where X

(j)
t = ψt(X

(j)
t−1,U

(j)
t ),

j = 1, . . . , k, and Uk
t = {U(1)

t , . . . ,U
(k)
t }, t = 1, . . . , T , are T independent sets

of NA variables. Assuming ψt(X,U) is nondecreasing for all t ≤ T , we have the
following results.

(i) The k-tuple {X(1)
t1

, . . . ,X
(k)
tk

} is a collection of k NA variables for any
{t1, . . . , tk} ∈ {0,1, . . . , T }k if and only if it is so for t1 = · · · = tk = 0.

(ii) Assuming Xk
0 is a set of NA variables, then the variance reduction

factor, S
(f )
k , defined by (2.6), is at most 1 for any monotone function f , and it

is strictly less than 1 if and only if at least one of the between-chain covariances,
β

(f )
t1,t2;j1,j2

of (2.7),is strictly negative.

PROOF. For (i) the necessity holds by definition. For the sufficiency, because
{X(1)

0 , . . . ,X
(k)
0 } and{U(1)

t , . . . ,U
(k)
t }, t = 1, . . . , T , areT + 1 sets of independent

NA variables, by Proposition 2 their union is also NA. Consequently, becauseX
(j)
tj

is a nondecreasing function ofZ(j) ≡ {X(j)
0 ,U

(j)
t , t = 1, . . . , T } only, andZ(i) and

Z(j) do not share any common variable fori �= j , by Proposition 3{X(1)
t1

, . . . ,X
(k)
tk

}
are NA for anytj ≤ T , j = 1, . . . , k.

For (ii), by (i) all the between-chain autocovariancesβ
(f )
t1,t2;j1,j2

≤ 0, which

implies S
(f )
k ≤ 1 because the denominator in (2.6), being a variance, is always

positive. (In fact, by using the PA part of Propositions 2 and 3, we can conclude
all γ

(f )
t1,t2;j ≥ 0.) Furthermore, because allβ

(f )
t1,t2;j1,j2

≤ 0, by (2.6),S(f )
k = 1 if and

only if all β
(f )
t1,t2;j1,j2

’s are zero. �

Since for a Gibbs sampler with attractive stationary density the updating
function can be expressed as a monotone function [e.g., Propp and Wilson (1996)
and Häggström and Nelander (1998)], Theorem 1 covers Frigessi, Gåsemyr and
Rue’s (2000) Theorem 1 withk = 2. For practical purposes, the requirement that
Xk

0 = {X(1)
0 , . . . ,X

(k)
0 } are NA is immaterial, because being fixed (even with the

choice thatX(1)
0 = · · · = X

(k)
0 ) or more generally being independent is a trivial case

of being NA. It is also evident that Theorem 1 does not requireX
(j)
0 to be from the

stationary distribution.
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Theorem 1, however, does require that the random variables in thek-tuple
Uk

t = {U(1)
t , . . . ,U

(k)
t } are NA. Typically, for a particular distribution there are

many ways of achieving this, and some general recipes are described in Section 4.
A useful construction in practice is to use the fact that monotone functions of
distinctive subsets of NA variables are NA, a fact that allows us to build upon
known NA variables, such as permutation distributions, multinomial, multivariate
hypergeometric, Dirichlet and multivariate normals with nonpositive correlations
[see Joag-Dev and Proschan (1983)].

We remark that part (i) of Theorem 1 is actually stronger than we need, because
from (ii), in order to assureS(f )

k ≤ 1, we only need to ensure pairwise negative

covariance: Cov(f (X
(j1)
t1

), f (X
(j2)
t2

)) ≤ 0. This weaker version is sometimes easier
to establish, and thus we define the following notion.

DEFINITION 2. The random variablesX1,X2, . . . ,Xn are said to be pairwise
negatively associated (PNA) if{Xi,Xj } are NA for anyi �= j ∈ {1, . . . , n}.

Clearly, Propositions 2 and 3 still hold for PNA. In the next section, we will see
that only requiring our outcome to be PNA can avoid technical complications that
are not critical to MCMC applications in practice. In particular, the PNA property
is easier to verify because it is equivalent to thenegative quadrant dependency
(NQD) notion fora pair of random variables, as defined by Lehmann (1966). For
more than two variables, NQD is a consequence of NA, but not vice versa, as
formalized by the following result, also due to Joag-Dev and Proschan (1983).

PROPOSITION4. Let X1,X2, . . . ,Xn be a set of NA random variables. Then
they are also negatively lower orthant dependent (NLOD), that is,

P(X1 ≤ x1, . . . ,Xn ≤ xn) ≤
n∏

i=1

P(Xi ≤ xi) for all x1, . . . , xn,(3.2)

as well as negatively upper orthant dependent (NUOD), namely,

P(X1 > x1, . . . ,Xn > xn) ≤
n∏

i=1

P(Xi > xi) for all x1, . . . , xn.(3.3)

3.2. Negative association in limit and joint convergence. Although Theorem 1
provides a theoretical foundation for antithetic coupling with forward MCMC,
it does not cover backward MCMC such as CFTP. This is because theT in
Theorem 1 is a nonrandom constant, whereas for CFTP it is a random variable
and, more importantly, it is not independent of the corresponding draw from the
CFTP. We thus need to extend Theorem 1 to the case, withT = +∞, namely, we
need to prove that the limitingk-tuple{X(1)∞ , . . . ,X

(k)∞ } is still NA, or at least PNA.
This would entail that the joint draw from a CFTP,{X(1)

0 , . . . ,X
(k)
0 }, is NA/PNA
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because we can identify its probability structure with that of{X(1)∞ , . . . ,X
(k)∞ } from

a forward process.
The extension toT = ∞ is not straightforward because the ergodicity of the

marginal chain does not guarantee that of the joint chain, so that a limiting
argument such as Cov(f (X

(i)∞ ), f (X
(j)∞ )) = limt→∞ Cov(f (X

(i)
t ), f (X

(j)
t )) ≤ 0

needs qualification. The problem has been discussed also by Arjas and Gasbarra
(1996) and Frigessi, Gåsemyr and Rue (2000) who have shown that, if the joint
chain isφ-irreducible and the closure of the support ofφ contains an open set,
then the joint chain is positive recurrent on the closure of the support ofφ. This
can be used to prove that the above convergence of covariances holds. However, the
assumption that the support of the irreducibility measureφ has nonempty interior
is violated even by simple examples such as the following Markov chain: take
X0 ∈ S1, the unit circle; fort ≥ 1, drawθt uniform on[0, π) and construct the line
that goes throughXt−1 and has slope tan(θt ). The intersection of this line with
the unit circle isXt . The left panel of Figure 7 illustrates this construction with
t = 1. The right panel illustrates a pair of antithetically coupled chains(Xt , Yt )

(for t ≤ 2) where theYt is constructed the same way asXt except each timeXt is
updated usingθt , Yt is updated usingπ − θt . Algebraically, we have

θX
t = (−θX

t−1 + π + 2θt )mod(2π),
(3.4)

θY
t = (−θY

t−1 + π − 2θt )mod(2π),

where θX
t and θY

t are the polar-coordinate representations ofXt and Yt ,
respectively. Marginally,θX

t (and henceθY
t ) are i.i.d. uniform variables on[0,2π),

and hence{Xt }t is trivially uniformly ergodic. However, the joint state space

FIG. 7. The random walk on the circle example. Illustration of construction of Xt (left) and of the
antithetic coupling (Xt , Yt ) (right).
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of (θX
t , θY

t ), S2 = [0,2π) × [0,2π), consists ofuncountably many absorbing
subclasses, defined by

S(τ) = {(θX, θY ) ∈ S2 : θX + θY = (2k + 1)π ± 2τ, for k = 0,1},(3.5)

whereτ ∈ [0, π/2] is the acute angle between the lineX0Y0 and the horizontal
diameter (see Figure 7). HereS(τ) is an absorbing set because the joint updating
rule leaves the acute angle between the lineXtYt and the horizontal diameter,
denoted byτt , unchanged. Letρt (τ ) = Corr(X(1)

t , Y
(1)
t ), whereZ(1) denotes the

X-axis coordinate ofZ [i.e., Z(1) = cos(θZ)]. Then, as proved in Appendix A.1,
ρt (τ ) = −cos(2τ), increasing from−1 to 1 asτ increases from 0 toπ/2. In
addition, for each of the ergodic classes, the joint chain has an irreducibility
measure whose support has an empty interior.

This example shows that the uniform ergodicity of the marginal chain is not
sufficient to guarantee the ergodicity of the antithetically coupled chain or to
directly justify the extension of the NA properties from{X(1)

t , . . . ,X
(k)
t } to its

“limit” {X(1)∞ , . . . ,X
(k)∞ }. Here the “limit” is in quotes because while the marginal

distribution ofX(j)∞ does not depend on the starting point, the joint distribution
of {X(1)∞ , . . . ,X

(k)∞ } may depend on it, as is the case in the previous example.
Fortunately, the time-backward dual sequence approach discussed in Section 2.1
provides a theoretical tool to bypass the issue of the joint chain’s ergodicity,
and thereby to establish the following counterpart of Theorem 1 for justifying
backward antithetic coupling for all monotone CFTP algorithms.

THEOREM 2. Let Xt = ψ(Xt−1,Ut ) be a uniformly ergodic Markov chain on
state space  with π being its invariant distribution and with ψ nondecreasing.
Let Xk

t = {X(1)
t , . . . ,X

(k)
t } be the corresponding antithetically coupled joint chain

as in Theorem 1. Then:

(i) For any given starting point Xk
0, Xk

t = {X(1)
t , . . . ,X

(k)
t } converges in

distribution to some Xk∞ = {X(1)∞ , . . . ,X
(k)∞ }, whose joint distribution may depend

on Xk
0.

(ii) For any nondecreasing real functions fm, m = 1,2, on  such that
Varπ(fm(X)) < ∞, m = 1,2, and such that their discontinuity points are
contained in a π -null set, we have

Cov
(
f1

(
X(j1)∞

)
, f2

(
X(j2)∞

)|Xk
0
) ≤ 0 for any j1 �= j2.(3.6)

PROOF. For each marginal chainX(j)
t , let X̃

(j)
t be its dual sequence as

in (2.2). Then, by the equivalence of the implementability of CFTP and uniform
ergodicity [Foss and Tweedie (1998)], we know that there exists an almost
sure finite stopping timeS on the infinite-product space∞

U = ∏
t≥1 Uk

t such

that X̃
(j)
S ∼ π and X̃

(j)
t = X̃

(j)
S for all t ≥ S and all j . Therefore, by re-

expressing all relevant variables on their common sampling space∞
U , we can
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defineXk∞(ω) = {X̃(1)
S(ω)(ω), . . . , X̃

(k)
S(ω)(ω)}, which is a well-definedk-component

joint random variable on∞
U becauseP(S(ω) < ∞) = 1. Furthermore, because

X̃k
t = {X̃(1)

t , . . . , X̃
(k)
t } converges toXk∞ with probability 1 by the construction,

and becauseXk
t andX̃k

t have the same distribution for anyt , Xk
t must converge

in distribution to Xk∞, and hence (i).
For (ii), we only need to prove (3.6) when bothf ’s are bounded, following

the same argument as in the proof of Proposition 1. Sincefm,m = 1,2, are
almost surely continuous with respect to the distribution of{X(i)∞ ,X

(j)∞ } because
its margins areπ , we can conclude by part (i) that{f1(X

(i)
t ), f2(X

(j)
t )} converges

in distribution to{f1(X
(i)∞ ), f2(X

(j)∞ )}. This implies

Cov
(
f1

(
X(i)∞

)
, f2

(
X(j)∞

)|Xk
0
) = lim

t→∞ Cov
(
f1

(
X

(i)
t

)
, f2

(
X

(j)
t

)|Xk
0
) ≤ 0,(3.7)

where the limiting argument holds because bothf ’s are bounded. �

Part (ii) of Theorem 2 shows that{X̃(1)∞ , . . . , X̃
(k)∞ } are PNA when the monotone

functions are almost surely continuous with respect to the underlying dominating
measure, which is the case if the latter is the Lebesgue measure, as is common
in Bayesian computation. We emphasize that the condition thatψ is monotone
is not needed for part (i), but it is important for part (ii). This is seen in the unit
circle example, where (i) holds with uncountably many limiting distributions for
the joint chain, depending on the initialτ . However, (ii) does not hold because
the ψ function there is obviously not monotone. The fact thatρ(τ) < 0 when
τ < π/4 in that example also illustrates that the monotonicity is a sufficient but
not necessary condition for preserving negative correlation.

3.3. Extreme antithesis. The concept of NA provides a qualitative description
of negative dependence. Quantitatively, it is desirable to generate{X1, . . . ,Xk}
(corresponding to{X(1), . . . ,X(k)} in previous sections) such that Corr(f (Xi),

f (Xj )) is as negative as possible. Formally, we define the following notion.

DEFINITION 3. A set of variables{X1,X2, . . . ,Xk} is said to achieve extreme
antithesis (EA) with respect to a (marginal) distributionF if they are exchangeable
and

Corr(Xi,Xj ) = min{Corr(Yi, Yj ) :Y1, . . . , Yk exchangeable,Yi ∼ F ∀ i}.

For k = 2, the single strategy of using quantile coupling viaX1 = F−1(U)

and X2 = F−1(1 − U) achieves EA for anyF , as discussed in Section 1. For
k > 2, the matter is much more complicated, even just forF := Uniform(0,1) and
F := N(0,1). Indeed, it is not hard to establish the following negative result [see
Craiu and Meng (2002) for a proof ], where	 is the CDF ofN(0,1).
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PROPOSITION5. It is impossible to find a joint distribution F (3)(U1,U2,U3)

on (0,1)3 such that all its univariate margins are Uniform(0,1) and the following
holds almost surely (with respect to joint Lebesgue measure):

U1 + U2 + U3 = 3/2 and 	−1(U1) + 	−1(U2) + 	−1(U3) = 0.(3.8)

Fork even, say,k = 4, one may be tempted to use two pairs of quantile coupled
variates, namely,U2 = 1− U1, U4 = 1− U3, whereU1 andU3 are i.i.d., to make
the k = 4 version of (3.8) hold. Consequently, for anyf , ρ

(f )
4 = ρ

(f )
2 /3, where

ρ
(f )
2 = Corr(f (U1), f (1 − U1)) andρ

(f )
4 is the correlation between any pair of

{f (Ui), i = 1, . . . ,4}. This impliesS(f )
4 = 1+3ρ

(f )
4 = 1+ρ

(f )
2 = S

(f )
2 , and thus it

is just a disguised version of quantile coupling withk = 2, not a real generalization
to k = 4.

For lack of a universal strategy, we seek methods that are effective in common
practice. In the exchangeable setting, the quest for EA is the same as that for
minimizing the variance of the mean (and sum)X̄(k) = (X1 +· · ·+Xk)/k because
[see (2.3)]

ρk ≡ Corr(Xi,Xj ) = 1

k − 1

[
Vark(X̄(k))

Var(X1)
− 1

]
≥ − 1

k − 1
,(3.9)

where the subscriptk in both ρk and Vark(X̄(k)) emphasizes the dependence on
the joint distributionF (k)(x1, . . . , xk). In particular, if anF (k) is constructed such
thatX̄(k) = constant (almost surely), then EA is achieved [hence (3.8)]. However,
although this approach works for some common distributions such as uniform and
normal, it is not always possible because the minimal value of Vark(X̄

(k)) may not
achieve zero even whenk = 2. For example, the minimalρ2 is 1−π2/6 = −0.645
when bothX1 andX2 are exponentially distributed with mean 1, as reported in
Moran (1967).

For specific families of distributions, several methods may be available to
achieve EA. Snijders (1984) explores various approaches for binary random vari-
ables. For a unimodal symmetric and differentiable densityp on R, Rüschendorf
and Uckelmann (2000) propose the following. Suppose the center of symmetry is
zero and thatpQ(x) = −xp′(x) is also a Lebesgue density onR; let Q ∼ pQ.
Then X = QU ∼ p for any U ∼ Uniform(−1,1) that is independent ofQ.
Consequently, for any set of{U1, . . . ,Uk}, independent ofQ, such thatUi ∼
Uniform(−1,1) and

∑k
i=1 Ui = 0, {X1 = QU1, . . . ,Xk = QUk} achieves EA

with respect top because
∑k

i=1 Xi = 0. In fact, Corr(Xi,Xj ) = Corr(Ui,Uj ) =
−(k − 1)−1 for any i �= j . This construction, however, does not guarantee NA in
general. As an alternative, we can draw i.i.d.{Q1, . . . ,Qk} from pQ, and then use
Xi = QiUi , ∀ i ∈ {1, . . . , k}. This will guarantee the NA property, but it sacrifices
the EA property, because now we have Corr(Xi,Xj ) = − 1

k−1[1 + CV2(Q)]−1,

whereCV(Q) is the coefficient of variation ofQ. Nevertheless, whenCV(Q) is
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small, the loss of EA may be negligible for practical purposes. In general, if one
has to make a choice between NA and EA, we recommend choosing NA, for it
is preserved by all monotone transformations. With NA in place, the variance re-
duction factor is guaranteed to be at most 1 when the monotonicity assumption
holds.

4. Generating antithetic uniform variates. Since generating uniform vari-
ates is, explicitly or implicitly, the most basic component of almost any simulation
method, in this section we compare several methods for generatingk-antithetically
coupled uniform variates. For each method, we investigate whether it leads to NA
and/or EA variables, and propose remedies whenever possible if it does not. We
emphasize that although there are many different ways of achieving NA and/or EA
[e.g., Bondesson (1983) and Gerow and Holbrook (1996)], no method dominates
whenk ≥ 3, as demonstrated by Proposition 5. Any of these methods can be more
suitable than others in a particular application. Nevertheless, the three methods
described below are more or less representative of what has been proposed in the
literature.

4.1. The permuted displacement method. This is a modified version of the
one documented in Arvidsen and Johnsson (1982), which first generates anr1 ∼
Uniform(0,1), and then constructs

ri = {
2i−2r1 + 1

2

}
, i = 2, . . . , k − 1, and rk = 1− {2k−2r1},(4.1)

where {x} is the fractional part ofx. We find that the binary representation of
this method makes it a bit easier to show that

∑k
i=1 ri = k/2. Specifically, let

r1 = (a1, a2, . . . , am, . . . ) denote the (nonterminating) dyadic expansion ofr1,
whereai = 0 or 1, that is,r1 = ∑∞

i=1 ai/2i . Then

r2 = (1− a1, a2, a3, . . . , am, . . . ),

r3 = (1− a2, a3, . . . , am+1, . . . ),

...

rk−1 = (1− ak−2, ak−1, . . . , am+k−3, . . . ),

rk = (1− ak−1,1− ak, . . . ,1− am+k−2, . . . ).

Therefore, the method creates negative correlation by displacing the binary digits
of r1. That all ri ’s are uniform is a direct consequence of a well-known result of
Borel (1924), as discussed in detail by Billingsley (1986). The dyadic expansion
representation shows clearly that ther ’s are not exchangeable. A consequence of
that is that they arenot NA whenk ≥ 3. To prove this, we only need to show that
whenk ≥ 3, {r1, r2} are not NQD, and thus by Proposition 4 they cannot be NA.
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To see this, we note that fork ≥ 3, r2 = r1 + 0.5 whenr1 < 0.5 andr2 = r1 − 0.5
whenr1 ≥ 0.5. Consequently, for 0≤ s < 0.5 ands + 0.5 < t ≤ 1, we have

P(r1 ≤ t, r2 ≤ s) = P(0.5 ≤ r1 ≤ t, r1 − 0.5 ≤ s) = min{t, s + 0.5} − 0.5 = s,

which is larger thants = P(r1 ≤ t)P (r2 ≤ s), and therefore (3.2) is violated.
However, it is easy to fix the nonexchangeability by using the simple

permutation method. That is, letSk be the set of all possible permutations ofk

objects. Pick a randomσ ∈ Sk and defineUi = rσ(i). Clearly
∑

i Ui = ∑
i ri = k/2

and thus Corr(Ui,Uj ) = −(k − 1)−1 for any i �= j . Furthermore, it can be shown
that:

THEOREM 3. For k = 3, {U1,U2,U3} constructed by the permuted displace-
ment method are PNA.

The proof is given in Craiu and Meng (2002) and is omitted both because of
space limitation and because the approach used was rather brute force. Indeed,
we are unable to prove or disprove Theorem 3 fork ≥ 4. Nevertheless, the result
indicates that the exchangeability can play an important role in achieving NA/PNA.
An astute reader might wonder how permuting indexes can be helpful since in
MCMC our estimates typically are sample averages, which are invariant to the
independent permutations of the sample indexes. However, one must keep in mind
that in our use of the antithetic variates, theU ’s are not used just once in the
end, but throughout the whole generated sequence and the final estimates are not
invariant to the permutations of all the indexes that occur along the sequence. This
is perhaps easiest to see for CFTP, as each draw can depend, in principle, on an
arbitrarily large number of independent copies of thek-tuple ofU ’s.

4.2. Multidimensional normal method. A common way to manipulate corre-
lations, especially in the engineering literature, is through the multivariate normal
distribution. For our purposes, we can first generate(Z1, . . . ,Zk−1)

� ∼ N(0,
)

where 
ij = −(k − 1)−1 if i �= j and 
ii = 1, and then letZk = −(Z1 +
Z2 + · · · + Zk−1). Finally, if we are interested in uniform deviates, we can use
Ui = 	(Zi) for all i ∈ {1, . . . , k}, where	 is the CDF ofN(0,1). The random
variables{U1, . . . ,Uk} are NA following Joag-Dev and Proschan (1983), who
proved that multivariate normals with nonpositive pairwise correlations are NA.
The result then follows immediately from Proposition 3 becauseUi is a monotone
function ofZi .

This method, however, does not achieve EA. Although Corr(Zi,Zj ) = −(k −
1)−1, the nonlinear transformationUi = 	(Zi) causes an increase in correlation.
Specifically, for any{Z1,Z2} bivariate normal with correlationρ, the correspond-
ing correlation between	(Z1) and	(Z2) is given by∫

	(ρt)	(t)φ(t) dt − 1/4

1/12
= 3

π
ρ + 2

√
π − 3

16π
ρ3 + O(ρ5)

(4.2)

= 0.955ρ + 0.01ρ3 + O(ρ5),
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where φ is the standard normal density. Consequently, Corr(U1,U2) is larger
than the minimum possible value−(k − 1)−1, though the loss of EA may not
be important for many practical applications in view of (4.2). Equation (4.2) is
a quantitative version of a result of Lancaster (1957), who proved that for any
functionsg1 andg2, |Corr(g1(Z1), g2(Z2))| ≤ |ρ| as long as the left-hand side is
finite, and the equality holds if and only ifgi(z) = z, i = 1,2 (almost surely).
Lancaster’s result also implies Proposition 5 if we require{Z1,Z2,Z3} to be
jointly normal. Nevertheless, Proposition 5 is a stronger result, as it shows that
it is impossible to find any such trivariate distribution, not just trivariate normal, to
simultaneously preserve EA as in (3.8).

An issue with real impact in computation is the requirement for a highly reliable
and efficient subroutine to evaluate the function	. Otherwise, the use of a not-
highly accurate approximation becomes problematic in large replications with
arbitrarily many arguments because once in a while|Z| can be too large for
	(Z) to be evaluated appropriately. For that reason, we did not use this method
to simulate uniform deviates in the simulated examples in Section 2. However,
we used it to generate antithetic truncated normal deviates in the probit example
presented there.

The normal method is also of interest because it is one that many will likely
attempt, especially for generating antithetic normal deviates in high-dimensional
settings. An example where such implementation results in acceleration of a
classical MCMC method is provided by Craiu (2004) in the context of Multiple-
Try Metropolis with antithetic proposals.

4.3. Iterative Latin hypercube sampling. The method described in Section 4.1
achieves EA but whether it achieves NA is an open question, and the method
given in Section 4.2 achieves NA but not EA (when used for generating uniform
variates). To achieve both, we propose to useiterative Latin hypercube sampling
(ILHS), which is an iterative version of the Latin hypercube sampling (LHS),
a well-known scheme in quasi Monte Carlo; see McKay, Beckman and Conover
(1979), Stein (1987), Owen (1992), Loh (1996), Iman (1999) and Helton and Davis
(2003), among others.

For any givenk ≥ 2, our iterative procedure can be described by the following
steps:

1. SetUk
0 = (U

(1)
0 , . . . ,U

(k)
0 )�, where{U(j)

0 }1≤j≤k are i.i.d. Uniform(0,1).
2. For t = 0,1,2, . . . , let Kt = (σt (0), . . . , σt (k − 1))� be a permutation of

{0,1, . . . , k − 1}, independent of all previous draws, and let

Uk
t+1 = 1

k
(Kt + Uk

t ),(4.3)

whereUk
t = (U

(1)
t , . . . ,U

(k)
t )� for t ≥ 0.
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The case oft = 1 corresponds to the original LHS. For generalt we have the
following result.

THEOREM 4. For any t ≥ 0, i, j ∈ {1, . . . , k}, i �= j , we have:

(i) U
(i)
t ∼ Uniform(0,1).

(ii) Corr(U(i)
t ,U

(j)
t ) = − 1

k−1(1− 1
k2t ).

(iii) {U(1)
t1

, . . . ,U
(k)
tk

} are NA for any finite {t1, . . . , tk}.

PROOF. (i) For t = 0, the result obviously holds. SupposeU(1)
t ∼

Uniform(0,1); then

P
(
U

(1)
t+1 ≤ s

) = P
(
U

(1)
t < ks − σt (1)

) = 1

k

[ks]∑
j=0

P(U < ks − j) = s

for anys ∈ (0,1). The result thus holds by induction.
(ii) Let St = ∑

j U
(j)
t = 1�Uk

t . Then from the recursion formula (4.3) we
have Var(St ) = Var(St−i)/ki+1 for all 1 ≤ i ≤ t , which implies, by (i) and the
exchangeability of{U(1)

t , . . . ,U
(k)
t },

k + k(k − 1)Corr
(
U

(i)
t ,U

(j)
t

) = k

k2t
,

which is just (ii).
(iii) Because any permutation distribution is NA, (4.3) defines an antithetically

coupled joint Markov chain withk marginal Markov chains. Furthermore, the
marginal updating function fromU(j)

t−1 toU
(j)
t is monotone. The result then follows

directly from part (ii) of Theorem 1 because{U(1)
0 , . . . ,U

(k)
0 } are i.i.d. and thus NA.

�

For most practical purposes, Theorem 4 is all we need as it proves that for
anyT we choose,{U(1)

T , . . . ,U
(k)
T } are NA. Furthermore, as long asT is not too

small (e.g.,T ≥ 5), they practically achieve EA because the relative loss of EA is
k−2T , which approaches zero very fast (it is less than 0.02% even fork = 3 and
T = 5). However, in theory{U(1)

T , . . . ,U
(k)
T } achieves EA only forT = ∞. This

requires showing first that{U(1)∞ , . . . ,U
(k)∞ } are well defined and second that they

are NA. The first question is easy to answer but the second is not, mainly because
the support of{U(1)∞ , . . . ,U

(k)∞ } is a “Cantor dust” type of fractal, as investigated in
Craiu and Meng (2002).

In practice, one must chooseT andk. We have already seen that largeT results
in more extreme antithesis, while the simulations performed in Section 2 show
that ask increases, the efficiency increases too. The following result, proved in
Appendix A.2, further shows that,without taking into account the computational
cost, the largerT the better.
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THEOREM 5. For any monotone h ∈ L2[0,1], the correlation Corr(h(U
(1)
T +1),

h(U
(2)
T +1)) is decreasing as a function of T . That is, for any T ≥ 0,

Corr
(
h
(
U

(1)
T +1

)
, h

(
U

(2)
T +1

)) ≤ Corr
(
h
(
U

(1)
T

)
, h

(
U

(2)
T

))
.(4.4)

However,T andk cannot be increased indefinitely in practice. Intuitively, when
k becomes large, the choice ofT should become less important because a large
k means we have a deep stratification even withT = 1. Consequently, further
stratification within each stratum, which is essentially what each new iteration
does, becomes less important. The following result, proved in Appendix A.3,
provides a theoretical support of this intuition by showing that for largek, the
impact ofT is negligible.

THEOREM 6. For any h ∈ L2[0,1] and a fixed T , {h(U
(1)
T ), . . . , h(U

(k)
T )}

achieves EA asymptotically as k → +∞, that is,

Corr
(
h
(
U

(1)
T

)
, h

(
U

(2)
T

)) = − 1

k − 1
+ o(k−1).(4.5)

This result implies that asymptotically, ask → ∞, any ILHS iteration achieves
EA for any square-integrable function, not just monotone functions. In practice,
however,k must be finite, and often quite small for the sake of computational cost.
For fixedk, the following result, proved in Appendix A.4, shows that even withk

as small as 3,T does not need to be large in order to achieve practically the same
result asT = ∞, at least for all monotone estimand functions.

THEOREM 7. Let Dh1,h2(t, t + m) be the Kolmogorov–Smirnov distance

between the two-way (marginal) joint CDF of {h1(U
(1)
t+m),h2(U

(2)
t+m)} and of

{h1(U
(1)
t ), h2(U

(2)
t )}, where hl , l = 1,2, are nondecreasing functions. Then

Dh1,h2(t, t + m) ≤ k−(t−1)(k − 1)−(t+2).(4.6)

This implies that if we take

T ≥ d − 2 log10(k − 1) + log10k

log10(k(k − 1))
,

then Dh1,h2(T ,∞) ≤ 10−d . In particular, as long asT ≥ 5, Dh1,h2(T ,∞) <

0.0001 for anyk ≥ 3. Thus, takingT between 5 and 10 is enough for almost
any practical purpose. The generality of Theorem 7 should be emphasized since
the same bound in (4.6) holds for any monotoneh1 andh2.
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4.4. Variance reduction factors for indicator functions. As an attempt to
find some theoretical support of the empirical findings reported in Section 2
that the cost-effective choice ofk appears to be somewhere between 3 and 10,
we report here our findings of the theoretical value ofS

(f )
k as a function ofk

whenf = 1{x≤c}. We choose the indicator function both because of its analytical
tractability and its practical relevance (e.g., for estimating CDF), and because it
serves as a building block for general functions. We start with the LHS method,
for which

S
(f )
k (c) = 1+ (k − 1)

F (c, c) − c2

c(1− c)
= (1− {kc}){kc}

kc(1− c)
,(4.7)

where {a} denotes the fractional part ofa. This result follows from the
expression of the joint CDF,F(c, c) = P(U1 ≤ c,U2 ≤ c), given by (A.6) from
Appendix A.2; note (A.5) implies that the sameS

(f )
k (c) holds for any ILHS.

The left panel of Figure 8, realized using the freely available software RGL
developed by Duncan Murdoch, plotsS(f )

k (c) as a function of bothk (up to 30)
andc ∈ (0,1). Its fascinating shape reveals that as long asc is not too close to 0
or 1, S(f )

k (c) will be rather small. This is more clearly seen in the first two rows

of Figure 9, whereS(f )
k (c) is plotted againstc for givenk. It is intuitive that when

c approaches 0 or 1, the effect of antithetic coupling fades because the indicator
function approaches the constant function. This can be formalized by considering
that for 1/k ≤ c ≤ (k − 1)/k the maximum ofS(f )

k (c) over this range, as shown in

FIG. 8. Variance reduction for indicator functions for Uniform(0,1) random variables generated
using LHS (left panel)and for normal variates (right panel).Note for better visualization the left
panel is seen from back, with the c axis hidden.
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Appendix A.5, is given by

S∗
k = k

3k − 4+ 2
√

2(k − 1)(k − 2)
,(4.8)

corresponding to the dashed lines in the first two rows in Figure 9. The use of
a largek is seen to be twice advantageous: first, it decreases theS∗

k and second, it
shrinks the area (ofc) where the antithetic coupling is not effective. The plots also
show clearly thatk = 2 is least effective.

The S∗
k of (4.8) decrease fromS∗

3 = 1/3 to S∗∞ = (3 + 2
√

2)−1 ≈ 0.172.
However, the use of largek also increases the computational cost. Striving for
a balance, we considerRk = (S∗

3 − S∗
k )/(S∗

3 − S∗∞), a measure of the relative gain
in efficiency obtained when we increase fromk = 3 to a finitek > 3 instead of
k = ∞. Table 2 gives, for a fewα ∈ [0.5,1], kα = min{k :Rk ≥ α}. It is seen
that with k = 9 we already have achieved 80% of the additional gain. The rapid
decrease ofS(f )

k (c) as a function ofk, for fixed c, can also be seen in the last two
rows of Figure 9.

FIG. 9. Variance reduction factor for indicator function under LHS method, as a function of c for
different values of k (first two rows),and as a function of k for different values of c (last two rows).
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TABLE 2
The minimum kα for achieving α% of maximal possible gain

in efficiency over using k = 3

α 50% 60% 70% 80% 90% 95% 99%

kα 5 6 7 9 17 32 152

The above exercise can be repeated for the multivariate normal method, that is,
when(X1,X2, . . . ,Xk) is a multivariate normal vector with Corr(Xi,Xj ) = −(k−
1)−1 and N(0,1) margins. The calculation ofS(f )

k is a bit more involved than
in the LHS case. Specifically, with the orthogonal transformationZ = X1 + X2,
W = X1 − X2 (i.e.,Z andW are independent), we obtain

	k(c, c) ≡ P(X1 ≤ c,X2 ≤ c) = P(Z − 2c ≤ W ≤ −Z + 2c,Z ≤ 2c)

= 2
∫ 2c/

√
2(1+ρk)

−∞
	

(
2c − z

√
2(1+ ρk)√

2(1− ρk)

)
φ(z) dz(4.9)

− 	

(
2c√

2(1+ ρk)

)
,

whereρk = −(k − 1)−1. Consequently, we can computeS
(f )
k (c) via

S
(f )
k (c) = 1+ (k − 1)

	k(c, c) − 	2(c)

	(c)(1− 	(c))
.(4.10)

In the normal case, we expect a behavior ofS
(f )
k (c) similar to that in the uniform

case whenc is close to the limits of the range,(−∞,∞). However, for plotting
purposes we use a one-to-one transformation ofc, g = 	(c), and we plotS(f )

k (c)

againstg; this is the same as the VRF for the uniform variates via the normal
approach, namely, ifUi = 	(Xi). One can notice in the right panel of Figure 8
that everywhere but in a region ofc around the distribution’s center,S(f )

k (c) is
decreasing ink. However, the decrease is much less abrupt than in the uniform
case, which indicates that it will take a largerk to reach the same relative efficiency
as given in Table 2. This suggests that generalizing the findings in Table 2 to other
situations is by no means automatic.

This example also shows that it is not always true that the largerk, the better.
For example, whenc = 0, usingk = 2 completely eliminates the variance because
of the symmetry inf = 1{x≤0}; see the right panel of Figure 8. This can also be
verified directly from (4.10), which becomes

S
(f )
k (0) = 1+ (k − 1)

[
8

∫ ∞
0

	

(
z

√
1− 2

k

)
φ(z) dz − 3

]
,
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which is zero whenk = 2. However, ask → ∞ we can show thatS(f )
k (0) →

1 − 2/π = 0.3634. This reminds us that although there are good rules of thumb
for general practice, in terms of choosingk as well as other choices (e.g., the
generating methods) presented in this paper, one should not adopt them blindly
without examining the special structures of the problem at hand.

APPENDIX

A.1. Proof for the unit circle example. We first note that (3.4) implies, for any
t ≥ 1,

(θX
t + θY

t )mod(2π) = −(θX
t−1 + θY

t−1)mod(2π).(A.1)

From the right panel of Figure 7,̂MX0 = Q̂N = Q̂Y0 + Ŷ0N , whereÂB denotes
the counter-clockwise arc between pointsA andB on the unit circle. Furthermore,
M̂X0 = θX

0 − π , Q̂Y0 = 2τ and Ŷ0N = 2π − θY
0 . Combining these identities,

we obtainθX
0 + θY

0 = 2τ + 3π . Consequently, (A.1) implies (3.5) by noting that
θX
t + θY

t ∈ (0,4π) and the “alternating” nature of (A.1), which is also clear from
Figure 7, and thus the four possible lines in (3.5) are reachable from each other
by (Xt , Yt ). Similar arguments apply to other possible initial configurations ofX0

andY0 (e.g., whenX0 andY0 are on different sides of the horizontal axes).
To proveρt (τ ) = −cos(2τ), we observe that (3.5) implies sin2(θX

t + θY
t ) =

sin2(2τ) for any t ≥ 0. Using the identity sin2(α + β) = cos2(α) + sin2(β) −
2cos(α)cos(β)cos(α + β), we then obtain

cos2(θY
t ) + cos2(θX

t ) + 2cos(θY
t )cos(θX

t )cos(2τ) = sin2(2τ).(A.2)

Thus the orbit of(X(1)
t , Y

(1)
t ) ≡ (cos(θX

t ),cos(θY
t )) is an ellipse. Taking expecta-

tions on both sides of (A.2) and using E[cos2(θY
t )] = E[cos2(θX

t )] = 1/2, we ob-
tain 2E[cos(θY

t )cos(θX
t )]cos(2τ) = −cos2(2τ). Together with Var(cos2(θX

t )) =
Var(cos2(θY

t )) = 1/2, this yieldsρt (τ ) = −cos(2τ) whenτ �= π/4. Forτ = π/4,
(3.5) givesθY

t = (2k + 1)π ± π/2 − θX
t , and thus cos(θY

t ) = ±sin(θX
t ). Con-

sequently, 2E[cos(θY
t )cos(θX

t )] = ±E[sin(2θX
t )] = 0, so ρt (τ ) = −cos(2τ) still

holds.

A.2. Proof of Theorem 5. Since the (marginal) distribution ofU(j)
T is

Uniform(0,1) and thus does not depend onT , by the Hoeffding identity (1.1),
inequality (4.4) becomes immediate if we can establish

F
(h)
T +1(u, v) ≤ F

(h)
T (u, v) ∀ (u, v),(A.3)

whereF
(h)
t (u, v) is the joint CDF of(h(U

(1)
t ), h(U

(2)
t )).
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We first show that (A.3) holds forh(x) = x by mathematical induction. Given
the exchangeability, we can assumeu ≤ v, and thus[ku] ≤ [kv], where[x] denotes
the integer part ofx. Let pij = P(U

(1)
t ≤ ku − i,U

(2)
t ≤ kv − j); then by the

recursion (4.3),

Ft+1(u, v) = P
(
U

(1)
t ≤ ku − σ

(1)
t ,U

(2)
t ≤ kv − σ

(2)
t

)
(A.4)

= 1

k(k − 1)

[ku]∑
i=0

[kv]∑
j=0

pij1{i �=j}.

To evaluate this expression, we consider the following possibilities according to
the value of(i, j):

(A) When i ≤ [ku] − 1 andj ≤ [kv] − 1, pij = P(U
(1)
t ≤ 1,U

(2)
t ≤ 1) = 1;

there are[ku]([kv] − 1)+ such pairs of(i, j)’s within 0 ≤ i �= j ≤ k. Recall
(x)+ = max{x,0}.

(B) Wheni ≤ [ku]−1 andj = [kv], pij = P(U
(2)
t ≤ kv−[kv]) = {kv}, where

{x} = x − [x]; there are[ku] such pairs of(i, j)’s.
(C) Wheni = [ku] andj ≤ [kv]− 1, pij = P(U

(1)
t ≤ ku−[ku]) = {ku}; there

are[kv] such pairs of(i, j)’s when[ku] = [kv], but only[kv] − 1 such pairs when
[ku] < [kv] because of the requirement thati �= j .

(D) When i = [ku] and j = [kv], pij = P(U
(1)
t ≤ ku − [ku],U(2)

t ≤ kv −
[kv]) = Ft({ku}, {kv}). There is no such pair when[ku] = [kv] and one such pair
when[ku] < [kv].
Putting these four possibilities together, we have

Ft+1(u, v)

(A.5)
=



0, if [kv] = 0,

ku(kv − 1) − {ku}({kv} − 1)

k(k − 1)
, if 0 < [kv] = [ku],

ku(kv − 1) − {ku}{kv} + Ft({ku}, {kv})
k(k − 1)

, if [kv] > [ku].
From (A.5), if (A.3) holds forT = 0 the rest follows immediately by induction.
For t = 1, sinceF0({ku}, {kv}) = {ku}{kv}, we have from (A.5)

F1(u, v) =



0, if [kv] = 0,

ku(kv − 1) − {ku}({kv} − 1)

k(k − 1)
, if 0 < [kv] = [ku],

u(kv − 1)

k − 1
, if [kv] > [ku].

(A.6)

Among the three expressions above, the second one is the largest as a function
of u andv. It is easy to check that this second function is less than or equal to
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F0(u, v) = uv if and only if

{ku}(1− {kv}) ≤ ku(1− v).(A.7)

Using[ku] = [kv], (A.7) is also equivalent to{kv}(u−{ku}) ≤ [ku](1−u), which
is obvious whenu ≤ {ku}. When 0≤ {ku} < u, {ku}(1−{kv}) ≤ u(1−{kv}). But
thenu(1 − {kv}) ≤ ku(1 − v) is equivalent to[kv] ≤ k − 1, which is obviously
true except whenv = 1. But thev = 1 case is trivial because thenu = 1 in order
to maintain[ku] = [kv] = k, and thus{ku} = 0, and hence (A.7) holds for all
0 ≤ u ≤ v ≤ 1. This provesF1(u, v) ≤ F0(u, v) for all (u, v) and hence (A.3) by
induction.

To show that (A.3) holds for any nondecreasingh, let xw = sup{x :h(x) ≤ w}
for any givenw. Then {x :h(x) ≤ w} = A

(h)
w (x), whereA

(h)
w (x) = {x :x ≤ xw}

if h(xw) ≤ w and A
(h)
w (x) = {x :x < xw} if h(xw) > w. This means that the

probability calculations of event{U :h(U) ≤ w} are the same as those for either
{U :U ≤ xw} or {U :U < xw}. This allows us to go fromF (h)

T (u, v) to FT (xu, xv),
for which we already have proved the desired result. A technical complication here
is that, depending on the continuity properties ofh at xu andxv , one or two “≤”
operations in the definition ofFT (xu, xv) = P(U

(1)
T ≤ xu,U

(2)
T ≤ xv) may need to

be replaced by “<”. However, as far as (A.3) is concerned, such modifications are
immaterial because they do not affect any part of (A)–(D). Or mathematically, we
have, for any given(u, v),

F
(h)
T +1(u, v) = P

(
h
(
U

(1)
T +1

) ≤ u,h
(
U

(2)
T +1

) ≤ v
)

= E
[
A(h)

u

(
U

(1)
T +1

) ∩ A(h)
v

(
U

(2)
T +1

)] ≤ E
[
A(h)

u

(
U

(1)
T

) ∩ A(h)
v

(
U

(2)
T

)]
= P

(
h
(
U

(1)
T

) ≤ u,h
(
U

(2)
T

) ≤ v
) = F

(h)
T (u, v),

where the middle inequality holds because (A.3) holds withh(x) = x, possibly
with the aforementioned modifications from “≤” to “ <” in the definition of the
bivariate CDF.

A.3. Proof of Theorem 6. For anyh ∈ L2[0,1], Stein (1987) showed that
Theorem 6 is true for the original LHS, that is, whenT = 1. Therefore,
for any monotoneh ∈ L2[0,1], Theorem 6 is a consequence of Theorem 5,
because the smallest possible value of Corr(h(U

(1)
T ), h(U

(2)
T )) is −1/(k − 1), as

seen in (3.9). More specifically, for anyT > 1, any possible limit of−(k −
1)Corr(h(U

(1)
T ), h(U

(2)
T )), ask → ∞, must be bounded below and above by 1,

and hence can only be 1. For nonmonotoneh ∈ L2[0,1], the proof turns out to be
much more technical. It essentially requires going through Stein’s (1987) original
arguments but using the more complicated bivariate CDF via (A.5); details are
given in Craiu (2001).
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A.4. Proof of Theorem 7. First we prove (4.6) when bothh1 and h2 are
identity functions. By (A.5),

D(t, t + 1) = sup
[ku]�=[kv]

{∣∣∣∣Ft({ku}, {kv})
k(k − 1)

− Ft−1({ku}, {kv})
k(k − 1)

∣∣∣∣}(A.8)

≤ sup
u,v

{∣∣∣∣ Ft(u, v)

k(k − 1)
− Ft−1(u, v)

k(k − 1)

∣∣∣∣} = D(t − 1, t)

k(k − 1)
.(A.9)

This allows us to conclude that

D(t, t + 1) ≤ D(0,1)

[k(k − 1)]t ,(A.10)

where D(0,1) = supu,v{|F (1)(u, v) − F (0)(u, v)|} = supu,v{uv − F (1)(u, v)}.
By (A.6), D(0,1) is the maximum value of the following three suprema:

(i) sup
[ku]=[kv]=0

uv = 1

k2 ;

(ii) sup
0<[kv]=[ku]

{
uv − ku(kv − 1) − {ku}({kv} − 1)

k(k − 1)

}

= sup
0<[kv]=[ku]

{
ku(1− v) − {ku}(1− {kv})

k(k − 1)

}
≤ 1

k − 1
;

(iii) sup
[kv]�=[ku]

{
uv − ku(kv − 1)

k(k − 1)

}
= sup

[kv]�=[ku]

{
u(1− v)

k − 1

}
= 1

k − 1
.

Putting all these facts together, we have

D(t, t + m) ≤
t+m−1∑

i=t

D(i, i + 1)

≤
t+m−1∑

i=t

1

ki(k − 1)i+1 = 1

kt (k − 1)t+1

1− [k(k − 1)]−m

1− [k(k − 1)]−1 ,

which is less thank−(t−1)(k − 1)−(t+2) whenk ≥ 2. The extension to nondecreas-
ing functionsh1, h2 is immediate by definingh−1(u) = sup{s :h(s) ≤ u} and pro-
ceeding in the same fashion as in Appendix A.2. That is, for any nondecreasing
functionsh1 andh2,

Dh1,h2(t, t + m) ≤ sup
u,v

∣∣Ft+m

(
h−1

1 (u), h−1
2 (v)

) − Ft

(
h−1

1 (u), h−1
2 (v)

)∣∣
≤ D(t, t + m),

where the definition ofFt+m(xu, xv) andFt(xu, xv) may need to be modified as in
Appendix A.2.
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A.5. Maximum reduction factor in the uniform case. To maximize (4.7)
subject to 1≤ [kc] ≤ k − 1, let ic = [kc] and fc = {kc}. By symmetry, the
maximum of (4.7) occurs at eitheric = 1 or ic = k − 2. Whenic = 1, (4.7) can
be expressed as

S
(f )
k (fc) = k(1− fc)fc

(1+ fc)(k − 1− fc)
.(A.11)

Straightforward differentiation then shows that the maximizer must satisfy(k −
3)f 2

c + 2(k − 1)fc − (k − 1) = 0, which only has one acceptable solutionfc =√
k−1√

2k−4+√
k−1

. Therefore the maximizer of (4.7) isc∗
1 = 1

k
(1 +

√
k−1√

2k−4+√
k−1

) with

the corresponding maximal value ofS
(f )
k given in (4.8). The maximum from

ic = k − 2 is the same, with the maximizerc∗
2 = 1

k
(k − 2+

√
k−1√

2k−4+√
k−1

).
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