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Parameter estimates for associated genetic variants, report ed in the initial
discovery samples, are often grossly inflated compared to the values observed
in the follow-up replication samples. This type of bias is a consequence of
the sequential procedure in which the estimated effect of an associated ge-
netic marker must first pass a stringent significance threshold. We propose
a hierarchical Bayes method in which a spike-and-slab prior is used to ac-
count for the possibility that the significant test result may be due to chance.
We examine the robustness of the method using different priors correspond-
ing to different degrees of confidence in the testing results and propose a
Bayesian model averaging procedure to combine estimates produced by dif-
ferent models. The Bayesian estimators yield smaller variance compared to
the conditional likelihood estimator and outperform the latter in studies with
low power. We investigate the performance of the method with simulations
and applications to four real data examples.

1. Introduction. Parameter estimates such as odds ratios (OR) for an associ-
ated genetic variant (e.g., SNP, Single-Nucleotide Polymorphism), reported from
the same discovery samples that were initially used to declare statistical signifi-
cance, are often grossly inflated compared to the values observed in the follow-up
replication samples [e.g., Nair, Duffin and Helms (2009)]. This type of bias is a
consequence of using the same data for both model selection and parameter es-
timation, because a declared associated variant must pass a stringent significance
threshold. This phenomenon is also known as the Beavis effect [Xu (2003)] or the
winner’s curse [Zöllner and Pritchard (2007)] in the biostatistics literature.

The winner’s curse has recently gained much attention in genetic studies, be-
cause it has been recognized as one of the major contributing factors to the failures
of many attempted replication studies [e.g., Ioannidis, Thomas and Daly (2009)].
For example, five Nature Genetic publications in the first three months of 2009 ac-
knowledged the effect of the winner’s curse [e.g., Nair, Duffin and Helms (2009)].
In their recent Nature Review paper, Ioannidis, Thomas and Daly (2009) dedi-
cated a section to the winner’s curse and emphasized that “the magnitude of the
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winner’s curse is inversely related to the power of the study. In typical circum-
stances, for 10% power, the inflation of an additive effect could be approximately
60%. . . . For small effects [anticipated for susceptibility loci associated with com-
plex diseases/traits], even large meta-analyses could be grossly under-powered
and emerging associations could be considerably inflated. For rare variants, the
power can be <1%.”

Some authors [e.g., Göring, Terwilliger and Blangero (2001)] have argued that
reliable parameter estimates can be obtained only from an independent sample.
However, collecting additional samples could be undesirable due to, for example,
time and budget constraints as well as concerns over population heterogeneity and
sampling differences. Two categories of methods were subsequently proposed to
correct for the selection bias using the original samples only: the model-free re-
sampling based methods [Sun and Bull (2005); Wu, Sun and Bull (2006); Yu et al.
(2007); Jefferies (2007)] and the likelihood based methods [Zöllner and Pritchard
(2007); Ghosh, Zou and Wright (2008); Zhong and Prentice (2008); Xiao and
Boehnke (2009)]. Both types of approaches were shown to substantially reduce
the estimation bias in relatively small samples, and comparable performances were
observed by Faye et al. (2009). However, one caveat is that the variances of the
proposed estimators in both categories are considerably higher than the original
naïve estimator and lead to highly variable estimates of the sample size needed
for replication studies. Although the increased variability is expected, due to the
bias-variance trade-off, it may be too high to provide practical design recommen-
dations. For example, Figure 4 of Zöllner and Pritchard (2007) shows that the bias-
adjusted sample size estimates range from ∼500 to ∼100,000 compared to the
actual required sample size of 1,261 for a successful replication study (α = 10−6,
power = 80%).

Motivated by the above observations and the fact that some form of prior infor-
mation is often available in genetic studies, we propose here a Bayesian framework
to further reduce the bias and decrease the variability in the estimates. In particu-
lar, we focus on the OR estimates from genome-wide association studies (GWAS)
via logistic regression analyses of case-control disease status, because most of the
current genetic mapping studies adopt the case-control GWAS design. We first de-
scribe the statistical model in Section 2. We prove in Section 3 that, conditional
on statistical significance, there are no unbiased estimators for the log OR. We
present the Bayesian methodology in Section 4 with detailed discussions on the
prior specifications and the advantages of model averaging. We assess the perfor-
mance of the proposed methods in Section 5 via extensive simulation studies under
a general normal model and specific genetic models. We demonstrate the utility of
our methods in Section 6 with applications to four different association studies,
including a candidate gene study and three GWAS of either binary case-control or
quantitative outcomes. Our concluding remarks are in Section 7.
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2. The statistical model. Let β refer to the true log Odds Ratio (OR), the
parameter of interest, for the risk allele of an associated SNP, and Z the statistic of
the corresponding association test. Following Ghosh, Zou and Wright (2008), we
assume that Z is asymptotically normally distributed and has the form

Z = β̂

ŜE(β̂)
∼ N

(
β

SE(β̂)
,1

)
,

where β̂ is the estimate for β from the logistic regression, logit(E[Y ]) = α + βX,
in which the response variable Y is the affection status of a sample (0 = unaf-
fected and 1 = affected by the disease of interest) and the predictor X ∈ {0,1,2}
is the SNP genotype coded additively (X represents the number of copies of the
risk allele). Other covariates may be also included in the model. Without loss of
generality, we assume that the minor allele is the risk allele and the alternative of
interest is one-sided, that is, H0 :β = 0 vs. H1 :β > 0. The association test in this
case is based on the Wald test, and if the null hypothesis is rejected, the standard
practice is to directly use the β̂ from the logistic regression as the estimate for β .

The above estimation procedure is essentially the same as the familiar prac-
tice of population mean estimation in the following more general statistical setup.
Assuming that n i.i.d. samples, {X1, . . . ,Xn}, were collected from a normal
population with mean μ and variance σ 2, a significance test is first conducted
for H0 :μ = 0 vs. H1 :μ > 0 based on the statistic, Tn = X

S/
√

n
, which follows

N(
μ

σ/
√

n
,1), where X and S are the sample mean and standard deviation. The

sample mean X, calculated from the same sample, is subsequently used as an esti-
mate for μ, without adjusting for the fact that the null hypothesis was rejected (i.e.,
Tn > c, where c is the critical value corresponding to type I error rate α) and that
estimation is performed for samples with positive findings only. Note that, in our
simplified model, although E[X] = μ, the conditional mean E[X|X > (cS/

√
n)]

is strictly greater than μ, unless the power of the test is 100%. Thus, this naïve
estimate, X, is upward biased. The amount of bias is inversely proportional to the
power as was first demonstrated by Göring, Terwilliger and Blangero (2001) in
genome-wide linkage analyses and later by Garner (2007) for genome-wide asso-
ciation studies. The likelihood based methods proposed by Ghosh, Zou and Wright
(2008) and others propose to correct for this selection bias by calculating the max-
imum likelihood estimate (MLE) of μ from the correct conditional likelihood. In
this setting,

P(X|μ,σ 2, Tn > c) =
n∏

i=1

(1/
√

2πσ 2) exp[−(Xi − μ)2/2σ 2]
1 − �(c − μ/(σ/

√
n))

,(2.1)

where � is the cumulative distribution function (c.d.f.) of the standard normal
distribution.
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Although the above normal model is a conceptual one, it connects directly with
the logistic model used for case-control association studies. Specifically, β (the
true log OR) corresponds to μ (the normal population mean), β̂ (the naïve es-
timate) corresponds to the statistic X, and ŜE(β̂) corresponds to S/

√
n. In the

following development of the bias correction Bayesian methods, we choose to fo-
cus on the normal model for a number of reasons. The key factor that influences
the selection bias is the power of the association test, which depends on the non-
centrality parameter, β/SE(β̂). In practice, β is the true log OR, but SE(β̂) is a
complex function of multiple components including the prevalence of the disease
in the population, the disease model (e.g., additive, dominant or others), the minor
allele frequency of the SNP, the sample size and the significance threshold used
[Slager and Schaid (2001)]. The normal model allows us to concisely control the
main factor of interest, the power of the association test, in the simulation studies,
by fixing the normal population mean (μ ↔ β , the log OR) and considering practi-
cally meaningful ranges of significance threshold value, power and sample size (n),
which in turn determine the normal population variance [σ , and σ/

√
n ↔ SE(β̂)].

Moreover, this conceptual normal model also covers association analyses of quan-
titative outcome, Y, for which a linear regression model is typically used, for ex-
ample, E[Y ] = α + βX. In that case, the population mean μ in the conceptual
normal model represents the regression coefficient β . In Section 6 we show how
our Bayesian methods built upon this conceptual normal model can be applied
to published association studies for which only the OR (or the regression coeffi-
cient), the association p-value, the sample size and the significance threshold were
available.

In the following, we first show that there are no unbiased estimators for the
population mean conditionally on the significance of the corresponding hypothesis
test. We then proceed with the development of a catalogue of Bayesian estimators
and the evaluation of their performance via simulation and application studies.

3. Lack of unbiased estimators for μ. Ghosh, Zou and Wright (2008) and
other authors have demonstrated that the MLE from the correct conditional likeli-
hood could substantially reduce the bias. However, they also observed via simula-
tion studies that the conditional MLE tends to over-correct for large μ and under-
correct for small μ. Stallard, Todd and Whitehead (2008) showed that there is no
conditional unbiased estimators for the effect of treatment A from a sample that
was first used to select treatment A over B, that is, conditioning on the fact that
the sample effect of treatment A was larger than that of treatment B. Although
previous authors [Zhong and Prentice (2008); Bowden and Dudbridge (2009)] dis-
cussed that a similar argument can be used in the case considered here, below we
provide a formal proof to show that there are no unbiased conditional estimators
for the population mean μ even when the population variance σ 2 is known.

Because Tn is a sufficient statistic for μ when σ is known, the completeness
of the normal family of distributions implies that we can restrict the search for
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unbiased estimators of μ

σ/
√

n
to functions of Tn. Now suppose that some function

h(Tn) is an unbiased estimator of μ

σ/
√

n
conditional on the statistical significance,

that is, Tn > c. Let g(Tn) = {Tn − h(Tn)}, then

E[g(Tn)|Tn > c] = E[Tn|Tn > c] − E[h(Tn)|Tn > c]

=
∫ ∞
c

Tn

φ(Tn − μ/(σ/
√

n))

1 − �(c − μ/(σ/
√

n))
d(Tn) − μ

σ/
√

n

= 1

B

∫ ∞
c−μ/(σ/

√
n)

(
z + μ

σ/
√

n

)
φ(z) dz − μ

σ/
√

n

= 1

B

[∫ ∞
c−μ/(σ/

√
n)

z · e−z2/2 dz + B · μ

σ/
√

n

]
− μ

σ/
√

n

= 1

B

[
φ

(
c − μ

σ/
√

n

)
+ B · μ

σ/
√

n

]
− μ

σ/
√

n

= φ(c − μ/(σ/
√

n))

1 − �(c − μ/(σ/
√

n))
,

where B = 1 − �(c − μ

σ/
√

n
).

Thus, we have∫ ∞
c

g(Tn)
φ(Tn − μ/(σ/

√
n))

1 − �(c − μ/(σ/
√

n))
dTn = φ(c − μ/(σ/

√
n))

1 − �(c − μ/(σ/
√

n))
,(3.1)

which implies ∫ ∞
c

g(Tn)φ

(
Tn − μ

σ/
√

n

)
dTn = φ

(
c − μ

σ/
√

n

)
.(3.2)

Now, let δc(y) be the Dirac delta function defined for y ≥ c such that it is
equal to 0 for all y greater than c and

∫ ε
c δc(y) dy = 1 for all ε > 0. It is easy

to see that a solution to equation (3.2) is g(Tn) = δc(Tn). By the completeness of
the normal distribution, the solution g(Tn) · 1{Tn>c} is unique almost everywhere.
Thus, h(Tn) · 1{Tn>c} = Tn · 1{Tn>c} holds almost everywhere. Hence, Tn is also an
unbiased estimator for μ

σ/
√

n
. However, Tn · 1{Tn>c} has an upward bias equal to

φ(c−μ/(σ/
√

n))

1−�(c−μ/(σ/
√

n))
. Therefore, we conclude that there are no unbiased estimators of

μ

σ/
√

n
and hence no unbiased estimators of μ.

4. Bayesian bias correction.

4.1. Prior specification. The possible available prior information for genome-
wide association studies (GWAS) is diverse due to, for example, results from pre-
vious genome-wide linkage analyses or candidate studies, or biological evidence
on the SNPs. One common theme, however, is the anticipated low power of the
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GWAS and the well-acknowledged fact that an apparent significantly associated
SNP could be a false positive [Ioannidis, Thomas and Daly (2009)]. Thus, the per-
formance of the proposed Bayesian methods is assessed in this context, although
the practical implementation of the methods could be study specific depending on
the type of the available prior.

The Bayesian paradigm allows us to incorporate in our model the prior belief
that the significance of the effect observed may be due to chance. Mathematically,
this belief can be modeled using a spike-and-slab prior which is essentially a mix-
ture between a discrete probability with mass at zero and a continuous density f

with support on the positive real line

p(μ|ξ) = ξδ{0}(μ) + (1 − ξ)f (μ),

where ξ is either constant or a hyperparameter in the model.
The spike-and-slab priors have a long history in the Bayesian literature on

variable selection and shrinkage estimation, for example, Box and Meyer (1986),
Mitchell and Beauchamp (1988), George and McCulloch (1993), Chipman (1996),
Clyde, DeSimone and Parmigiani (1996), Geweke (1996), and Kuo and Mallick
(1998). A recent theoretical study by Ishwaran and Rao (2005) discusses the simi-
larities between Bayesian procedures using the spike-and-slab priors and frequen-
tist procedures.

We treat ξ as a hyperparameter with a Beta distribution, ξ ∼ Beta(a, b). The
parameters a, b reflect our degree of prior belief in μ = 0 (false positive) ver-
sus μ > 0 (true positive). If we set a = b = 1, then p(ξ |a = 1, b = 1) is the
Uniform(0,1) density, which implies that we do not favor, a priori, any region
of (0,1). This could be considered the “noninformative” prior for ξ . The choice
a = 2/3 and b = 2/3 corresponds to our belief in two extreme outcomes: ξ is
either close to 0 (believing in true positive, μ > 0) or close to 1 (believing in false
positive, μ = 0). Smaller values for a and larger values for b, say, a = 0.5 and
b = 8, lead to a higher prior confidence that the signal is real. Similarly, larger
values for a and smaller values for b, say, a = 8 and b = 0.5, correspond to prior
skepticism regarding the observed association between the significant SNP and the
trait of interest. Figure 1 shows the Beta distribution of ξ for different values of a

and b.
Although we focus on Beta(0.5, 8), and Beta(8, 0.5) in evaluating the perfor-

mance of the proposed Bayesian methods, we conducted additional simulations to
study the model’s robustness to the choice of priors. Simulation results included in
the supplementary material indicate that other values for a and b [e.g., Beta(0.5,
16) or Beta(4, 0.5)] that preserve the L-shaped or the “inverse” L-shaped density,
as seen in Figure 1, produce very similar inferences.

In the existing likelihood approaches the sample variance, S2, is typically used
to estimate σ 2 [Ghosh, Zou and Wright (2008)]. Although the variance estimator
has relatively high precision in large samples, it could be subject to the selection
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FIG. 1. Density of the prior Beta(a, b) for ξ with different choices of a and b.

bias in small samples [Faye et al. (2009)]. Therefore, we adopt an empirical Bayes
prior for σ 2 in which the hyperparameters of the inverse gamma distribution, α1
and α2, are chosen so that the a priori mean of σ 2 is equal to S2, the sample
variance, but the prior variance of σ 2 is equal to 200. We note that additional
simulations with more certainty about σ 2 (prior variance of σ 2 as small as 10) or
less certainty (as large as 1000) produce very similar results.

We use Uniform(0,A) to specify f (μ), the density function for the continuous
component of the prior for μ, the log OR, where A represents the upper bound
of log OR. However, in this parametrization the estimator is very sensitive to the
choice of A. To show this, let Z be the latent mixture indicator so that Z = 0 if the
significant SNP is a false positive (μ = 0) and Z = 1 for a true positive (μ > 0). It
is not difficult to see that

Z| �X,ξ,μ,σ 2 =

⎧⎪⎪⎨
⎪⎪⎩

0, with probability
p0

p0 + p1
,

1, with probability
p1

p0 + p1
,

where �X = {X1, . . . ,Xn} and

p0 = ξ

1 − �(c)
,

p1 = 1

A
× (1 − ξ) exp{−(1/(2σ 2))(nμ2 − 2μ

∑n
i=1 Xi)}

1 − �(c − μ/(σ/
√

n))
.

Thus, depending on the value of A, p1 can be made arbitrarily small regardless
of the data available. This can influence dramatically (even for A = 2) the perfor-
mance of the computational algorithm used to obtain the posterior distribution of
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interest (described in Section 4.3). One simple method to circumvent this prob-
lem is to use the reparametrization θ = μ/A which dissolves the influence of A

on p1. Therefore, the proposed Bayesian method has the following hierarchical
prior structure:

p(θ |ξ) = ξg0(θ) + (1 − ξ)g1(θ),(4.1)

ξ ∼ Beta(a, b),

σ 2 ∼ Inv-Gamma(α1, α2),

where α1 = S4/200 + 2, and α2 = S6/200 + S2, S is the sample standard devia-
tion, g0(θ) = δ{0}(θ) and g1(θ) is the density of Uniform(0, 1).

In the actual implementation, we use A = 2 to reflect the known maximum
log OR of SNPs identified for complex diseases and traits. For example, the truly
associated SNP in the well-known major histocompatibility complex (MHC) re-
gion has perhaps the highest genetic effect observed to date, with a log OR of
log(5.49) = 1.7 [WTCCC (2007)]. We note that additional simulations showed
that, as long as the reparametrization θ = μ/A is used, results remain largely
the same for higher upper bounds (e.g., A = 6 corresponding to a maximum
OR ≈ 400). Applications in Section 6 also demonstrate the robustness of the model
when it was applied not only to case-control data but also to an association study
of a quantitative outcome.

4.2. Posterior distribution. The joint prior distribution for (θ, ξ) is

p(θ, ξ) = p(θ |ξ)p(ξ)
(4.2)

= ξg0(θ)ξa−1(1 − ξ)b−1 + (1 − ξ)g1(θ)ξa−1(1 − ξ)b−1.

Conditional on Z, the sampling distribution is

P( �X|θ, σ 2,Z,Tn > c)

∝ (1/σ)n
(

exp{−∑n
i=1 X2

i /(2σ 2)}
1 − �(c)

)1−Z

×
(

exp{−∑n
i=1 (Xi − 2θ)2/(2σ 2)}

1 − �(c − 2θ/(σ/
√

n))

)Z

.

If Z were observed, the posterior distribution for the vector (θ, ξ, σ 2) would be

p(θ, ξ, σ 2| �X,Z,Tn > c)

∝ p( �X,Z|θ, σ 2, Tn > c)p(θ |ξ)p(ξ)p(σ 2)

∝ (1/σ)n
(

exp{−∑n
i=1 X2

i /(2σ 2)}ξ
1 − �(c)

)1−Z

(4.3)
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×
(

exp{−∑n
i=1 (Xi − 2θ)2/(2σ 2)}(1 − ξ)

1 − �(c − 2θ/(σ/
√

n))

)Z

× ξa−1(1 − ξ)b−1
(

1

σ 2

)α1+1

exp{−α2/σ
2}

for θ, ξ ∈ [0,1], σ > 0 (detailed derivation provided in the Supplementary mater-
ial). We note that the posterior distribution specified in equation (4.3) depends on
the data only through the sufficient statistics for (μ,σ 2), Dn = (

∑
Xi,

∑
X2

i ). This
is particularly useful in practice when the original sample-specific data �X are not
available, but the sufficient statistics are provided or could be inferred from typi-
cally reported quantities such as the sample size, the observed OR and association
p-value, and the significance threshold used.

4.3. Sampling from the posterior distribution. The latent variable Z is unob-
servable in practice, so equation (4.3) cannot be used directly to study the char-
acteristics of the posterior distribution, π(θ, ξ, σ 2) = p(θ, ξ, σ 2|Dn,Tn > c). The
traditional approach in this type of situation is to use Markov chain Monte Carlo
(MCMC) techniques to sample from π . The posterior distribution has a mixture
form for which the Data Augmentation algorithm of Tanner and Wong (1987) has
been proven extremely efficient [see also van Dyk and Meng (2001)]. The algo-
rithm relies on sampling alternatively from the distribution of Z|Dn, θ, ξ, σ 2 and
θ, ξ, σ 2|Z,Dn. More precisely, at iteration t we carry out the following steps:

Step 1. Sample Zt ∈ {0,1} given ξt−1, θt−1 and σ 2
t−1 from the conditional dis-

tribution

Zt |ξt−1, θt−1, σ
2
t−1 =

⎧⎪⎪⎨
⎪⎪⎩

0, with probability
p0

p0 + p1
,

1, with probability
p1

p0 + p1
,

where

p0 = ξt−1

1 − �(c)
,

p1 = (1 − ξt−1) exp{−(1/(2σ 2
t−1))(4nθ2

t−1 − 4θt−1
∑n

i=1 Xi)}
1 − �(c − 2θt−1/(σt−1/

√
n))

.

Step 2. (i) If Zt = 0, sample

ξt ∼ Beta(a + 1, b),

σ 2
t ∼ p(σ 2|Dn) ∝

(
1

σ 2

)n/2+α1+1

exp
{
− 1

σ 2

(
α2 +

∑n
i=1 X2

i

2

)}
,

which is the inverse gamma distribution with shape parameter equal to n
2 +α1, and

scale parameter equal to α2 +
∑n

i=1 X2
i

2 . We also set μt = θt = 0.
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(ii) If Zt = 1, sample

ξt ∼ Beta(a, b + 1),

θt ∼ p(θ |Dn,σt−1) ∝ exp{−2nθ2/σ 2
t−1 − 2θ

∑n
i=1 Xi/σ

2
t−1}

1 − �(c − 2θ/(σt−1/
√

n))
1(0,1)(θ),

σ 2
t ∼ p(σ 2|(Dn, ξt , θt ) ∝ exp{−1/(2σ 2)(

∑n
i=1 X2

i + 4nθ2
t − 4θt

∑n
i=1 Xi)}

(1 − �(c − 2θt/

√
σ 2/n))

× (σ 2)n/2+α1+1 exp{−α2/σ
2}.

The sampling of θt and σ 2
t at step 2(ii) cannot be carried out directly, so we apply a

Metropolis–Hasting algorithm [Metropolis et al. (1953)]. We use 20,000 iterations
to obtain 15,000 posterior samples, discarding the first 5000 “burn-in” samples.
The sample mean of the above 15,000 posterior samples, θ , is used to estimate the
posterior mean E[μ|Dn,Tn > c]. That is, μ̂B = 2θ , where the factor 2 is due to the
initial reparametrization θ = μ/A and A = 2. (Additional simulations presented in
the Supplementary material show that running the chain longer or discarding more
“burn-in” samples provide similar results.)

4.4. Bayesian Model Averaging (BMA). The Bayesian model averaging
(BMA) is a coherent and conceptually simple method devised to take into ac-
count the model uncertainty [see Hoeting et al. (1999) and references therein]. For
the problem discussed here, the uncertainty is related to our lack of information
regarding the power of the test performed in the first stage. If we knew, say, that
the power of the test is high, then we would be more confident that the signal de-
tected is a true signal and this would be reflected in our choice of the prior. In the
absence of such information, one could adopt the BMA methodology to increase
the robustness of the Bayesian estimator.

In the BMA paradigm, assume that � is the quantity of inferential interest for
which a number of candidate models, say, M1, . . . ,MK , are available. Given the
prior probability for each candidate model, p(Mi),1 ≤ i ≤ K , the traditional BMA
method assigns the posterior distribution given data D for �

p(�|D) =
K∑

k=1

p(�|Mk,D)p(Mk|D),(4.4)

where

p(Mk|D) = p(D|Mk)p(Mk)∑K
l=1 p(D|Ml)p(Ml)

and

p(D|Mk) =
∫

p(D|θk,Mk)p(θk|Mk)dθk.
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In our setting, K = 2 because only two models are considered. Let M1 be the
model with prior p(ξ) = Beta(8,0.5) (a priori favors the belief that the initial
discovery is a false positive) and M2 for p(ξ) = Beta(0.5,8) (a priori favors the
belief that the initial discovery is a true positive). To specify the values for p(M1)

and p(M2), we utilize the threshold value c in the following fashion, p(M1) =
e(−c/2) and p(M2) = 1 − e(−c/2). Thus, our prior belief in model M1 (with higher
density for false positive) decreases as the testing threshold value increases at an
exponential rate. The posterior probabilities for the two models can be derived as

p(Mi |Dn) = p(Dn|Mi)p(Mi)

p(Dn|M1)p(M1) + p(Dn|M2)p(M2)
, i = 1,2.

Thus,

p(M1|Dn)

p(M2|Dn)
= p(Dn|M1)

p(Dn|M2)
· e(−c/2)

(1 − e(−c/2))
.(4.5)

The direct computation, however, is difficult because the integral

p(Dn|M) =
∫ ∫

(μ,ξ,σ 2)
p(Dn|μ, ξ, σ 2,M)p(μ|ξ,M)p(ξ |M)p(σ 2|M)dμdξ

cannot be calculated in a closed form. Note that

p(μ, ξ, σ 2|Dn,M) = p(Dn|M,μ, ξ, σ 2)p(μ|ξ,M)p(ξ |M)p(σ 2|M)

p(Dn|M)
,(4.6)

thus p(Dn|M) can be viewed as the normalizing constant of the posterior distribu-
tion p(μ, ξ, σ 2|Dn,M). Therefore, the first ratio in (4.5) is a ratio of two normal-
izing constants for two densities from which we can sample. The problem of esti-
mating ratios of two normalizing constants has been discussed by, among others,
Meng and Wong (1996) and Gelman and Meng (1998). We use the bridge sampling
method proposed by Meng and Wong (1996) to compute the ratio in (4.5).

To compute (4.5), let r = p(Dn|M1)/p(Dn|M2), ω = (μ, ξ, σ 2), πi = p(μ, ξ,

σ 2|Dn,Mi) and qi(μ, ξ, σ 2) = p(Dn|Mi,μ, ξ, σ 2)p(μ|ξ,Mi)p(ξ |Mi)p(σ 2|Mi),

for 1 ≤ i ≤ 2. Given m = 10,000 samples {(μi1, ξi1, σ
2
i1), . . . , (μini

, ξini
, σ 2

i1)}
from each density πi , we can approximate r using the iterative procedure of Meng
and Wong (1996). Specifically, after starting with an initial estimate r̂ (0), at the
(t + 1)st iteration, we compute

r̂ (t+1) = (1/m)
∑m

j=1[q1(ω2j )/(s1q1(ω2j ) + s2r̂
(t)q2(ω2j ))]

(1/m)
∑m

j=1[q2(ω1j )/(s1q1(ω1j ) + s2r̂ (t)q2(ω1j ))]
(4.7)

≡ (1/m)
∑n2

j=1[l2j /(s1l2j + s2r̂
(t))]

(1/m)
∑m

j=1[1/(s1l1j + s2r̂ (t))] ,

where si = 0.5, and lij = q1(ωij )

q2(ωij )
, for 1 ≤ j ≤ m, 1 ≤ i ≤ 2. Note that lij needs to

be computed only once at the beginning of the algorithm. The convergent value of
r̂ (t) is the one we choose to estimate r .
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In the current setting lij is easy to compute since

lij = p(Dn|M1,μij , ξij , σ
2
ij )p(μij |ξij ,M1)p(ξij |M1)p(σ 2

ij |M1)

p(Dn|M2,μij , ξij , σ
2
ij )p(μij |ξij ,M2)p(ξij |M2)p(σ 2

ij |M2)

= p(ξij |M1)

p(ξij |M2)
= ξ7.5

ij (1 − ξij )
−7.5.

From equations (4.4) and (4.5), we obtain the BMA estimator of μ,

μ̂BMA = r̂e(−c/2)

r̂e(−c/2) + 1 − e(−c/2)
μ̂1 + 1 − e(−c/2)

r̂e(−c/2) + 1 − e(−c/2)
μ̂2,(4.8)

where μ̂1 and μ̂2 are the posterior means of μ obtained under models M1 and M2,
respectively.

5. Simulation study. We carried out two sets of simulations to examine the
performances of the Bayesian methods and compared the results with those from
the likelihood-based estimators of Ghosh, Zou and Wright (2008). The first set of
simulations used data generated from the normal model that was used to outline
and develop the Bayesian methods, and the second set used data simulated from a
case-control genetic model. The nine estimators examined are as follows:

N: The naïve estimator (X, the unconditional MLE).
MLE: The conditional MLE estimator based on equation (2.1), that is the β1

estimator in Ghosh, Zou and Wright (2008).
NMLE: The mean of the Normalized Conditional Likelihood estimator, that is,

the β2 estimator of Ghosh, Zou and Wright (2008).
Ghosh: The average estimator of MLE and NMLE, that is, the β3 estimator rec-

ommended by Ghosh, Zou and Wright (2008).
B.L: The Bayesian estimator based on equation (4.3) when the prior for ξ is

Beta(8,0.5) (the prior belief is low power of the initial discovery study).
B.H: The Bayesian estimator based on equation (4.3) when the prior for ξ is

Beta(0.5,8) (the prior belief is high power of the initial discovery study).
B.BMA: The BMA estimator obtained by averaging the B.L and B.H models,

based on equation (4.8).
B.M: The Bayesian estimator based on equation (4.3) when the prior for ξ is

Beta(2/3,2/3) (the prior belief is either low or high power).
B.Unif: The Bayesian estimator based on equation (4.3) when the prior for ξ is

Uniform(0,1) (the “noninformative” prior).

Whenever an obtained estimate was negative, it was truncated to be zero following
the standard practice of interpreting the “flip–flop” phenomenon occurring at the
same SNP in the same population [Lin et al. (2007)]. That is, a SNP is found to
be associated with the disease of interest in two independent studies, but the risk
allele is reversed (i.e., the allele that increases the risk in one study is the protective
allele that decreases the risk in another study).
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5.1. Simulation set 1—normal model. We considered a factorial design in
which the factors are the power of the association test, the type 1 error rate and the
sample size. The power levels are {5%,10%,20%, 50%,99%}, of which 99% al-
lows us to investigate the asymptotic behavior of the methods while 20% or lower
reflect the low power anticipated for genome-wide association studies (GWAS).
The type 1 error rates, α, are {0.05,10−4,10−6}, of which 0.05 is the typical choice
for a single SNP study, while the other two are suitable for high-throughput GWAS
depending on the density of the SNPs being genotyped. The corresponding thresh-
old values for the test statistics, c, are {1.645,3.719,4.753}. The true population
mean is fixed at μ = 0.095 = log(1.1), and the sample size ranges from n = 100 to
over 10,000 depending on the combination of α and power. The values of the these
parameters then uniquely determine the corresponding population variance, σ 2.
The details of each simulation scenario are shown in Table 1.

Under each simulation scenario, we began by generating 200 significant data
sets, that is, Xi ∼ N(μ,σ 2), i = 1, . . . , n, such that the value of the test statistic,
Tn = X

S/
√

n
, is greater than c. We then computed the nine estimates, N, MLE,

NMLE, Ghosh, B.L, B.H, B.BMA, B.M and B.Unif, for each significant data
set.

Figure 2 provides detailed results when the type 1 error rate is 0.05 and the sim-
ulating parameter values are those in row 1 of Table 1. These plots confirm that, in
the case of low power of the initial association study (e.g., 10%), the naïve estima-
tor has a large upward bias. Even in the moderately powered studies (e.g., 20%),
the naïve estimator could considerably overestimate the true effect size. Note that
the two priors with opposite degrees of belief in the significance of the effect, B.L
and B.H, produce quite different results. The B.L estimator conservatively shrinks
the effect and, therefore, it is more reliable in those cases when the effect is small
or zero. (See additional figures in Supplement for the case of no genetic effect,
i.e., the apparent association is a false positive.) When the power of the test is rel-
atively high (e.g., 50%), B.H outperforms the other estimators considered. While
it is clear that B.L and B.H are complementing each other, B.BMA, designed to
balance between B.L and B.H, performs well in a variety of settings. The perfor-
mances of the other two estimators, B.M and B.Unif, are similar to one another
but inferior to B.BMA. The natural implication is that putting equal prior weight
on (0,1) is equivalent to putting equal weight on ξ close to zero or close to 1. As
expected, when the power is very high (e.g., 99%) there is little bias in the naïve
estimate; the other estimates also converge to the true value with B.L lagging be-
hind. This is due to the strong skepticism embedded in the B.L model about the
finding.

In most of the cases, the Bayesian estimators achieve the anticipated reduction
in bias as well as variance compared to the likelihood based estimators, MLE,
NMLE and Ghosh. Of the three, we observed that Ghosh (i.e., the average of
MLE and NMLE) performs the best, confirming the conclusion of Ghosh, Zou and
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TABLE 1
Simulation scenarios for the normal model

5% 10% 20% 50% 99%

α\power n σ σ/
√

n n σ σ/
√

n n σ σ/
√

n n σ σ/
√

n n σ σ/
√

n

0.05 – – – 100 2.623 0.262 200 1.678 0.119 1000 1.832 0.058 5000 1.697 0.024
10−4 1000 1.453 0.046 2000 1.749 0.039 3000 1.814 0.033 5000 1.812 0.026 10,000 1.577 0.016
10−6 2000 1.371 0.031 4000 1.736 0.027 5000 1.723 0.024 8000 1.793 0.020 16,000 1.702 0.013

Notes: Sample size (n) and population standard error (σ ) needed to obtain the desired power at the prespecified type 1 error rate (α) when population
mean μ = 0.0953 = log(1.1).
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FIG. 2. Performance of the nine estimators under the normal model with a type 1 error rate of
0.05. The population mean μ = log(1.1) = 0.0953 and power ranging from 10%, 20%, 50% to 99%.
Details of the simulating parameters are given in row 1 of Table 1. Each circle represents an estimate,
the horizontal is the averaged estimate over 200 simulated data sets, and the long horizontal line
represents the true value of μ. The Bias, sample Standard Deviation (SD) and Root Mean Squared
Error (RMSE) are also provided for each estimator.

Wright (2008). Therefore, in what follows we focus on the comparison between
B.BMA and Ghosh.

The advantage of B.BMA over Ghosh is especially obvious in the low power
studies. For example, when the power of the test is 10%, the bias of Ghosh is
0.196, almost twice as big as 0.092 for B.BMA. The sample standard deviation of
the Ghosh estimate is 0.186 compared to 0.116 for the B.BMA estimate. The Root
Mean Squared Error (RMSE) for B.BMA is almost half that for Ghosh (0.148 vs.
0.273). To formally assess the significance of the difference between Ghosh and
B.BMA, we performed a matched-pair t-test based on 50 simulation runs, and
we obtained a t-statistic of −117.47 showing that the difference is significant. As
expected, the advantage dissipates and the two perform similarly when the power
of the initial association study increases.
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As discussed by Ghosh, Zou and Wright (2008) and detailed in Section 2, the
main factor that influences the estimation bias is the power of the association test
which depends on the noncentrality parameter, μ/(σ/

√
n). Thus, although μ has

the interpretation of β = log OR and was fixed at log(1.1), the results are quali-
tatively similar for larger OR with smaller sample size or smaller OR with larger
sample size, as long as the ratio, μ/(σ/

√
n), and the significance threshold value,

α, stay the same.
Figure 3 shows the performance of the estimators when the type 1 error rate

is 10−6 and the parameter values are from row 3 of Table 1. We found that all
the bias correction estimators are showing a slight overcorrection. (Note that the
scale in the y-axis differs between Figures 2 and 3.) In this setting, the results of
B.BMA and Ghosh are very similar with B.BMA having a smaller variance. The
difference between Figures 2 and 3 is due to the fact that the significance threshold
used is drastically different, α = 0.05 for Figure 2 and α = 10−6 for Figure 3,
while the power of the association study of the same SNP is kept comparable by
increasing the required sample size, n. As a result, the noncentrality parameter
values, μ/(σ/

√
n), are not directly comparable between the two cases.

5.2. Simulation set 2—genetic model. Following the setup of the simulations
conducted by Ghosh, Zou and Wright (2008), we generated data for 500 cases
and 500 controls from an additive genetic model with disease prevalence of 1%,
minor allele frequency of 0.25, and the log OR, β , ranging from log(1.1) to log(2).
The threshold value is c = 5.0, leading to the significance level α = 2.87 × 10−7.
For each log OR value, we began by generating 200 significant data sets such that
the association test statistic, β̂/ŜE(β̂), is greater than c, where β̂ is the log OR
estimate obtained from the logistic regression model, and ŜE(β̂) is the estimate of
the standard error of β̂ . Using the summary statistics, β̂ and ŜE(β̂), the auxiliary
information such as the sample size (we used n = 1000) and the threshold value of
the test, we applied the Bayesian methods by letting μ̂ = β̂ , and S = σ̂ = ŜE(β̂)×√

n.
Figure 4 illustrates the results for log OR values equal to {log(1.2), log(1.3),

log(1.4), log(1.8)}, corresponding to the power of detecting the associated SNP in
the range {0.345%, 4.515%, 21.897%, 99.5%}. (Results for other log OR values
are qualitatively similar.) The results obtained from the simulated genetic models
confirm that the B.BMA has a smaller RMSE than Ghosh when the power of the
association test is low. Although the variance reduction on the log OR scale is
small, the implication on study design is practically important. Figure 5 shows the
sample size estimation for a replication study with 80% power at the 0.05 signifi-
cance level using the naïve log OR estimate, the Ghosh estimate and the B.BMA
estimate obtained from the original discovery samples, as reported in Figure 4.
Results show that the standard error in sample size estimation based on Ghosh is
almost twice as big as that based on B.BMA when the power of the original as-
sociation study is low (e.g., 20% or lower). In the low power case, we also note
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FIG. 3. Performance of the nine estimators under the normal model with a type 1 error rate of
10−6. The population mean μ = log(1.1) = 0.0953 and power ranging from 5%, 20%, 50% to 99%.
Details of the simulating parameters are given in row 3 of Table 1. Each circle represents an estimate,
the horizontal bar is the averaged estimate over 200 simulated data sets, and the long horizontal line
represents the true value of μ. The Bias, sample Standard Deviation (SD) and Root Mean Squared
Error (RMSE) are also provided for each estimator.

that the sample size predicted based on N, the naïve estimate, is never sufficient.
For example, for a SNP with log(OR) of log(1.2), the naïve sample size estimate
centers around 222 with a maximum predicted size of 247, while the true expected
required sample size is 1170. Although both Ghosh and B.BMA overestimate the
necessary sample size for replication due to the overcorrection of effect size, we
believe that a conservative sample size estimate is practically useful because it
guards against sampling variation.

We also examined different effect levels when the type I error level is equal to
0.05 or 0.001, and we drew similar conclusions based on the results reported in
Supplement. The additional simulation studies also include a null case where the
apparent discovery is a false positive. In that case, B.BMA outperforms Ghosh,
but B.L performs the best, as expected.
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FIG. 4. Performance of the nine estimators under an additive genetic model with a type 1 error
rate of α = 2.87 × 10−7(c = 5). The sample size is 1000 (500 cases and 500 controls), the minor
allele frequency of the causal SNP is 0.25. The effect of the SNP on the log OR scale ranging from
μ = β = log(1.2), log(1.3), log(1.4) to log(1.8) corresponding to power <1%, ≈5%, ≈20% and
>95% to detect the association. Each circle represents an estimate, the horizontal bar is the average
estimate over 200 simulated data sets, and the long horizontal line represents the true value of μ.
The Bias, sample Standard Deviation (SD) and Root Mean Squared Error (RMSE) are also provided
for each estimator.

6. Application study. We applied the proposed Bayesian estimation meth-
ods to four data sets of which one is a candidate gene study and the other three
are genome-wide association studies (GWAS) of either binary or quantitative out-
comes. Specifically, the four studies are as follows:

(I) the candidate gene association study of Lymphoma by Wang et al. (2006),
(II) the GWAS of type 1 diabetes (T1D) by WTCCC (2007),

(III) the GWAS of psoriasis by Nair, Duffin and Helms (2009),
(IV) the GWAS of complications of T1D by Paterson et al. (2010).

The Lymphoma and WTCCC T1D data sets were chosen because they were pre-
viously analyzed by Ghosh, Zou and Wright (2008) via the likelihood-based ap-
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FIG. 5. Performance of sample size estimation for replication studies under an additive genetic
model. The initial discovery samples are the same as those in Figure 4. The replication sample size is
calculated assuming a type 1 error rate of 0.05 and power of 80%, and it is calculated based on the
estimate of the log OR by N, the naïve estimation method, Ghosh, the likelihood method, or B.BMA,
the Bayesian method applied to the simulated significant discovery samples. Each circle represents
an estimate, the horizontal bar is the average estimate over 200 simulated data sets, and the long
horizontal line represents the true expected required sample size.

proach, and the other two studies were chosen because the genetic effect estimates
from independent replication samples were reported by the study authors. In ad-
dition, the T1D complication data set allows us to demonstrate that the proposed
methods can be easily and robustly applied to association studies of quantitative
outcomes.

In each case, the results are summarized in a table containing the original re-
ported genetic effect (i.e., the naïve estimate, N), the five different Bayesian esti-
mators, B.L, B.H, B.BMA, B.Unif and B.M, and three likelihood methods, MLE,
NMLE and Ghosh, as described in Section 5. The estimates produced by each
method are compared with the estimates obtained from the independent replica-
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tion samples reported in the literature. We note that the anticipated power for
each study differs due to the apparent differences in study design [e.g., higher
power for the candidate gene study of Wang et al. (2006) compared to the GWAS],
the sample size [e.g., higher power for the GWAS of T1D by WTCCC (2007)
with n ≈ 5000 compared to the GWAS of T1D complication by Paterson et al.
(2010) with n = 667], and the prior knowledge of a SNP (e.g., higher power for
rs12191877 from chromosome 6 in the well-known MHC region that is strongly
associated with Psoriasis compared to other novel SNPs). However, we report es-
timates from all five Bayesian estimators for a more complete comparison. The
estimate from the replication samples serves as the benchmark, but the value itself
should not be viewed as the true parameter value because of the sampling vari-
ation and the potential subpopulation and ascertainment differences between the
original discovery and the follow-up replication studies.

We also report the corresponding confidence interval (CI) or the highest poste-
rior density region/interval (HpdI), but it should be noted that the statistical inter-
pretations of CI and HpdI are different and, therefore, these regions are not directly
comparable. Although the HpdI with posterior mass 1 − η may be estimated using
samples from the posterior under model M1 for B.L or M2 for B.H, there is no
direct way to construct a HPD region for B.BMA, the model averaging estimator
for the two models. However, a credible interval (CrdI) can be constructed using
the normal approximation based on the model averaging estimator and its vari-
ance estimate [see equation (7) in Viallefont, Raftery and Richardson (2001)]. For
the likelihood-based methods, we construct the CI following the method proposed
by Ghosh, Zou and Wright (2008) that was shown to outperform the standard CI
procedure. Specifically, the Ghosh 1 − η CI is the interval between the η/2 and
1−η/2 quantiles of the conditional density p(Tn|Tn > c). Ghosh, Zou and Wright
(2008) noted that, although they proposed three competing point estimates, MLE,
NMLE and Ghosh, their procedure provided only a single CI.

6.1. Application I—A candidate-gene study of lymphoma. Wang et al. (2006)
performed a candidate gene study of Lymphoma using a total of 48 SNPs geno-
typed on 318 cases and 766 controls, and they reported two significant SNPs us-
ing a p-value threshold of α = 0.002. The naïve log OR estimate is log(1.54)
for rs1800629 and log(1.40) for rs909253, however, the follow-up estimates ob-
tained from a larger independent study are reduced considerably to log(1.29) for
rs1800629 and log(1.16) for rs909253 [Rothman et al. (2006); Ghosh, Zou and
Wright (2008)]. For each of the two SNPs, we applied the likelihood estima-
tion methods as well as the Bayesian methods, using the naïve log OR estimates,
μ̂ = β̂ , and S = σ̂ = ŜE(β̂) × √

n inferred from the observed association p-value
[p-value = 1 −�(|β̂/ŜE(β̂)|)], n = 318 + 766 = 1084 and c = 2.878 correspond-
ing to α = 0.002 (Table 2).

Results in Table 2 are consistent with simulation results of power 50% in Fig-
ure 2. Because of the anticipated high power of a candidate gene study, both
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TABLE 2
Application I—the candidate gene study of Lymphoma by Wang et al. (2006)

SNPs of interest rs1800629 rs909253

Discovery samples
Association p-value 5.7 × 10−4 7.4 × 10−4

Reported effect 0.432 0.337

Likelihood estimates
MLE (CI) 0.116 (0.000, 0.645) 0.010 (0.000, 0.498)
NMLE (CI) 0.247 (0.000, 0.645) 0.184 (0.000, 0.498)
Ghosh (CI) 0.182 (0.000, 0.645) 0.097 (0.000, 0.498)

Bayesian estimates
B.L (HpdI) 0.005 (0.000, 0.013) 0.004 (0.000, 0.005)
B.H (HpdI) 0.196 (0.000, 0.508) 0.142 (0.000, 0.382)
B.BMA (CrdI) 0.150 (0.000, 0.428) 0.115 (0.000, 0.324)
B.Unif (HpdI) 0.068 (0.000, 0.377) 0.045 (0.000, 0.277)
B.M (HpdI) 0.074 (0.000, 0.397) 0.049 (0.000, 0.281)

Follow-up samples
Follow-up estimate 0.255 0.148

Notes: The Reported Effect is naïve log OR estimate obtained from the original discovery samples
(318 cases and 766 controls) of Wang et al. (2006), in which the association tests of these two SNPs
were significant at the α = 0.002 level. The follow-up estimate was obtained from a larger pooled
analysis by Rothman et al. (2006). The other eight estimates were based on either the likelihood
approach, MLE, NMLE and Ghosh, or the proposed Bayesian approach, B.L, B.H, B.BMA, B.Unif
and B.M as summarized in Section 5. CI is the 95% confidence interval for the likelihood estimates,
HpdI is the highest posterior density interval with posterior mass 95% and CrdI is the credible interval
for the Bayesian estimates.

B.BMA and Ghosh overcorrect slightly with similar performance. We observe
that the CrdI of B.BMA is smaller than the CI of Ghosh, although we noted be-
fore that the interpretation of the two intervals is different. Results suggest that
B.H performs best among all the Bayesian methods, which is not surprising for a
study with putative high power.

6.2. Application II—A GWAS of Type 1 Diabetes. The Type 1 Diabetes (T1D)
GWAS from the WTCCC included approximatively 2000 cases and 3000 controls
and the samples were genotyped on the Affymetrix 500K chip3 [WTCCC (2007)].
After a set of quality control criterions (e.g., the minor allele frequency of a SNP
> 5%, the genotyping missing rate < 5% and the p-value of the Hardy–Weinberg
Equilibrium test > 5.7 × 10−7), the authors reported six significant loci at the
5 × 10−7 level. We focused on the four SNPs analyzed by Ghosh, Zou and Wright
(2008) because the replication results are available from the study of Todd et al.
(2007). For each SNP of interest, we applied the proposed estimation methods
using the reported log OR estimates obtained from the WTCCC discovery sam-
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ples, β̂ = μ̂, and S = σ̂ = ŜE(β̂) × √
n inferred from the observed association

p-value, and c = 4.892 corresponding to α = 5 × 10−7 (Table 3). In this applica-
tion, the actual number of cases is 1963− 37 = 1926 and the number of controls is
(1480 − 24)+ (1458 − 42) = 2872, where the 37, 24 and 42 samples were deleted
due to quality control issues, based on the information provided in the supplemen-
tary Tables 1 and 4 of WTCCC (2007). Thus, n = 1926 + 2872 = 4798 in this
application.

Results in Table 3 show that if the original association result is extreme
in that the p-value is considerably smaller than the threshold considered (i.e.,
rs17696736), then the prior influences the result only minimally. Similarly, the
likelihood-based estimates are only slightly reduced from the published estimated
log ORs. However, the follow-up estimate is considerably lower than the bias re-
duced estimates. As noted by Ghosh, Zou and Wright (2008), this suggests pos-
sible heterogeneity between the discovery and replication samples. A subtle but
important explanation for the results in the last three columns of Table 3 where
the replicated values are larger in absolute value than the estimates produced by
each method is that the follow-up estimates here are also subject to the winner’s
curse, albeit less severe, because only estimates of successfully replicated SNPs
were reported.

6.3. Application III—A GWAS of Psoriasis. Nair, Duffin and Helms (2009)
conducted a two-stage association of Psoriasis, a chronic skin disease character-
ized by circumscribed red patches covered with white scales. The first stage is a
GWAS with 438,670 SNPs genotyped on 1359 cases and 1400 controls, and the
second stage is a replication study following up on 21 promising SNPs using a set
of independent 5048 cases and 5051 controls. “Owing to the winner’s curse, odds
ratios estimated in the discovery sample were larger than those estimated in the
follow-up samples” [Table 2 of Nair, Duffin and Helms (2009)]. The SNP selection
criterion was mainly based on the ranking of the GWAS p-value, roughly corre-
sponding to a p-value threshold of α = 10−4. For each SNP of interest, we applied
the estimation methods using the reported log OR estimates obtained from the
discovery samples, β̂ = μ̂, and S = σ̂ = ŜE(β̂) × √

n inferred from the observed
association p-value, n = 1359 + 1400 = 2759 and c = 3.719 corresponding to
α = 10−4 (Table 4).

When the results are as extreme as rs12191877 with p = 4 × 10−53 or as
rs2082412 with p = 5 × 10−10, indicating high power at the chosen threshold
level, all the bias correction estimators results in little change from the published
estimate, including B.L despite its inherent prior skepticism of a finding. For the
other less significant SNPs in the table, both B.BMA and Ghosh achieve substan-
tial bias reduction. In general, B.BMA has a noticeably smaller variance for lower
power cases, which in turn can produce more reliable sample size estimates for
replication studies.
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TABLE 3
Application II—the GWAS of T1D by WTCCC (2007)

SNPs of interest rs17696736 rs2292239 rs12708716 rs2542151

Discovery samples
Association p-value 7.27 × 10−14 1.49 × 10−9 1.28 × 10−8 8.4 × 10−8

Reported effect (CI) 0.315 (0.239, 0.399) 0.262 (0.182, 0.351) −0.261 (−0.357, −0.174) 0.285 (0.182, 0.399)

Likelihood estimates
MLE (CI) 0.314 (0.224, 0.397) 0.241 (0.095, 0.346) −0.212 (−0.348, 0.000) 0.140 (0.000, 0.375)
NMLE (CI) 0.310 (0.224, 0.397) 0.217 (0.095, 0.346) −0.182 (−0.348, 0.000) 0.154 (0.000, 0.375)
Ghosh (CI) 0.312 (0.224, 0.397) 0.229 (0.095, 0.346) −0.197 (−0.348, 0.000) 0.147 (0.000, 0.375)

Bayesian estimates
B.L (HpdI) 0.311 (0.221, 0.399) 0.019 (0.000, 0.210) −0.006 (−0.008, 0.000) 0.004 (0.000, 0.010)
B.H (HpdI) 0.309 (0.221, 0.403) 0.212 (0.063, 0.345) −0.170 (−0.306, 0.000) 0.126 (0.000, 0.294)
B.BMA (CrdI) 0.309 (0.234, 0.385) 0.207 (0.079, 0.336) −0.161 (−0.318, −0.004) 0.117 (0.000, 0.280)
B.Unif (HpdI) 0.311 (0.220, 0.398) 0.172 (0.000, 0.312) −0.087 (−0.283, 0.000) 0.045 (0.000, 0.240)
B.M (HpdI) 0.309 (0.211, 0.391) 0.173 (0.000, 0.310) −0.092 (−0.286, 0.000) 0.046 (0.000, 0.249)

Follow-up samples
Follow-up estimate (CI) 0.148 (0.086, 0.207) 0.247 (0.182, 0.308) −0.186 (−0.248, −0.116) 0.254 (0.174, 0.337)

Notes: The reported effect is naïve log OR estimate obtained from the original discovery samples (1926 cases and 2872 controls) of WTCCC (2007), in
which the association tests of these SNPs were significant at the α = 5 × 10−7 level. The Follow-up Estimate was obtained from the replication study by
Todd et al. (2007). The other eight estimates were based on either the likelihood approach, MLE, NMLE and Ghosh, or the proposed Bayesian approach,
B.L, B.H, B.BMA, B.Unif and B.M as summarized in Section 5. CI is the 95% confidence interval for the likelihood estimates, HpdI is the highest
posterior density interval with posterior mass 95% and CrdI is the credible interval for the Bayesian estimates.
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TABLE 4
Application III—the GWAS of Psoriasis by Nair, Duffin and Helms (2009)

SNPs of interest rs12191877 rs2082412 rs17728338 rs20541 rs610604

Discovery samples
p-value 4 × 10−53 5 × 10−10 2 × 10−7 6 × 10−6 1 × 10−5

Reported effect 1.026 0.445 0.542 0.315 0.247

Likelihood estimate
MLE (CI) 1.026 (0.895, 1.157) 0.443 (0.287, 0.585) 0.514 (0.214, 0.746) 0.234 (0.000, 0.445) 0.162 (0.000, 0.349)
NMLE (CI) 1.026 (0.895, 1.157) 0.435 (0.287, 0.585) 0.476 (0.214, 0.746) 0.210 (0.000, 0.445) 0.154 (0.000, 0.349)
Ghosh (CI) 1.026 (0.895, 1.157) 0.439 (0.287, 0.585) 0.495 (0.214, 0.746) 0.222 (0.000, 0.445) 0.158 (0.000, 0.349)

Bayesian estimate
B.L (hpdI) 1.026 (0.887, 1.153) 0.400 (0.000, 0.556) 0.049 (0.000, 0.494) 0.007 (0.000, 0.010) 0.005 (0.000, 0.009)
B.H (hpdI) 1.024 (0.891, 1.150) 0.436 (0.276, 0.587) 0.468 (0.170, 0.754) 0.197 (0.000, 0.377) 0.136 (0.000, 0.288)
B.BMA (CrdI) 1.024 (0.915, 1.132) 0.436 (0.304, 0.568) 0.444 (0.151, 0.738) 0.172 (0.000, 0.379) 0.122 (0.000, 0.279)
B.Unif (hpdI) 1.026 (0.898, 1.163) 0.437 (0.283, 0.592) 0.405 (0.000, 0.681) 0.094 (0.000, 0.339) 0.062 (0.000, 0.252)
B.M (hpdI) 1.026 (0.887, 1.146) 0.436 (0.268, 0.580) 0.402 (0.000, 0.687) 0.096 (0.000, 0.341) 0.063 (0.000, 0.253)

Follow-up samples
Follow-up estimate 0.971 0.365 0.464 0.239 0.174
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TABLE 4
(Continued)

SNPs of interest rs2066808 rs2201841 rs1076160 rs12983316

Discovery samples
Association p-value 2 × 10−5 3 × 10−7 2 × 10−5 2 × 10−5

Reported effect 0.519 0.300 0.231 0.308

Likelihood estimates
MLE (CI) 0.231 (0.000, 0.728) 0.281 (0.107, 0.414) 0.103 (0.000, 0.324) 0.137 (0.000, 0.432)
NMLE (CI) 0.293 (0.000, 0.728) 0.258 (0.107, 0.414) 0.129 (0.000, 0.324) 0.173 (0.000, 0.432)
Gho0sh (CI) 0.262 (0.000, 0.728) 0.270 (0.107, 0.414) 0.116 (0.000, 0.324) 0.155 (0.000, 0.432)

Bayesian estimates
B.L (HpdI) 0.008 (0.000, 0.011) 0.021 (0.000, 0.228) 0.003 (0.000, 0.005) 0.004 (0.000, 0.010)
B.H (HpdI) 0.247 (0.000, 0.571) 0.253 (0.076, 0.422) 0.110 (0.000, 0.257) 0.147 (0.000, 0.340)
B.BMA (CrdI) 0.221 (0.000, 0.54) 0.240 (0.074, 0.407) 0.097 (0.000, 0.239) 0.127 (0.000, 0.316)
B.Unif (HpdI) 0.097 (0.000, 0.472) 0.207 (0.000, 0.381) 0.042 (0.000, 0.209) 0.056 (0.000, 0.275)
B.M (HpdI) 0.099 (0.000, 0.482) 0.210 (0.000, 0.376) 0.044 (0.000, 0.213) 0.057 (0.000, 0.273)

Follow-up samples
Follow-up estimate 0.293 0.122 0.086 0.086

Notes: The reported effect is naïve log OR estimate obtained from the original discovery samples (1359 cases and 1400 controls) of Nair, Duffin and

Helms (2009), in which these SNPs were among the top 2000 SNPs based on the p-values of the association tests, corresponding to α = 10−4 level.
The Follow-up estimate was obtained from the replication study by Nair, Duffin and Helms (2009). The other eight estimates were based on either the
likelihood approach, MLE, NMLE and Ghosh, or the proposed Bayesian approach, B.L, B.H, B.BMA, B.Unif and B.M as summarized in Section 5. CI
is the 95% confidence interval for the likelihood estimates, HpdI is the highest posterior density interval with posterior mass 95% and CrdI is the credible
interval for the Bayesian estimates.
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6.4. Application IV—A GWAS of quantitative measures of T1D complications.
In the fourth setting of the GWA study of longitudinal repeated quantitative
measures of phenotype HbA1c in the Diabetes Control and Complications Trial
(DCCT) samples, a significant locus (at α = 5 × 10−8) was identified in the con-
ventional treatment group with 667 samples near SORCS1 (rs1358030 with p-
value = 4.66 × 10−9). The association statistic was obtained via regression analy-
sis of the average log (HbA1c) value vs. SNP with an additive genotype cod-
ing. The GWAS was performed on 841,342 SNPs, genotyped by the Illumina 1M
BeadArray assay, that passed a set of quality control criteria [details in Paterson
et al. (2010)].

The naïve estimate of the regression coefficient for rs1358030 is 0.045. How-
ever, the estimate obtained from the intensive treatment group with 637 samples is
0.005 (Table 5). Note that for the intensive treatment group, only the measures at

TABLE 5
Application IV—the GWAS of HbA1c in Type 1 Diabetes patients, by

Paterson et al. (2010)

SNP of interest rs1358030

Discovery samples
Association p-value 4.66 × 10−9

Reported effect 0.045

Likelihood estimates
MLE (CI) 0.029 (0.000, 0.056)
NMLE (CI) 0.024 (0.000, 0.056)
Ghosh (CI) 0.027 (0.000, 0.056)

Bayesian estimates
B.L (HpdI) 0.001 (0.000, 0.002)
B.H (HpdI) 0.021 (0.000, 0.048)
B.BMA (CrdI) 0.020 (0.000, 0.047)
B.Unif (HpdI) 0.007 (0.000, 0.040)
B.M (HpdI) 0.008 (0.000, 0.040)

Follow-up samples
Follow-up estimate 0.005

Notes: The reported effect is the naïve estimate of the regression co-
efficient obtained from the 667 discovery samples, in which the asso-
ciation test of the SNP was significant at the α = 5 × 10−8 level. The
Follow-up estimate was obtained from 637 independent samples. The
other eight estimates were based on either the likelihood approach,
MLE, NMLE and Ghosh, or the proposed Bayesian approach, B.L,
B.H, B.BMA, B.Unif and B.M as summarized in Section 5. CI is the
95% confidence interval for the likelihood estimates, HpdI is the high-
est posterior density interval with posterior mass 95% and CrdI is the
credible interval for the Bayesian estimates.
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the eligibility time-point (i.e., before the starting of the two different treatments)
were used for the regression analysis so that the two groups are comparable and
the intensive treatment group could be used as a replication data set.

Unlike the case control studies with binary response (diseased or not) consid-
ered previously, of interest here is a quantitative outcome, HbA1c, that measures
the amount of glycated hemoglobin in blood. Therefore, the μ no longer repre-
sents the log OR but the corresponding coefficient in the linear regression model.
Although we could consider choosing a more suitable prior, we adopted the same
Uniform(0,2) density for f (μ) as for the case-control data to test the robustness
of the Bayesian methods. (Results from other prior choices are discussed in Sec-
tion 7.) To apply the Bayesian methods, we let μ̂ = 0.045, n = 667, c = 5.328
(corresponding to the threshold used, the significance level is α = 5 × 10−8), and
the observed association p-value 4.66 × 10−9 (corresponding to a test statistic of
5.743) allows us to infer the standard error S = μ ∗ √

n/5.743 = 0.202 (Table 5).
As expected for the low power case, both B.BMA and Ghosh reduce the estima-
tion bias but not sufficiently enough, and B.L performs better. However, in this
case the estimates from B.Unif or B.M are closest to the one obtained from the
follow-up study.

7. Conclusions and future work. We propose hierarchical Bayes methods to
reduce selection bias in genetic association studies. The basis of the approach is
a spike-and-slab prior which essentially allows for the possibility that the signal
detected may be a false positive. The prior permits the researchers to quantify their
belief in the strength of the signal. Depending on the prior, inference based on
the posterior distribution may be different from model to model and, therefore,
the researcher faces a (sometimes difficult) choice. To alleviate this dilemma, we
consider a Bayesian model averaging strategy, B.BMA, in which we use the data
to weigh in on the more appropriate model.

Simulation and application studies demonstrated that the B.BMA estimator per-
forms well across different settings, and we recommend B.BMA when there is
little information on the putative power of the initial discovery study. However,
we also emphasize that model averaging is not necessarily the best approach for
a given study. Factors such as study design and sample size should be taken into
account in the decision of using a more conservative model like B.L or an anti-
conservative one like B.H. In general, B.H is suitable for candidate gene studies
with putative high power as demonstrated in application I, and B.L is preferred
for GWAS with putative low power as shown in application IV. Knowledge about
the SNP of interest is also a factor. For example, little bias is expected for a SNP
in a well-known associated region or with p-value significantly smaller than the
chosen threshold as demonstrated by the first SNP (rs12191877) in Table 4 of ap-
plication III, while substantial bias is expected for a SNP with p-value just below
the threshold as shown by the last SNP (rs12983316) in the table.
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We have carried out additional simulation studies to investigate the robustness
of the Bayesian estimators. Results provided in Supplement show that the proposed
methods are robust to the choice of prior for ξ , the hyperparameter that reflects our
prior belief in false positive, to the number of iterations discarded from the MCMC
sample, and to the value of A, the prior upper bound of log odds ratio. In addition,
we developed our methods using a conceptual normal model but demonstrated via
simulations and applications that this normal model is well connected with widely
used real genetic models and is robust to the choice of priors. For example, in
application IV when the phenotype is not a case-control status but a quantitative
outcome, we kept the same A = 2 knowing that the the upper bound for μ, the
genetic effect size, in this case can be reasonably assumed to be 0.2. To be more
precise, note that μ is a regression coefficient in this setup and is related to the
percentage of phenotype variation explained by the SNP via the expression

r2 = μ2 S2
X

S2
Y

,

where S2
X ≈ 0.467 is the sample variance of the SNP and S2

Y ≈ 0.018 is the sample
variance of the phenotype. Since r2 ≤ 100%, thus, μ ≤ 0.2. When A = 0.2 was
assumed, the estimates were largely unchanged compared to results in Table 5:
0.00062 (0, 0.001) for B.L, 0.021 (0.000, 0.0474) for B.H, 0.0197 (0, 0.0456)
for B.BMA, 0.0077 (0.000, 0.03996) for B.Unif and 0.0084 (0.000, 0.0407) for
B.M. If a true effect is greater than 2, our Bayesian estimations will be bounded
by 2. In practice, if the true OR is greater than exp(2) ≈ 7.4, then the putative
power of the original association study is very high (unless the sample size is
extremely small), resulting in little estimation bias of the naïve estimate. Second,
if a Bayesian estimate was close to the upper bound, then one can choose a bigger
value such as 6. This modification does not affect the estimation for the cases
when the effects are less than 2 (confirmed by our additional simulation studies)
but provide better effect estimates when the true effects are indeed greater than 2.
The proposed Bayesian methods, however, are not robust to the misspecification
of the threshold used. This type of sensitivity was also observed for other existing
methods including the likelihood and resampling based methods.

The NMLE estimator proposed by Ghosh, Zou and Wright (2008) is the mean
of the normalized conditional likelihood, and it can be interpreted as the poste-
rior mean with an improper flat prior on μ which should produce similar results
to B.Unif. However, unlike NMLE, our model allows a point mass on effect be-
ing equal to 0 via the spike-and-slab prior, leading to a better performance than
NMLE. As an average of the conditional MLE and the NMLE estimators, the
Ghosh estimator strikes a balance between the two and performs better than both
across different settings. Although Ghosh and B.BMA can have similar perfor-
mance in some settings, the advantage of the proposed Bayesian estimator is clear
and meaningful. For example, the standard error in sample size estimation based
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on B.BMA is almost twice as small as that based on Ghosh when the power of the
original association study is low as shown in Figure 5.

Both the likelihood and Bayesian methods correct for threshold effect (i.e., the
SNP of interest must pass a significance threshold) by incorporating the thresh-
old value in the models. In practice, another source of bias is the ranking effect.
More precisely, suppose that a large number of SNPs are considered but only the
effects for top ranked SNPs are estimated. Again, the effect estimate is biased but
a likelihood-based correction is cumbersome since all SNPs (with complex cor-
relation structure among them due to linkage disequilibrium) must be considered
jointly. The proposed Bayesian method only indirectly models the ranking effect
by allowing the SNP of interest to be false positive. So far, the method of choice
for this problem remains the bootstrap-based correction method of Sun and Bull
(2005). However, the bootstrap method requires the original individual specific
data which can be limiting. In contrast, the Bayesian and the likelihood approaches
only need the summary statistics such as the reported naïve estimate and the as-
sociation p-value, and the auxiliary information such as the sample size and the
threshold used. In a two-stage setting when both the original discovery scan and a
replication study are available, the combined approach proposed by Bowden and
Dudbridge (2009) could provide better estimation results.

Although the method proposed here falls within the Bayesian paradigm, it has
a clear frequentist component since the sampling distribution is conditional on the
significance of the hypothesis test. While a complete Bayesian analysis in which
simultaneous testing and estimation is possible for the problems considered here,
it must be noted that the current practice among genetic investigators is to perform
a large number of individual association tests prior to moving on to the estima-
tion stage, in part due to the computational challenges associated with analyzing
500,000 or more SNPs. It is for this reason and to address the bias incurred by the
resulting inference that we chose to use the current model. A full joint Bayesian
analysis is the subject of ongoing research.
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SUPPLEMENTARY MATERIAL

Supplement: Additional Derivations and Simulation Plots (DOI: 10.1214/
10-AOAS373SUPP; .pdf). The appendix contains derivations related to poste-
rior computation and additional simulation results related to the robustness of the
Bayesian model considered to the choice of prior.
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