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SUMMARY

This paper reports some initial investigations of the use of antithetic variates in
perfect sampling. A simple random walk example is presented to illustrate the
key ingredients of antithetic coupling for perfect sampling as well as its potential
benefit. A key step in implementing antithetic coupling is to generate

�����
random variates that are negatively associated, a stronger condition than negative
correlation as it requires that the variates remain non-positively correlated after
any (component-wise) monotone transformations have been applied. For

�����
,

this step is typically trivial (e.g., by taking 	 and 
��
	 , where 	���	�������
�� )
and it constitutes much of the common use of antithetic variates in Monte Carlo
simulation. Our emphasis is on

�����
because we have observed some general

gains in going beyond the commonly used pair of antithetic variates. We discuss
several ways of generating negatively associated random variates for arbitrary

�
,

and our comparison generally favors Iterative Latin Hypercube Sampling.
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1. PERFECT SAMPLING

Exploring a probability distribution � using MCMC methods is now a routine practice in
Bayesian statistics. The main idea is to run a Markov chain whose stationary distribution
is � . After an initial “burn-in” period, the frequency with which the chain moves within
the state space can be used to approximate the target distribution. An important practical
issue is to determine how long we need to run the chain in order to achieve acceptable
accuracy in this approximation. As discussed in Wilson (2000), among all methods that
are currently available, the best one, not surprisingly, is to avoid the problem in the first
place. The so-called perfect sampling or exact sampling, introduced by Propp and Wilson
(1996), has gained great and rapid attention because it achieves exactly that. This class of
methods, by cleverly tracing coupled Markov chains from the past, obtains samples which
are both independent and distributed exactly according to the limiting distribution � , hence
eliminating the worry of the chain not being run long enough.

Currently, the perfect sampling algorithms rely mostly on the coupling from the past
(CFTP) technique (Propp and Wilson, 1996). In a nutshell, CFTP makes it possible to
trace the chain’s sample paths from all – possibly infinitely many – states simultaneously� �"!$#&%('*),+.-0/,),12'*)43�/,5&6,7�18%.9:7;5<1=7;>?>?!=)@#BA�'*),6?C0DFEG'*),6?C0DFH�9I7;5KJ('*5�#BLM'*N,5&!=AB!2'*5B18%OAB/,J,JP7;5�#RQ






from the indefinite past, i.e.,
� � ��� . Because these paths are coupled via the use of

common random variates �(	�� � ��� �	� in the Markov chain updating, 
��
� � ��� �

��;�*	��
� � � ,
they will eventually coalesce and the common value at

� � � will be a draw from the
limiting distribution � . Currently, the actual construction of an effective coupler for a
particular problem at hand can be quite challenging or even infeasible, especially for many
routine Bayesian problems with unbounded state spaces and complex distribution forms.
The use of perfect sampling for Bayesian computation is therefore a developing area, and
some initial findings and successes are reported in Murdoch and Green (1998), M � ller
and Nicholls (1999), Holmes and Mallick (1999), Murdoch (2000), and Wilson (2000).
An informative example, both in terms of the potential and difficulties of using perfect
sampling for routine Bayesian analysis, can be found in Murdoch and Meng (2000) in this
volume.

The construction is most straightforward for the class of Markov chains with a dis-
crete state space which has a maximum state and a minimum state and where

� �

 �*	 � is
monotone (or anti-monotone) in 
 with respect to a partial ordering. With such a chain,
we only need to trace the top chain starting from the maximum state and the bottom chain
starting from the minimum state. If these two chains have coalesced by time

� � � , then it
is clear that a chain starting from any other state has to coalesce to the same value of 
�� be-
cause it is “sandwiched" by the top and bottom chains. There are many applications where
such a construction is possible, including the original Ising model application of Propp and
Wilson (1996). Although the CFTP technique now covers a much wider range of applica-
tions than such discrete bounded monotone chains (see Wilson’s annotated bibliography at
http://dimacs.rutgers.edu/~dbwilson/exact), and although our antithetic
coupling is not restricted to such chains either, in this paper we will focus on such cases
because they are more easily dealt with in both theoretical analysis and implementation.

2. K-PROCESS ANTITHETIC COUPLING

A primary use of draws ��
 � �������@��
���� from � is to estimate the expectation of � ��
 � ,� � � , for various choices of � . By far, the most frequently used estimator of
�!� � is the

sample average, "� � �$#&% � �

 % �('*) . In cases where ��
 � ����������
 � � are pair-wise uncor-
related, it is well known that the variance + �,"� � � �.-,/0 '*) , where

-1/0 � + � �2� ��
 �2� . The
antithetic principle (Hammersley and Morton 1956) aims to reduce this variance by in-
ducing negative correlations among �3� %54 � ��
 % �@��6 � 
 �������@��)7� . Specifically, suppose
the draws ��
 � ����������
���� were obtained from

� ���
parallel implementations of the same

simulation process (e.g., a CFTP algorithm), each of which contributed 8 � )9' � indepen-
dent and identically distributed (i.i.d.) draws. In other words, we can relabel the ) draws
as �:
 %<; �=6 � 
 ���������=8?>A@ � 
 �������@� � � , and accordingly �*� % ��6 � 
 �������F��)7� � �3� %<; �=6 �

 �������@��8B>C@ � 
 �������@� � � . It is then easy to check that

+ ��"� � � � -,/0)
D 
FE � � � 
��HGJI 0�KLNM 4 -,/0)PO I 0:KL � �=
,�

where GQI 0�KL �SR�T*U:U �C� %<;�V �(� %W;AX � , @ �ZY� @ / . Consequently, if we can implement in parallel the�
simulation processes such that G�I 0:KL\[ � , then we can reduce the Monte Carlo variance by

the factor O I 0:KL relatively to the variance we would obtain from independent implementation

�



( GJI 0:KL � � ). We emphasize here that GQI 0�KL , and thus O I 0�KL , depends on both � and
�

. For

example, GQI 0:KL � �G� � � 
�� � �
, since O I 0:KL � � . We also emphasize that the fact that G�I 0:KL

becomes less and less negative with the increase of
�

is not a reason to prefer small
�

(e.g.,
� � �

), because the relevant reduction is not measured by G I 0:KL , but rather by O I 0:KL ,

which magnifies the contribution of G I 0:KL by the compensating factor � � � 
�� . We have good
empirical evidence that it is beneficial in general to go beyond

�����
, which is undoubtedly

the most common choice in the literature, including the recent use of antithetic coupling in
forward MCMC algorithms (e.g., Frigessi, G

�� semyr, and Rue, 1999).
Figure 1 sketches how we will proceed to produce

�
antithetically coupled CFTP

processes. The @ th process, @ � 
 ��������� � , is represented by a pair of top-bottom chains,
and they are positively coupled because they share the same sequence of (not necessarily
uniform) random variates �P	 I ; K� � �5� �	� . Whereas for given @ , �(	 I ; K� � �Z� � � need to be
mutually independent in order to have a legitimate CFTP algorithm, there is no requirement
for the joint distribution

� L� 4 �P	 I � K� �������@�;	 I L K� � other than that each margin has to have
the same distribution specified by the underlying CFTP algorithm. It is thus legitimate,
for example, to use a joint distribution such that the common pair-wise correlation of the
components of

� L� is negative. However, this is not enough to guarantee the output of
the

�
processes, �:
PI ; K� �C@ � 
 �������@� � � , to be negatively correlated because the sign of

a correlation is generally not preserved after a transformation has been applied to each
variable, even if such transformation is monotone (see Section 3.1 for an example). For
the @ th CFTP process, the output 
 I ; K� is a function of �(	 I ; K� � �Z� �	� , and thus we need

a stronger notion than negative correlation for �(	�I � K� ���������*	ZI L K� � in order to guarantee a

negative correlation between 
PI ; K� and 
 I ;�� K� , @ Y� @�� , as well as a negative correlation

between � ��
 I ; K� � and � �

 I ;�� K� � for any � that is monotone in each component of 
 (clearly
this cannot be guaranteed for a non-monotone � ).
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Figure 1.
�

-process Antithetic Coupling for CFTP

The stronger notion we adopt here is the negative association defined by Joag-Dev and
Proschan (1983). A collection of variables ��
 � ����������
 � � is called negatively associated

�



(NA) if for every pair of disjoint subsets
� � and

� / of � 
 �������@��)7� ,R T*U*U �C� � �

 % �=6�� � � �;� � / ��
 ; �A@�� � / �2� � �
whenever both � � and � / are nondecreasing (or nonincreasing) in each of their arguments.
For our application, we need to extend this notion to an infinite sequence of random vari-
ables, which can be done easily, as in Craiu and Meng (2000). A very nice property of NA
is that it is closed under independent unions (Joag-Dev and Proschan, 1983). Therefore, if
we can make

� L� � �(	 I � K� �������@�*	 I L K� � negatively associated for each
�
, then so will be the

whole collection �P	ZI � K� �������F�*	 I L K� � ��� �	� because the vectors � � L� � ��� � � are mutually
independent. Consequently,

R�T*U:U���� �8	 I ; K� � �F� � �@� � �B	 I ;�� K� � �F� � �	� � �K� @ Y� @ �
for any

�
that is increasing/decreasing in each of its arguments. Taking

�
to be the infinite

composition of the chain mapping 
 �
� � ��
 ��
 � �;	 �
� � � yields the desired result when
 �

 �;	 � is monotonically increasing or decreasing in both 
 and 	 , as in our illustrative
example of Section 4. The monotonicity with respect to 
 is automatic under our mono-
tone chain assumption, and the corresponding monotonicity with respect to 	 often can be
made true since we have some freedom in choosing the form of 	 . For example, suppose
 �

 �;	 � is monotone increasing in 
 but monotone decreasing in 	 , where 	�� 	�������
�� .
We can then use


 �

 ��
4� 	 � , which will then satisfy the requirement.
The NA concept refers to the qualitative aspect of negative dependence. For a quan-

titative measure of the latter, that is, for a measure of how antithetic the variables are, we
need the notion of extreme antithesis (EA). We say that ��
 � ��
 / ��� � �I��
 L � achieve EA with
respect to a distribution � if they are exchangeable andR�T*U:U ��
 % �=
 ; � � 8 6C)Z� R T*U*U ��
 % ��
 ; ����
 � ��� � �I��
 L exchangeable ��� 6*��
 % ���Z���
For

� ���
, it is trivial to achieve both NA and EA by letting 
 � � � � � � U � and 
 / �

� � � �=
 � U � , where
U � 	 ���K�F
�� . In fact this construction achieves EA for any monotone

function � in the sense that it also minimizes
R T*U*U ��� ��
 � �;�	� ��
 / �R� with 
 � ��
 / ��� (see,

for example, Craiu and Meng, 2000, for discussion and references). For
� ���

, however,
the matter is much more complicated, and there is no universal way of accomplishing both
NA and EA for arbitrary � . In Section 3 we discuss three methods, which will then be
applied and compared in Section 4 in our illustrative example.

3. GENERATING � ANTITHETIC VARIATES

Section 2 indicates that a main task in implementing
�

-process antithetic coupling is to
generate �(	 I � K �������@�;	 I L K � that are NA and with the desired margin, often 	��&�K��
,� . To
achieve as much a variance reduction as possible, we also aim at EA. To fix our target,
suppose our goal is to generate

�
exchangeable random variables ��� � ��� � �I�	� L � such that:���! 

Marginally, each component � % is 	��&�K��
,� distributed;���"�� �!� � ��� � �I�	� L � are NA;

#



���"�"�� ��� � ��� � �:��� L � achieve EA, i.e.,
R T*U*U ��� ; ��� ; � � � �G� � � 
�� � �

, for any @ Y� @�� .
Before we proceed to discuss our methods, we mention in passing that the generation

of �!� � ��� � �I�	� L � that satisfy criteria (I) and (III) was often treated as a “fun-math" problem
in the literature, and there are many ways of doing that (e.g., see Bondesson (1983) and the
subsequent solutions). However, the criterion (II), which is at the core of our applications,
has received much less attention and it is more difficult to satisfy or to prove it is satisfied.
Indeed, for the method given in Arvidsen and Johnsson (1982), which is a key building
block of our first method, the resulting

�
-tuple is not NA for any

� � �
. (We give assertions

without proof in this paper. A full development is given in Craiu and Meng (2000).)

3.1. Permuted Displacement Method

The first method we have is a permuted version of the one given in Arvidsen and Johnsson
(1982) and has two steps:���������

Let 	 ��
 � � 
��
� 
�� (fractional part of x ) and
U � � 	�������
,� . Compute

U % � 	 � �
%
� / U � E 
� �;� 6 � � ��� � �I� � � 
 ������� U L � 
?��	 � � L � / U � � �

���������
Let � L be the set of all permutations of � 
 ��������� � � . Pick at random a

- �
� - �=
,�;��������� - � � �2� ��� L , and set � % � U�� I % K .

Step 1 is the original method given in Arvidsen and Johnsson (1982), and we call it the��� �"!$#&%('*),+-),.�/
method because it corresponds to displacing the digits in the binary expan-

sion of
U � such that

# L%10 � U % � � ' � ; see Craiu and Meng (2000). It follows immediately
that the permuted version �!� � �������@��� L � has the same property (i.e.

# L%10 � � % � � ' � ) and
thus it achieves EA because �!� � ����������� L � are exchangeable. Note that the permutation not
only renders the exchangeability, but more importantly makes it possible to achieve NA.
(However, currently we do not have a proof that ��� � �������@�	� L � are NA, though we con-
jecture this is true.) The � U � �������@� U L � from Step 1 are not NA, as the following example
illustrates. Let

���32
and � ��
 � � � 
 if � � 
 � 
*' 2 and � ��
 � � � if 
 � 
*' 2 . Then

while
R T*U*U � U / � U,4 � � � �5 [ � ,

R T*U*U �2� � U / �;�(� � U,4 �2� � �/ � � �/76 � � .

3.2. Multivariate Normal Method

The second method we present uses the fact that negatively correlated multivariate normal
variables are NA (Joag-Dev and Proschan, 1983). The method again has two steps:���������

Generate899
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; �<<; L � �

=?>>
@ �BA L

CDD
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�
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@ �
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 � �L � � � � � � �L � �
� �L � � 
 � � � � �L � �� � � � � � � � � � � �
� �L � � � �L � � � � � 


=?>>
@

F,GG
H �

and let
; L � �G� ; � E ; / E � � �:E ; L � � � .
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���������
Compute � % � � � ; % �;�=6 � 
 ��������� � , where

� � � � is the CDF of A �&�K��
,� .
Since

� � � � is monotone, ��� � ���������	� L � are exchangeable and NA because � ; � �������@� ; L �
are. However, ��� � ����������� L � do not achieve EA when

� � �
because

R T*U*U ��� � ��� / � �
�G� � � 
�� � �

when
� � �

. Another disadvantage of this method is that the cumulative cost
of evaluating

� � � � repeatedly can be nontrivial when the number of repetitions is high.

3.3 Iterative Latin Hypercube Sampling

Our last method is the most satisfactory as it achieves all three criteria and it is easy to
implement. It is an iterative version of a scheme for stratified sampling devised by McKay,
Beckman and Conover (1979). Their Latin hypercube sampling makes it possible to stratify
on all the input dimensions simultaneously. For properties of Latin hypercube sampling we
refer the reader to some previous articles (e.g., Stein, 1987; Owen, 1992; Loh, 1996).

Our iterative procedure can be described by the following steps:���������
Generate � I � K � ��� I � K� ��� � �I�	� I � KL � ��� ��� ���� 	��&�K�F
�� ����������
For

� � 
 � � ������� , iteratively compute

� I � � � K � 
� ��� I � K E � I � K �@� � � �
where the vectors �!� I � K � � � 
 � � �������W� are i.i.d. permutations of �,�K��
 �������@� � � 
 � .

It is not hard to show that for any
� � � , � I � K � ��� I � K� ��� � �I�	� I � KL � satisfies both criteria

(I) and (II); the latter follows from the fact that a permutation distribution is NA (Joag-Dev
and Proschan, 1983). It is also easy to verify that for any

� � � ,R T*U*U ��� I � K� ��� I � K/ � � � 
� � 

	

?� 
� / ��
 ����
��� � 
� � 
 � � � �

and thus � I � K achieves EA very rapidly as
� � � , especially for large

�
. Thus, we typically

need to iterate only a few times in order to practically achieve EA.
There is an alternative way of implementing this method. Let �!� I � K � � � 
 � � �������W� be

the same i.i.d. permutations as above, and write � I � K � � � I � K� �������F� � I � KL � , � � 
 � � ������� . For
any � � � , we compute

� I�� K; � �� � 0 �
� I � K;� � � @ � 
 �������@� � �

As ��� � , given the same � I � K ’s, � I�� K � ��� I�� K� �������@��� I�� KL � will have the same limit as� I � K of ( ��� ) as
� � � . For any finite � , ��� I�� K� �������@��� I�� KL � are NA because a permutation

distribution is NA and NA is preserved under independent unions. Furthermore, one can
easily check that for any � � � , as long as � � ��������� '������ �

, � � � ;"! � I�� K; � � I 
 K; ! � � .
Thus, it is easy to control the precision of � I�� K as approximation to � I 
 K . It is also easy to
see that for any � � � , L�; 0 � � I�� K; � �

�
	

?� 
� � 
 � � # �

#



and thus �!�9I�� K� ����������� I�� KL � achieves EA for any � . Comparing ( ��� ) with ( ��� ), we see that
a key difference between the first and the second method is that when we stop at a finite
iteration

�
(for the first method) or use a finite � (for the second method), as we have to

in the actual implementation, the first method gives up on achieving the exact EA, while
the second method gives up on the exact marginal uniformity. Although both losses can be
easily controlled to be as small as we wish, we prefer the first method not only because it
is easier to implement but also because meeting criterion (I) exactly is more important than
meeting criterion (III) exactly (especially because even when we meet (III) exactly, it does
not imply that ��
PI � K� �������@�=
 I L K� � achieves EA; we just hope that by getting closer to (III),
we can obtain more variance reduction).

4. AN ILLUSTRATION – RANDOM WALK ON THE LINE

We consider a random walk on � � � 
 � � ��� � �:�7A � with semi-absorbent barriers, which has
the updating function


 �
� � ��� �

 � �*	 �
� � � � � 8 6A)7��
 � E 
 �7A � � if 	 �
� � [��8 � 
1�:
Z�0� 
 ��
 � � if 	7�
� � � � � where 	 �
� � � 	�������
�� �
Its stationary distribution is given by � ��
 ��� ���� � � ��� � 
 � � , against which we validated

(not shown here) the antithetically coupled CFTP algorithm described below. Note here
that


 ��
 �*	 � is monotone increasing in 
 and monotone decreasing in 	 , but this does not
cause any problem for applying our NA theory because, as we discussed in Section 2, we
can always replace 	 by 
?� 	 (in theory, not in implementation).

Using the “binary back off" strategy of Propp and Wilson (1996), we implemented the�
-process antithetically coupled CFTP algorithm as follows. Given a method discussed in

Section 3 and a 	 � � � , we carried out the following steps:��������

Set � ; � �K�A@ � 
 �������@� � ; also 	�
 ��� � �K��	,����� � 	 � .���������
Using the chosen method to generate i.i.d.

� L� for ��	,����� [ � � ��	�
 ��� ,
where

� L� � �(	 I � K� �������F�*	 I L K� � .���������
For @ � 
 �������@� � , if � ; � 
 , go to next @ or Step 3 if @ � �

. If � ; � � , then
run the top chain starting from 
 ��������� � A and the bottom chain starting from
 ��� � �!� � 
 and couple them using the common �(	 I ; K� ����	,����� [ � � � � . If

the two chains coalesce by time
� � � , record the common value 
 I ; K� and set� ; � 
 . Go to next @ or Step 3 if @ � �

.��������"
Check if

# L; 0 � � ; � �
. If it is true, output the

�
(NA) draws �:
 I ; K� �A@ �


 �������@� � � and return to Step 0 for the next
�

draws. If it is not, set 	#
 ��� � � 	 �$��� ,	,����� � � � 	 �$��� , and go back to Step 1.

Repeating the above process for 8 times will produce ) � � 8 negatively associated
draws from our target density. We emphasize that in Step 2 all previously generated 	 � ’s,
i.e., for

� � ��	 
 ��� , were reused, as required by the CFTP construction. The use of � ; helps
to keep track of @ th process coalescence status at

� � � , because once it has coalesced there

%



is no need to go further back. However, unless coalescence took place for all processes,
we still need to perform Step 1 with full

�
even if 	�I ; K� ’s will not be used because � ; � 


for some @ ’s. It is legitimate to only generate antithetic variates using a reduced
�

, say,
� � ,

if there are only
� � processes that have not coalesced. However, one must be aware that

this will in general alter the joint distribution of ��
 I ; K� �C@ � 
 �������@� � � because generating�(	 I � K� �������F�*	 I L V K� � is not the same as generating �P	 I � K� ���������;	 I L K� � and then just taking the
first

� � components (which, for example, no longer achieve EA). Currently, it is not clear
whether such a “dynamic

�
" scheme, which is less straightforward to program, is beneficial.

We run the above algorithm for four cases given by A � 
 # together with � �

*' 
F����
*' � � � ' � �K�F
*' � , respectively, each under the three methods given in Section 3. Fig-

ure 2 plots the reduction factor O I 0:KL � 
�E � � � 
��HG I 0:KL as a function of the number of

processes
�

, and the choice of � . The G I 0:KL was estimated by taking the average of all � L /��
pair-wise sample correlations between � �

 I ; K� � and � �

 I ;�� K� � , @ Y� @�� , where the within-
process sample size 8 was fixed at 
 2 � � � � (and hence ) � � 8 increases with

�
).

The first row of Figure 2 corresponds to � ��
 � � 
 , and by design, all three methods
produced O I 0:KL [ 
 for all choices of

�
and � . However, the magnitude of reduction varies

quite a bit with the methods, with iterative Latin hypercube sampling giving generally the
largest reduction, mostly more than 50%. More importantly, except for the case of � � �	� 2 ,
for which � is perfectly symmetric and thus

��� �
is the best choice, there is general

evidence that using some
� � �

can achieve larger reduction, especially with the iterative
hypercube sampling method. The most striking reduction is for � � �J�:
 , where by moving
from

� � �
to

� � 
�� , we shrink the reduction factor O from about 0.9 to less than 0.2.
One worry of using antithetic coupling is that while it may help to reduce variance sub-

stantially for monotone � ’s, it may substantially increase variances for some non-monotone� which can also be of practical interest (e.g., a quadratic function). Whereas theoretically
this is always a possibility, we have not observed such cases in all the simulations we have
conducted despite the fact that we deliberately looked for such cases by choosing functions
that greatly distort the monotonicity. For example, the second row and third row of Figure 2
correspond respectively to � � 
 � � ��
 � � �@� 
O� 2 � and � � 
 � ��� 6A) � � 
 � (the frequency coef-
ficient

�
was chosen to induce erratic behavior of the sine function on � 
 � � �������;��
 # � ). Al-

though the reductions of variance for these two functions are much smaller or even absent,
especially with the first two methods, the largest O I 0�KL is essentially statistically indistin-
guishable from O � 
 (i.e., the same as not using antithetic coupling) given the simulation
error. That is, although antithetic coupling did not help in some cases, it did not hurt either
(compared to the independent implementation). It is somewhat remarkable that even for an
erratic function like � ��
 � ��� 6C) � � 
 � , the iterative Latin hypercube sampling method was
able to reduce the variance by over 60% when � � �J�:
 and

��� 
F� .
We conclude by emphasizing that the two key messages we remit here, namely (1)

going beyond
� ���

is in general beneficial and (2) iterative Latin hypercube sampling
holds great promise, were also observed in other examples, including forward MCMC al-
gorithms, as detailed in Craiu and Meng (2000). We are currently seeking simple strategies
for determining an approximately optimal choice of

�
for a given problem, as well as other

effective methods for generating
�

antithetic variates for arbitrary values of
�

. We are also
investigating the use of antithetic coupling with Wilson’s (2000a) read-once CFTP.

�



REFERENCES

Arvidsen, N.I. and Johnsson, T. (1982). Variance reduction through negative correlation –
A simulation study. J. Statist. Comput. Simulation, 15:119–127.

Bondesson, L. (1983). Problem 128. Statistica Neerlandica, 37:149.
Craiu, R.V. and Meng, X-L. (2000). Multi-process parallel antithetic coupling for forward

and backward Markov chain Monte Carlo. Technical Report, Department of Statistics,
The University of Chicago.

Joag-Dev, K. and Proschan, F. (1983). Negative association of random variables with ap-
plications. Annals of Statistics, 11:286–295.

Frigessi, A., G
�� semyr, J. and Rue, H. (1999). Antithetic coupling of two Gibbs sampler

chains. Preprint, Norwegian University of Science and Technology, Trondheim, Nor-
way.

Hammersley, D.C. and Morton, K.V. (1956). A new Monte Carlo technique: antithetic vari-
ates. Proc. Camb. phil. Soc., 52:449–475.

Holmes, C.C. and Mallick, B.K. (1999). Perfect simulation for Bayesian curve and surface
fitting. Preprint.

Loh, W-L. (1996). On Latin hypercube sampling. Annals of Statistics 24, no. 5, 2058–2080.
McKay, M.D., Beckman, R.J., and Conover, W.J. (1979). A comparison of three methods

for selecting values of input variables in the analysis of output from a computer code.
Technometrics 21, no. 2, 239–245.

M � ller, J. and Nicholls, G. (1999). Perfect simulation for sample-based inference. Depart-
ment of Mathematical Sciences, Aalborg University, Denmark. Preprint.

Murdoch, D.J. (2000). Exact sampling for Bayesian inference: unbounded state spaces. In
Neil Madras, editor, Monte Carlo Methods - Fields Institute Communications vol. 26.

Murdoch, D.J and Green, P.J. (1998). Exact sampling from a continuous state space. Scan-
dinavian Journal of Statistics 25(3): 483–502.

Murdoch, D.J. and Meng, X-L. (2000). Towards perfect sampling for Bayesian mixtures.
Paper prepared for this volume.

Owen, A.B. (1992). A central limit theorem for Latin hypercube sampling. J. Roy. Statist.
Soc. B 54 541–551.

Propp, J.G. and Wilson, D.B. (1996). Exact sampling with coupled Markov chains and
applications to statistical mechanics. Random Structures and Algorithms, 9:223-252.

Snijders, T.A. (1984) Antithetic variates for Monte Carlo estimation of probabilities. Sta-
tistica Neerlandica, 38:55–73.

Stein, M.L. (1987). Large sample properties of simulations using Latin hypercube sam-
pling. Technometrics, 29:143–151.

Wilson, D.B. (2000). Layered multishift coupling for use in perfect sampling algorithms
(with a primer on CFTP). In Neil Madras, editor, Monte Carlo Methods - Fields Institute
Communications vol. 26, 141–176.

Wilson, D. B. (2000a). How to couple from the past using a read-once source of random-
ness.

� %�.$����+�� /�����',/	�
� ) � %�. ��� # 
���� � /�� + �
16: 85-113.

�



Permuted Displacement, f(x)=x

k -- no. of processes

R

2 3 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

•
•

• •
• •

•

•
• • • •

•
•

• • • •

•

•

•
•

• •

p=0.100 
p=0.333 
p=0.450 
p=0.500 

Multivariate Normal,  f(x)=x
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Iterative Hypercube, f(x)=x
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Permuted Displacement,  f(x)=(x-2)(x-5)

k -- no. of processes
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Multivariate Normal, f(x)=(x-2)(x-5)

k -- no. of processes

R

2 3 6 8 10 12

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

•
•

• •
• •

• • • • • •
• •

• • • •

•

• • • • •

p=0.100 
p=0.333 
p=0.450 
p=0.500 

Iterative Hypercube, f(x)=(x-2)(x-5)
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Permuted Displacement, f(x)=sin(3x)
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Multivariate Normal, f(x)=sin(3x)
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Iterative Hypercube, f(x)=sin(3x)
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Figure 2. Variance reduction factor O �����
� plotted against

�
, the number of pro-

cesses, for each of the three methods and for several choices of � and � .
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