Discrete Random Variables

- A random variable with the set of possible values at most countable is called **discrete**.
- ullet Say that a discrete random variable $X:S
 ightarrow \{a_1,a_2,\ldots,a_n,\ldots\}$ and define

$$p: \{a_1, a_2, \dots, a_n, \dots\} \to [0, 1]$$

as $p(a_i) = P(X = a_i)$. The function $p(\cdot)$ is called the *probability mass function*.

- ullet The randomness of X is perfectly described by its probability mass function.
- A probability mass function $p(\cdot)$ must satisfy
 - 1. $p(a_i) \ge 0$, for all $i \ge 0$.
 - 2. For any $x \notin \{a_1, a_2, \dots, a_n, \dots\}$, p(x) = 0,
 - 3. $\sum_{i=1}^{\infty} p(a_i) = 1$.

Mean of discrete random variables

• Let $X:S \to \{a_1,a_2,\ldots,a_n,\ldots\}$ be a discrete random variable with probability mass function $p(\cdot)$. The mean (a.k.a expected value) of the random variable X is denoted E[X] ("E" stands for "expected value") and is defined as

$$E[X] = \sum_{k=1}^{\infty} a_k \cdot p(a_k).$$

Example The expected value of $X \sim Po(\lambda)$ is

$$E[X] = \sum_{k=0}^{\infty} k \cdot p(k) = \lambda.$$

Properties of E[X]

1. For any X and any real number c,

$$E[c+X] = c + E[X].$$

2. For any X and any real number c,

$$E[c \cdot X] = c \cdot E[X].$$

3. For any real number c, E[c] = c.

Properties of the Expectation -cont'd

• "The Law of the Unconscious Probabilist": If X is a random variable $X:S \to \{a_1,...,a_n,...\}$ with probability mass function $p(\cdot)$ and g is a map $g:\{a_1,...,a_n,...\}\to R$, then

$$E[g(X)] = \sum_{i=1}^{\infty} g(a_i)p(a_i)$$

• The physical interpretation of the expected value of a probability distribution as the coordinate of the center of gravity.

Variance of a Random variable

- The variance is a measure of the "spread" of a distribution.
- The variance of a random variable X is

$$Var(X) = E[(X - E[X])^2]$$

• Alternative form: $Var(X) = E[X^2] - (E[X])^2$

Properties of the variance

- 1. Var(c + X) = Var(X) for any constant c.
- 2. $Var(cX) = c^2 Var(X)$ for any constant c.

The Bernoulli distribution

- Suppose a trial is performed such that its outcome can be classified as either a "success" or as a "failure". Such a trial is called a *Bernoulli trial*.
- Define the random variable $X:S \to \{0,1\}$ as being equal to 1 if the outcome is a success and equal to 0 if the outcome is a failure.
- ullet If the probability of a success is p, then the probability mass function is

$$p(1) = p, p(0) = 1 - p.$$

The Binomial distribution

- Suppose that n independent Bernoulli trials are performed and each of them has the same probability of success equal to p. If $X:S \to \{0,1,\ldots,n-1,n\}$ is the random variable equal to the number of successes in the n trials then X is said to follow the binomial distribution with parameters n and p and is denoted $X \sim Bin(n,p)$.
- ullet The probability mass function of X is given by

$$p(k) = \binom{n}{k} p^k (1-p)^{n-k}, \forall k \in \{0, 1, \dots, n\}.$$

- If $X \sim Bin(n,p)$ then as k goes from 0 to n, p(k) first increases monotonically and then decreases monotonically reaching its largest value when k is the largest integer less than or equal to (n+1)p.
- If for each $0 \le i \le n$, Y_i is the Bernoulli random variable associated to the *i*-th Bernoulli trial, that

is, $Y_i=\mathbf{1}$ if the i-th trial was a success and $Y_i=\mathbf{0}$ otherwise, then

$$X = \sum_{i=1}^{n} Y_i.$$

The Poisson distribution and Poisson Process

ullet A random variable $X:S \to \{1,2,\ldots,n,\ldots\}$ is said to follow the Poisson distribution with parameter $\lambda>0$ and is denoted $X\sim Po(\lambda)$ if for any integer $i\geq 0$

$$p(i) = e^{-\lambda} \frac{\lambda^i}{i!}.$$

- Let N(t) denote the number of events occurring by time t. Assume that the following hold:
 - stationarity for two time intervals of equal length the distribution of the number of events is the same within each interval
 - independent increment the number of occurrences in an interval (t,t+s) does not depend on the number of occurrences from previous times.

- orderliness no two (or more) events can occur simultaneously.
- N(0) = 0 there is a time origin at which the counting of events starts.

Then there exists a positive number $\lambda > 0$ such that the distribution of N(t) is $Poisson(\lambda t)$ for all t > 0.

The Geometric distribution

- ullet Suppose that a sequence of independent Bernoulli trials each with probability of success p are performed.
- Let X be the number of experiments until the first success occurs. X is a geometric random variable. The probability mass function for X is $p(X=n)=(1-p)^{n-1}p$ for all n>0.
- ullet The distribution of X is called geometric. Notation Geo(p)

Negative Binomial distribution

- Generalizes the geometric distribution.
- ullet Suppose that a sequence of independent Bernoulli trials each with probability of success p are performed.
- Let X be the number of experiments until the first r successes occur. X is a a negative binomial random variable. The probability mass function for X is $p(X=n)=\binom{n-1}{r-1}(1-p)^{n-r}p^r$ for all $n\geq r$. Notation NBin(r,p)

Table of means and variances

Distribution	Mean	Variance
Bernoulli(p)	p	p(1-p)
Bin(n,p)	np	np(1-p)
$Poisson(\lambda)$	λ	λ
Geo(p)	$\frac{1}{p}$	$\frac{1-p}{p^2}$
NBin(r,p)	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$