Random Variables

- In many situations when an experiment is performed the interest is in some numerical function of the outcome rather than the actual outcome itself.
- If S is the sample space of an experiment then a map $X:S\to R$ is a called a random variable.
- Additional Requirement: For any interval $I \subset R$, $X^{-1}(I)$ is an event in S.

Distribution functions

• The distribution function $F: R \to [0,1]$ of a random variable X is defined as $F(t) = P(X \le t)$.

Properties of F

- F is non-decreasing, i.e. $t_1 \leq t_2$ implies $F(t_1) \leq F(t_2)$
- $\lim_{t\to\infty} F(t) = 1$
- $\lim_{t\to-\infty} F(t) = 0$
- F is continuous to the right.

Connection between probability and distribution

Question: What is the connection between $P(X \in (a,b])$ and F(a), F(b)? How about P(X=a) and F(a)? ...

Event concerning X	Probability of the event
	in terms of F
$X \leq a$	F(a)
X > a	1 - F(a)
$X \geq a$	1 - F(a-)
X = a	F(a) - F(a-)
$a < X \le b$	F(b) - F(a)
a < X < b	F(b-)-F(a)
$a \le X \le b$	F(b) - F(a-)
$a \le X < b$	F(b-)-F(a-)

Random selection of points in intervals

• Fix a < b and α, β such that $a \le \alpha < \beta \le b$. The probability that a point is randomly selected in the interval (α, β) is

$$\frac{\beta - \alpha}{b - a}$$

• Let C be a fixed point in the interval (a,b). If X is a point randomly selected in the interval (a,b) then the probability that X is selected to be exactly C is

$$P(X=C)=0$$