Review - Bayes Formula

• Say $\{B_1, B_2, B_3\}$ is a partition of the sample space S and $P(B_i) > 0$ for all $i \in \{1, 2, 3\}$. Then for any event A with P(A) > 0

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{P(A|B_1)P(B_1) + P(A|B_2)P(B_2) + P(A|B_3)P(B_3)}$$
 for any $k \in \{1, 2, 3\}$.

Generalization

Say $\{B_1, B_2, \ldots, B_n\}$ is a partition of the sample space S and $P(B_i) > 0$ for all $i \in \{1, 2, \ldots, n\}$. Then for any event A with P(A) > 0

$$P(B_k|A) = \frac{P(A|B_k)P(B_k)}{\sum_{i=1}^{n} P(A|B_i)P(B_i)}$$

for any $k \in \{1, 2, ..., n\}$.

Review - Independence

ullet Two events, E and F are independent if

$$P(E \cap F) = P(E)P(F)$$
.

Properties

- 1. If E and F are independent and P(F) > 0 then P(E|F) = P(E).
- 2. If E and F are independent then E and F^c are independent.
- 3. If E and F are mutually exclusive and P(E)P(F) > 0 then E and F can not be independent.

- 4. If E and F are independent, and E and G are independent it is not automatically true that E and $F \cap G$ are independent.
- 5. In the case of three events, E,F, and G, the equality $P(E \cap F \cap G) = P(E)P(F)P(G)$ does not imply that E,F, and G are independent.