Review - Axioms of Probability

- **Axiom 1** $0 \le P(E) \le 1$ for any event E.
- Axiom 2 P(S) = 1.
- **Axiom 3** For a sequence of mutually exclusive events $E_1, E_2, \ldots, E_n, \ldots$

$$P(\cup_{i=1}^{\infty} E_i) = \sum_{i=1}^{\infty} P(E_i)$$

• The special case of sample spaces with equally likely outcomes. If $S=\{1,2,\ldots,N\}$ and all outcomes have equal probability then for any event E

$$P(E) = \frac{\text{number of points in E}}{N}.$$

• Basic principle of counting:

If r experiments are to be performed such that the first one has n_1 possible outcomes, the second has n_2 possible outcomes, ..., the r-th has n_r outcomes, then the total number of possible outcomes is $n_1 n_2 \ldots n_r$.

• Permutations:

n objects can be arranged in n! different ordered arrangements.

• If n_1, n_2, \ldots, n_r of them are indistinguishable such that $n_1 + n_2 + \ldots n_r = n$ then the number of different arrangements is $\frac{n!}{n_1!n_2!\ldots n_r!}$.

• Combinations:

The number of unordered groups of r items that can be formed out of n items is $\binom{n}{r}=\frac{n!}{r!(n-r)!}$