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Wavelet-based estimation for univariate
stable laws

Received: 10 November 2003 / Revised: 6 July 2005 / Published online: 11 May 2006
© The Institute of Statistical Mathematics, Tokyo 2006

Abstract Stable distributions are characterized by four parameters which can be
estimated via a number of methods, and although approximate maximum likelihood
estimation techniques have been proposed, they are computationally intensive and
difficult to implement. This article describes a fast, wavelet-based, regression-type
method for estimating the parameters of a stable distribution. Fourier domain rep-
resentations, combined with a wavelet multiresolution approach, are shown to be
effective and highly efficient tools for inference in stable law families. Our proce-
dures are illustrated and compared with other estimation methods using simulated
data, and an application to a real data example is explored. One novel aspect of this
work is that here wavelets are being used to solve a parametric problem, rather than
a nonparametric one, which is the more typical context in wavelet applications.

Keywords Wavelets · Stable laws · Empirical characteristic function · Estimation ·
Efficiency · Completeness · Regularization

1 Introduction

In recent years, new classes of functions called wavelets have been discovered
which span the usual Hilbert space L2(R) and which possess local adaptivity,
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approximation and computational properties which not only are remarkable, but
also give rise to applications of wavelet-based methods in many areas of science
and engineering. A key characteristic in many such applications is the ability of
wavelet functions to capture effectively local features of the processes modelled.
Hence, in statistics, for example, wavelets have been used primarily to deal with
problems of a nonparametric character, such as those arising in the context of
regression analysis, or when estimating functions such as densities, spectral densi-
ties, or hazard rates. See, for example, Antoniadis et al. (1994, 1999), Donoho et al.
(1996), Gao (1993), Hall and Patil (1995), and Johnstone et al. (1992). This leaves
open a question which is natural to ask within a statistical perspective, namely, can
these new classes of functions be used to advantage to solve statistical problems
which are purely of a parametric nature? For example, can wavelet methods be
used effectively to obtain estimates of unknown parameters in a parametric statis-
tical model, given data generated according to that model? It is to this question that
the present paper is addressed, and we argue the answer is affirmative.

In particular, we will demonstrate the effectiveness of procedures based on
wavelet functions to estimate parameters of the stable laws—and specifically on
regression methods involving the wavelet transform. The stable laws are a natu-
ral family to consider in this context, not only because of their importance in an
increasingly wide range of applications in such fields as finance, chaos, hydrology,
telecommunications, and physics, but also because the Stable Laws do not have
closed forms for their densities so that the classical inference procedures are gen-
erally difficult to implement. Thus alternative methods of inference for this family
are of particular interest.

We shall show that wavelets provide an effective, natural, and numerically
interesting class of techniques for carrying out parametric inference. These tech-
niques are complementary to maximum likelihood and often applicable in situa-
tions (e.g. convolution families) where densities may not have a tractable form.
These new wavelet-based methods are highly efficient, inherently robust, and in
particular, allow one to deal effectively with distributions possessing heavy tails.
These wavelet transformation methods also have the property of ‘disbalancing’
certain correlation structures and rearranging the (Fisher) information of data in
ways that can prove helpful in the context of nearly singular statistical models. A
key novelty is that wavelets are being used here to solve a parametric problem
instead of a nonparametric one, the latter being more typical in applications of
wavelet methods.

This paper is organized as follows. In Sect. 2 we give a brief overview of the
Stable Laws as well as some recent methods that have been proposed to estimate
parameters in such families. Our main wavelet-based parametric estimation pro-
cedures are developed in Sect. 3. In particular, there we explore a multiresolution
approach to solve parametric estimation problems using an iterative weighted non-
linear least squares procedure. We adopt this approach specifically because many
of the issues arising in the solution of such least squares problems may be handled
effectively by multiresolution methods. As with many high-dimensionality regres-
sion problems, ill-conditioning of the resulting equations needs to be overcome by
regularization.

Implementation of such methods involve substantive numerical considerations;
these aspects are discussed in Sect. 4 which deals with the algorithmic details of our
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procedures. In Sect. 5 we summarize the results of numerical experimentation and
report on a small simulation study intended to assess the performance of the meth-
ods in finite sample situations. We also provide an example of the application of our
procedure to a real data example arising from the financial markets. Finally some
further discussion, indications of possible extensions, and concluding remarks are
collected in Sect. 6.

2 The stable laws

The univariate stable laws comprise the class of limiting distributions for nor-
malized sums of independent and identically distributed random variables. The
members of this class are characterized by four parameters: an index or shape
parameter α, a skewness parameter β, a scale parameter σ , and a shift (or location)
parameter µ, where 0 < α ≤ 2, −1 ≤ β ≤ 1, σ>0, and −∞ < µ < +∞. The
parameter α measures the degree of peakedness and the heaviness of the tails of
the stable distribution; when α = 2, it corresponds to a normal distribution with
meanµ and variance 2σ 2, while when α < 2, the variance becomes infinite and the
tails of the density then have order O(|x|−1−α) as |x| → ∞. This characteristic of
the stables (together with their ‘central limit’ origins) makes them useful in mod-
elling certain types of data that admit observations of large magnitude, while the
parameter β allows incorporation of skewness. See, for example, Christof and Wolf
(1992), Feller (1971), Gnedenko and Kolmogorov (1954), Ibragimov and Linnik
(1971), Lukacs (1970), Samorodnitsky and Taqqu (1994), and Zolotarev (1986). A
wide range of applications of the stable laws are discussed, for example, in Janicki
and Weron (1994), Mandelbrot (1963, 1972), Mittnik and Rachev (1993, 2000),
and Uchaikin and Zolotarev (1999).

Except for (α, β) = (2, ·), (1, 0) or (1/2,±1), the densities of stable random
variable are not available in closed form, which makes inference by standard tech-
niques, such as maximum likelihood, difficult. This makes methods based on the
characteristic function of stable distributions a natural tool for inference. In fact the
stable distributions are given most simply by means of their characteristic function
φ(t), whose logarithm is

logφ(t) =
{

iµt − |σ t |α {
1 − i tan

(
π
2 α

)
β sgn(t)

}
when α �= 1

iµt − |σ t | {1 + i 2
π
β log |t | sgn(t)

}
when α = 1

. (1)

For statistical applications, the canonical representation (Eq. 1) has the disagree-
able feature that φ(t) is discontinuous in the parameters when α and β �= 0 vary
continuously across the line α = 1. However, this discontinuity is of an inessen-
tial kind and should be removed in nonsymmetric cases, as in DuMouchel (1971),
Chambers et al. (1976), or Feuerverger and McDunnough (1981b). We will denote
an α-stable distribution by Sα(σ, β, µ). When µ = 0 and σ = 1 the distribution is
called standard stable.

The probability densities of stable variables exist and are continuous and uni-
modal, but as already noted they are not available in closed form and this severely
hampers the problem of estimating their parameters. In particular, conventional
statistical methods (such as maximum likelihood) cannot be used directly. How-
ever, several methods for estimating stable parameters have been considered and
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found useful. For example, Fama (1965) and Fama and Roll (1968, 1971) suggested
estimation by means of sample fractiles for symmetric stable distributions when
1 ≤ α ≤ 2; Fama–Roll’s method is simple but suffers from a small asymptotic
bias in α̂ and σ̂ and from restrictions on α and β. Their procedure was general-
ized and improved by McCulloch (1986) who provided consistent estimators of all
four parameters, for 0.6 ≤ α ≤ 2, while retaining the computational simplicity of
Fama–Roll’s method. As well, sample characteristic function methods were devel-
oped by many authors. In particular, Koutrouvelis (1980, 1981) adapted Press’s
(1972) moment procedure into a two-step regression-type method and developed
an iterative weighted regression fitting procedure. Paulson et al. (1975) used an opti-
mization approach, selecting as estimators the values which minimize a weighted
second-mean distance between the fitted characteristic function and the empirical
one. Hill (1975) suggested an approach to estimation by assuming a paramet-
ric form only for the tails of the distribution function. See also Feuerverger and
McDunnough (1981a,b) and Kogon and Williams (1998). For further review, see
e.g., Mittnik and Rachev (1993).

Using a multinomial approximation to the likelihood, DuMouchel (1971,
1973a,b, 1983) was the first to obtain approximate ML estimates for α and σ
(assumingµ = 0); DuMouchel (1973a,b) also proved that the maximum likelihood
estimates for the full four-parameter stable law family are asymptotically normal
with covariance matrix determined by the inverse of the Fisher information matrix
in the usual way provided α > ε for some fixed ε > 0. (The stable likelihood
function is unbounded near α = 0.)

Although DuMouchel also required that the parameter values stay away from
α = 1, his proof appears to carry over to the continuous reparameterizations
referred to above. Maximum likelihood procedures for estimating stable parame-
ters were also implemented by Feuerverger and McDunnough (1981b), McCulloch
(1998), Chen (1991), and Nolan (1997, 2001).

To our knowledge, no wavelet-based method for parametric estimation of the
stable laws has been explored in the literature, and this is the approach we adopt.

3 Wavelet estimation procedures

The estimation procedures we develop are based on wavelet decompositions. For
expositions of mathematical aspects of wavelets we refer, for example, to
Daubechies (1992), Mallat (1998), Chui (1992), or Holschneider (1995), while
expositions on the use of wavelets in statistical settings are given, for example, in
Abramovich et al. (2000),Antoniadis (1997), Ogden (1997), and Vidakovic (1999).

To simplify exposition, we consider only the one-dimensional case and ortho-
normal wavelet bases of L2(R) generated by dyadic dilation and translation of a
compactly supported scaling function and a compactly supported mother wave-
let. To fix context and notation, wavelet analysis thus requires a description of
a scaling function ϕ(x) and a wavelet ψ(x). The function ϕ(x) is a solution
of a two-scale difference equation ϕ(x) = √

2
∑

k∈Z
hk ϕ(2x − k) with nor-

malization
∫

R
ϕ(x) dx = 1, and the function ψ(x) is then defined by ψ(x) =√

2
∑

k∈Z
(−1)kh1−k ϕ(2x − k). Through careful choice of the filter coefficients

hk , wavelet functions with desirable properties can be constructed. A wavelet
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system then consists of the infinite collections of translated and scaled versions
of ϕ and ψ defined via

ϕj,k(x)=2j/2ϕ(2j x−k) and ψj,k(x)=2j/2ψ(2j x−k), j, k∈Z. (2)

Additional conditions on the filter coefficients imply that {ϕj,k, k ∈ Z} is an ortho-
normal system in L2(R) for each j ∈ Z, and {ψj,k, j, k ∈ Z} is an orthonormal
basis of L2(R).

The wavelet representation for g ∈ L2(R) is then given by g = ∑
j∈Z

∑
k∈Z
dj,k

ψj,k where the wavelet coefficients dj,k = ∫
R
g(t)ψj,k(t) dt = 〈g,ψj,k〉, and 〈·, ·〉

is the usual inner product. For any f∈L2(R) and j, k ∈ Z we will sometimes
denote by ηjk ≡ ηjk(f ) = 〈f,ψjk〉 the wavelet coefficients of f , with respect to
this orthonormal wavelet basis. Typically, we want algorithms with linear or lin-
ear-logarithmic complexity to traverse between a function and its wavelet coeffi-
cients. Such fast wavelet transforms are often obtained through the multiresolution
framework of Mallat (1989). Such algorithms are available in several standard
implementations, for example, in the S-Plus packages WaveThresh (Nason
and Silverman 1994) or S+Wavelets (Bruce and Gao 1994), or in the MatLab
packages WaveLab (Buckheit and Donoho 1995) or FracLab (INRIA Project
Fractales, 2002). In particular, the computations described in this paper were based
primarily on FracLab.

We now represent the parameters of the stable laws by a column vector θ =
(α, β, µ, σ )′, and the parameter space by�, for some characteristic function repre-
sentation for the stables. The corresponding density, cumulative distribution func-
tion, and characteristic function (cf) will be denoted asfθ(x),Fθ(x), and cθ (t). Data
will be denoted as x1, x2, . . . , xn, these being realizations of independent, identi-
cally distributed random variables X1, X2, . . . , Xn sampled according to some
unknown value θ = θ0. The empirical distribution function and empirical char-
acteristic function (ecf) corresponding to these data will be denoted as Fn(x) and
cn(t).

The wavelet estimation procedures we propose are based on the following gen-
eral result of Feuerverger and McDunnough (1984). Consider a class of functions
{gt (x); t ∈ T } indexed by T , and set

Eθ gt (X) ≡ Gθ(t) ≡
∫
gt (x) dFθ(x) (3)

and

En gt (X) ≡ Gn(t) ≡
∫
gt (x) dFn(x) = 1

n

n∑
j=1

gt (Xj ). (4)

Here Eθ and En represent expectations with respect to the distributions Fθ and Fn.
Suppose now that we estimate θ by “fitting”Gθ(t) toGn(t) at a finite collection of
values t1, t2, . . . , tk ∈ T (for some k) using generalized, nonlinear least squares.
(The term “generalized” is used here in its ordinary meaning of least squares with
the covariance structure of the error terms taken appropriately into account.) Then
such procedures can be made to attain arbitrarily high asymptotic efficiency (pro-
vided we use a sufficiently extensive grid {tj }kj=1 ⊂ T ) if and only if the closure in
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the weighted spaceL2(fθ0) of the finite linear combinations
∑k

j=1 aj gtj (x), where
k and the t1, ..., tk are arbitrary, includes the components of the true vector ‘score’
function ∂ log fθ(x)/∂θ |θ=θ0

. (Here L2(fθ0) is the linear space of functions g(·)
whose norm

{∫
R
g2(x)fθ0(x) dx

}1/2
is finite.) Since the true parameter value θ0 is

ordinarily unknown, it is more practical to require this criterion to hold for all θ0 in
the parameter space �. The situation will, of course, be particularly simple when
the

∑k
j=1 aj gtj (x) span all of L2(fθ ) for every θ .

Now, since for any θ ∈ �, the density of a stable distribution (w.r.t. Lebesgue
measure) is bounded above, it is easy to see that if the collection {gt (x); t ∈ T }
is a basis of L2(R), then it will also span the weighted space L2(fθ ) of the sta-
ble law. (This follows since L2(R) ⊂ L2(fθ ) and, by the boundedness of fθ , any
approximating sequence in L2(R) is also an approximating sequence in L2(fθ ).)
Hereafter, the families {gt (x); t ∈ T } of interest to us will be complete wavelet
families and their Fourier transforms, typically denoted as {ψj,k(x); j, k ∈ Z} and
{ψ̂j,k(t); j, k ∈ Z}. In view of Fourier isometry, both these sets of functions form
complete families spanning all of L2(R). Furthermore, for reasonable continuous
parameterizations, all score functions of the stable laws belong to their correspond-
ingL2(fθ ) spaces, a result that was proved by DuMouchel (1971, 1973a). Therefore
procedures based on fitting population to sample moments defined by wavelets or
their Fourier transforms, using generalized (nonlinear) least squares, will permit
arbitrarily high asymptotic efficiency.

We are thus led to consider (in one instance) the nonlinear generalized least
squares fitting, in obvious notation, of

〈dFn, ψ̂j,k〉 = 〈fθ , ψ̂j,k〉 + εj,k, (5)

or equivalently (by Parseval’s equality) of

〈dFn, ψ̂j,k〉 = 〈cθ , ψj,k〉 + εj,k , (6)

using many values of j and k, where {ψj,k} is a complete wavelet family, and {ψ̂j,k}
are its Fourier transforms. In fact, writing the left hand side of Eq. (6) as

Yj,k ≡ 〈dFn, ψ̂j,k〉 ≡ 1

n

n∑
=1

ψ̂j,k(X) (7)

allows us to exhibit Eq. (6) in standard least squares format:

Yj,k = 〈cθ , ψj,k〉 + εj,k . (8)

Here the εj,k are (complex-valued) error terms whose means are 0 and whose
covariance matrix—to be denoted by �— will be discussed further below. While
the form of Eq. (8) is simple, evaluation of the empirical wavelet coefficients as in
Eq. (7) can be computationally demanding, especially if the functions ψ̂j,k do not
have a closed form. However, one may apply Parseval’s equality yet again to obtain
an alternative expression for the “observations”Yj,k which is computationally more
tractable, namely

Yj,k = 〈dFn, ψ̂j,k〉 = 〈cn, ψj,k〉 . (9)
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In Eq. (9), the quantities 〈cn, ψj,k〉 can thus be computed by means of a fast wavelet
transform applied to the empirical characteristic function cn, whereas in Eq. (7),
the quantities 〈dFn, ψ̂j,k〉 are typically much more difficult to compute.

We note in passing here that if (in the other instance) we reverse the roles of
{ψj,k} and {ψ̂j,k} in the last paragraph, we then obtain estimating equations of the
form

Y ′
j,k ≡ 1

n

∑


ψj,k(X) = 〈dFn,ψj,k〉 = 〈fθ , ψj,k〉 + ε′
j,k

= 〈cθ , ψ̂j,k〉 + ε′
j,k . (10)

These procedures are also asymptotically arbitrarily highly efficient. However,
computation of the 〈cθ , ψ̂j,k〉 is problematical in that no fast algorithm is known for
obtaining them, while computation of the equivalent forms 〈fθ , ψj,k〉 first requires
obtaining the densities fθ by Fourier inversion of the cθ which we obviously seek
to avoid here. For this reason we do not pursue this option below.

We next discuss the covariance matrix � of the error terms εj,k in Eq. (5).
Our initial convention is that each row (and each column) of � corresponds to
a particular pair (j, k), i.e., a particular wavelet function; a typical entry of � is
therefore (in obvious notation) denoted as�(j,k),(j ′,k′). However, quantities such as
〈dFn, ψ̂j,k〉 and 〈cθ , ψj,k〉 are actually complex valued, and their real and imagi-
nary parts need to be ‘separated’. Thus for each j, k an equation such as Eq. (6)
in fact represents two equations: one for the real part and one for the imaginary
part. Correspondingly, the number of rows and columns of the covariance matrix
� must in fact equal twice the number of wavelet coefficients being used, with
real and imaginary parts of every wavelet coefficient each corresponding to its own
row and column. The entries of � are thus not based on covariances among the
ψ̂j,k(X), but rather among all their real and imaginary components.

In complex form (our ‘initial convention’) the entry of � corresponding to the
(j, k) and (j ′, k′) wavelets is given via

n�(j,k),(j ′,k′) ≡ nCov
(
Yj,k, Yj ′,k′

)
= Cov

(
ψ̂j,k(X), ψ̂j ′,k′(X)

)

= E

(
ψ̂j,k(X) ψ̂j ′,k′(X)

)
− E

(
ψ̂j,k(X)

)
E

(
ψ̂j ′,k′(X)

)
.

(11)

By Parseval’s identity,

E(Yj,k) = E(ψ̂j,k(X)) =
∫
ψ̂j,k(x) fθ (x) dx

=
∫
ψj,k(x) cθ (x) dx; (12)
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therefore, the quantities E
(
Yj,k

)
in Eq. (11) are just the wavelet coefficients of cθ

which can readily be computed and which we denote by ηj,k(cθ ). Next,

E
(
ψ̂j,k(X) ψ̂j ′,k′(X)

)
=

∫
ψ̂j,k(x) ψ̂j ′,k′(x) fθ (x) dx

=
∫ ∫ ∫

ψj,k(s)e
−isx ψj ′,k′(t)e−itx fθ (x) ds dt dx

=
∫ ∫

ψj,k(s) ψj ′,k′(t) cθ (t − s) ds dt . (13)

Consequently

n�(j,k),(j ′,k′)=
∫ ∫

ψj,k(s) ψj ′,k′(t) [cθ (t − s)−cθ (s)cθ (−t)] ds dt .

(14)

This approach can now be used to determine the full covariance structure among
the real and imaginary components of the Yj,k; however, the following alternative
viewpoint is also useful. First note, for any cf c(·) and its empirical version cn(·),
the well known and easily derived identity

nCov (cn(s), cn(t)) = c(s − t)− c(s)c(−t). (15)

From this, using the conjugate symmetry of characteristic functions, it follows that

nCov (� cn(s),� cn(t)) = 1

2
[ � c(s − t)+ � c(s + t) ]

−� c(s)� c(t) , (16)

nCov (� cn(s), cn(t)) = 1

2
[  c(s − t)+  c(s + t) ]

−� c(s) c(t), (17)

and

nCov ( cn(s), cn(t)) = 1

2
[ � c(s − t)− � c(s + t) ]

− c(s) c(t). (18)

(Here � and  denote real and imaginary parts.) Then using the linearities of
covariance and inner product and the fact that the functions ψj,k that we use are
real, we obtain

Cov
( �Yj,k,�Yj ′,k′

) = Cov
(〈�cn, ψj,k〉, 〈�cn, ψj ′,k′ 〉)

=
∫
ψj,k(s)Cov (�cn(s),�cn(t)) ψj ′,k′(t) ds dt.

(19)
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In this way we obtain the relation

nCov
( �Yj,k,�Yj ′,k′

)
=

∫ ∫
ψj,k(s) ψj ′,k′(t)

{
1

2
[ �c(s − t)+ �c(s + t) ] − �c(s)�c(t)

}
ds dt

= 1

2

∫ ∫
ψj,k(s) ψj ′,k′(t)� [c(s − t)+ c(s + t)] dsdt

−ηj,k(� [cθ ]) ηj ′,k′(�[cθ ]) , (20)

and likewise

nCov
( �Yj,k,Yj ′,k′

)
=

∫ ∫
ψj,k(s) ψj ′,k′(t)

{
1

2
[ c(s − t)+ c(s + t) ] − �c(s)c(t)

}
ds dt

= 1

2

∫ ∫
ψj,k(s) ψj ′,k′(t) [c(s − t)+ c(s + t)] ds dt

−ηj,k(� [cθ ]) ηj ′,k′([cθ ]) , (21)

and

nCov
( Yj,k,Yj ′,k′

)
=

∫ ∫
ψj,k(s) ψj ′,k′(t)

{
1

2
[ �c(s − t)− �c(s + t) ] − c(s)c(t)

}
ds dt

= 1

2

∫ ∫
ψj,k(s) ψj ′,k′(t)� [c(s − t)− c(s + t)] ds dt

−ηj,k( [cθ ]) ηj ′,k′([cθ ]) . (22)

The entries of � corresponding to the real and imaginary parts of the wavelet
coefficients are thus given by the expressions (20)–(22).

In the symmetric family cθ (t) = exp{iµt − |σ t |α}, if we work with centred
variates such as X̃j = (

Xj − µ̂
)
/σ̂ , where µ̂ and σ̂ are consistent estimates, the

covariance between the real and imaginary parts of the ecf and hence of the wavelet
coefficients Cov

( �Yj,k,Yj ′,k′
)

are null [see Eq. (21)] so that � becomes block
diagonal. In this case our updating equations will separate into two parts: one
involving only α and σ and the other involving onlyµ. This phenomenon is related
to orthogonalities in the Fisher information matrix for symmetric scale-location
families and is discussed further in Sect. 4.

The weighted least squares wavelet procedure is now based on a grid of size
T , say, of scale-position pairs (j, k), and involves minimizing (with respect to θ )
a quadratic form in the 2T quantities �(Yj,k − ηj,k(cθ )) and (Yj,k − ηj,k(cθ )).
Once we have estimated the 2T×2T matrix �, then starting from any consistent
estimate of θ , our nonlinear least squares updating algorithm is given by

θ̂new = θ̂old + (G′�−1G)−1G′�−1ηθold . (23)

(The primes, here and elsewhere, represent the transpose of a matrix or a vector.)
Here the length 2T column vector ηθ has entries consisting of the real and imag-
inary parts � (Yj,k − ηj,k(cθ )) and  (Yj,k − ηj,k(cθ )), and G is the 2T×4 matrix
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of partial derivatives of ηθ with respect to the four components of θ , these terms
all being evaluated at θ = θold.

We mention here that Eq. (15), as well as Eq. (16)–(18), belong to the class of
operators that are made sparse under the action of the wavelet transform (see, e.g.,
Flandrin 1992). Therefore one may hope to exploit the sparse and near-diagonal
structure of the wavelet covariance matrix � when constructing the inverses in
the updating scheme (23). A difficulty (which occurs in many inverse problems) is
that for moderate n and large T , the true and estimated � will be ill-conditioned.
Indeed, when selecting the grid (of size T ) of scale-position pairs (j, k) there are
two somewhat conflicting objectives. To eliminate instabilities arising from mul-
ticolinearities we seek to delete components whose variances are very small. But,
at the same time, it is undesirable to delete components having large correlations
with the cn(t) since these carry substantial information for θ . Because the estima-
tion procedure is carried out in scale-space, one strategy for choosing the grid (to
overcome ill-posedness) is to employ a multiscale regularization technique based
on a truncated singular value decomposition of the estimated �; this amounts to
choosing T by deleting all eigenvectors of the SVD corresponding to eigenvalues
smaller than some cut-off level. The choice of this cut-off level is somewhat arbi-
trary, but if the matrix � is first rescaled into a correlation matrix (which has an
average eigenvalue equal to 1) a cut-off value between 0.01 and 0.1 appears to
be useful in practice. A more sophisticated method would be to add to � a small
diagonal matrix, with scale-dependent diagonal weights (as in ridge regression)
before proceeding to the inversion of the matrices in the updating algorithm in a
scale-recursive manner.

Since the performance of regularization methods is context-dependent, it is
difficult to make general statements about the superiority of one regularization
method over another. Whatever method is chosen, we used a QR decomposition
(see, e.g., Strang 1986) to iteratively solve Eq. (23); this is the standard method
to solve overdetermined systems by least squares. Specifically, at each iteration,
we factorize the part �−1G = QR with R upper triangular and Q orthogonal
in the sense that Q�−1Q = I and then solve the resulting triangular system
Q′ ηθold = R (θ − θold) by substitution.

4 Numerical algorithms

In this section we provide some details of the numerical algorithms used in our
experiments. In particular we indicate how the theoretical details of Sect. 3 (ex-
pressed there in continuous form) were implemented by means of discrete algo-
rithms.

To simplify our numerical work, we experimented only with symmetric sta-
ble families, (i.e., β = 0). An important consideration is that the 4 × 4 Fisher
information matrix then becomes block diagonal, with 2 ×2 blocks corresponding
to parameter groupings (α, σ ) and (β, µ) (DuMouchel 1975, Theorem 2). This
allows us to concentrate efforts on the key parameter α, and on the scale param-
eter σ thereby associated with it. We saved additional efforts by using only a√
n-consistent estimator for µ throughout. The Fisher information orthogonalities

(when β = 0) imply that our estimators for α and σ may then (asymptotically) be
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fairly compared to estimators for these two parameters obtained from algorithms
which fit all four stable parameters simultaneously.

As before, denote by {xj }nj=1 the data to be analysed; the xj are independent
variables from a stable distribution fθ , with θ = (α, β, µ, σ )′. As mentioned, we
always used β = 0. Further, due to the invariance in location, we always used
µ = 0. It is thus convenient to change notation, and henceforth θ = (α, σ )′, a col-
umn vector of length two. We therefore speak of parameter estimates θ̂ = (α̂, σ̂ )′,
and these are first initialized by the values α̂1 and σ̂1 obtained using the four param-
eter estimation procedure of Koutrouvelis (1980), as implemented in FracLab.
The parameter µ was estimated by the

√
n-consistent estimator µ̂0, defined as the

mean of the subset of the data obtained by removing 28% of the smallest and 28%
of the largest values. (See Fama and Roll 1971)

Our estimation updating algorithm now proceeds iteratively. Let k denote the
iterative step in the nonlinear least squares fitting procedure. We determined, after
experimentation, that three iterations always sufficed for satisfactory convergence;
consequently k here always ranged over the values 1–3. Each step, say the kth, of
the estimating loop, thus proceeds as follows. Data are centred (by removing the
trimmed mean µ̂0) and then renormalized using the current estimate σ̂k to {x̃j }nj=1,
where x̃j = (xj − µ̂0)/σ̂k . We then compute the empirical characteristic function

cn(s) = 1

n

n∑
j=1

exp{isx̃j } (24)

over an interval [−S, S), using sampled gridpoints s = ±δ, where  = 0, . . . ,M ,
and sampling rate δ = S/M .

We next compute the analytic cθ at the current θ , namely θ̂k = (α̂k, σ̂k)
′; here

β is implicitly 0, while µ is also 0 in view of the centring at µ̂0. Analytic forms of
the derivatives of cθ w.r.t. α, σ , andµ (required for the nonlinear regression fitting)
are then also computed over the same grids and evaluated at the current param-
eter values; denote these dimension 2M column vectors as ∂αcθ , ∂σ cθ , and ∂µcθ ,
respectively. These quantities are also computed over [−S, S), using gridpoints
s = δ, but to obtain the covariance structures, cθ must actually be computed over
a support [−2S, 2S] that is twice as large. No tapering was required.

We then computed the full tree wavelet decompositions (see, e.g., Mallat 1998)
for each of the finite vectors defined above; we denote such decompositions by
W [cθ ], W [∂αcθ ], W [∂σ cθ ], and W [∂µcθ ]. Assuming a signal of N ≡ 2M = 2J

points, such decomposition consist of N/2 wavelet coefficients at the finest scale
j = −1,N/4 wavelet coefficients at the next finest scale j = −2, . . . . . ., 2 wavelet
coefficients at scale j = −J + 1, and finally, 1 wavelet coefficient at the coars-
est scale j = −J , as well as 1 scaling coefficient also at this scale—a total of
N/2 +N/4 + · · · + 2 + 1 + 1 = N coefficients in all.

In our experiments, we used the real, compactly supported Daubechies wavelets
with various degrees of regularity. We also experimented using various numbers of
wavelet coefficients. Thus, at each scale we would retain, say, only theNψ wavelet
coefficients lying nearest to the singularity (i.e., origin) of the characteristic func-
tion. At coarser scales, when the number of available coefficients falls below Nψ ,
all coefficients were kept.
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We then form the 2M×2 and 2M×1 matricesD θR = {W [∂αcθ ], W [∂σ cθ ]} and
D θI = W [∂µcθ ] (remark: when not all wavelet coefficients are used these matrices
will, of course, have fewer than 2M rows) as well as the (2M + 1) × (2M + 1)
real Toeplitz matrix T whose first row just constitutes the values of cθ (s):

T =



cθ (0) cθ (δ) cθ (2δ) · · · cθ (2Mδ)
cθ (δ) cθ (0) cθ (δ) · · · cθ ((2M − 1)δ)
...

...
...

...
...

cθ (2Mδ) cθ ((2M − 1)δ) cθ ((2M − 2)δ) . . . cθ (0)


 .

We also built the (2M + 1)× (2M + 1) real cross-product matrix

R = c′θ cθ

=



c2
θ (Mδ) cθ (Mδ)cθ ((M − 1)δ) · · · c2

θ (Mδ)

cθ ((M − 1)δ)cθ (Mδ) c2
θ ((M − 1)δ) · · · cθ ((M − 1)δ)cθ (Mδ)

...
...

...
...

c2
θ (Mδ) cθ (Mδ)cθ ((M − 1)δ) · · · c2

θ (Mδ)


.

The theoretical covariance matrix of the real part of the empirical cf is then given
by

�R = 1

2
(T + T̃ )− R , (25)

where T̃ is the 90◦ anticlockwise rotated version of T , while the covariance matrix
for the imaginary part is just

�I = 1

2
(T − T̃ ) . (26)

The quantities (25) and (26) correspond to Eqs. (16) and (18); the matrix corre-
sponding to Eq. (17) is null for symmetric laws.

The wavelet regression procedure requires the covariance matrix of the wavelet
coefficients; for coefficients corresponding to the real part of the empirical cf this
is

�R = W �R W ′, (27)

where W is the matrix of the 1-D wavelet transform. The (nonstandard) 2D wavelet
transform (27) thus corresponds to a 1D orthogonal wavelet transform applied to
each column of �R , together with a 1D wavelet transform applied to each row.
The covariance matrix for the wavelet coefficients of the imaginary part of the
empirical cf is obtained similarly as �I = W �I W ′, but was not required. (The
cross-covariance matrix here is null.) When not all wavelet coefficients are retained
in the fitting, �R is pruned so only the required covariances are kept.

Finally, the procedure used to update θ̂ was θ̂k+1 = θ̂k + ρ dθ where ρ < 1 is
a damping factor, and dθ is the weighted least squares solution of the nonlinear
regression

W [�{cN }] −W [�{cθ }] = (
D θR

)
dθ + E . (28)
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Here, the error vector E is regarded as approximately normal with zero mean and
covariance �R , while θ on the left is at the current estimate. The solution (which
can be highly singular if many coefficients are used) was obtained using MatLab’s
lscov.m, which is based on QR decomposition, and does not require �R to be
inverted. In particular, lscov solves weighted least squares minimization prob-
lems for overdetermined linear regression systems of the form ‖Ab − y‖2 with A
having more rows than columns and y having a known covariance �. We found
that ρ = 0.9 resulted in good overall performance in our algorithm. Thus ends one
iteration; as noted previously, three iterations (k = 1, 2, and 3) were found to be
adequate always.

Finally, we mention that if location µ were also to be fitted using our wavelet
procedure then Eq. (28) would need to be augmented by the one-parameter regres-
sion W [{cN }] −W [{cθ }] = (

D θI
)

dµ + E ′ for that parameter. If the full four
parameter family is to be fitted, the covariance structure of the real and imaginary
terms would not separate (we would not have the parameter orthogonalities), so we
would need to fit a regression using the real and imaginary ecf terms combined as
one vector, together with a full covariance matrix which will now include nonzero
cross terms off the diagonal blocks, since the terms (17), and hence (21), are not
null in nonsymmetric families. We remark that the quantities ∂µcθ and D θI are
not actually required when only α and σ are being fitted; these would be required
only to update the estimates for µ and (in nonsymmetric families) for β.

5 Summary of numerical experiments

In this section we describe some numerical experiments carried out using the algo-
rithms described in Sect. 4. However, we make two general observations. The first
is that wavelet transformation tends to ‘disbalance’ or ‘alter the presentation’ of
data; it also tends to diagonalize, or make sparse, the covariance and correlation
structures of signals to which wavelet transformation is applied. (See, e.g., Flandrin
1992) To illustrate this, Figs. 1 and 2 show the covariance and correlation functions
(matrices), multiplied by n, associated with the real part of the ecf on the interval
t ∈ [−1, 1] for the standardized stable distribution with α = 0.5, while Figs. 3
and 4 show the corresponding functions for the imaginary part of the ecf; these
plots are based on the linear colour-code scales at the right in these figures. (We
chose a low α in order to exhibit high levels of correlation; as α increases, the
illustrated effects only become more striking.) The covariances are seen to range
from 0 to just under 1 for the real part and from approximately −1 to +1 for the
complex part, with substantial correlations evident throughout both Figs. 1 and 3.
In fact, there are also substantial correlations on the horizontal and vertical axes
here, but these are not evident in the covariance plots because the variance of the
ecf is zero at the origin; these correlations are evident in Figs. 2 and 4. Figures 5 and
6 show the absolute values of the covariances and the correlations of the wavelet
coefficients for the real part of the ecf based on a grid of 128 points per unit (corre-
sponding to the previous figures.) Here there are J = log2 256 = 8 wavelet scales,
with the finest scale occupying the leftmost half of the horizontal axis, and bottom
half of the vertical axis. Many covariances after wavelet transformation are so low
that the colour coding for this plot (shown on the right) is based on a logarithmic
dynamic going from 0 db down to −55 db below the maximum (10 db equals a
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Fig. 1 Covariance matrix of � cn. The covariance matrix of � cn(t) (multiplied by n) on
t ∈ [−1, 1], in the standardized case α = 0.5, with linear colour scale
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Fig. 2 Correlation matrix of � cn. The correlation matrix corresponding to Fig. 1

multiplicative factor of 10). The wavelet covariance structure is seen to be highly
concentrated at the coarsest scales (top and right of the image) with otherwise many
near zero covariances throughout. The ‘fishnet’ structure in these plots traces the
diagonal variance terms within the block matrices for each scale (with anti-diag-
onal terms mirroring the symmetry of � cn), as well as covariance terms across
scales corresponding to different wavelet functions which are centred at (nearly)
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Fig. 3 Covariance matrix of  cn. The covariance matrix of  cn(t) (multiplied by n) on
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Fig. 4 Correlation matrix of  cn. The correlation matrix corresponding to Fig. 3

identical locations; the (dark blue) remaining correlations are all essentially null.
The covariance and correlation plots for wavelet coefficients of the imaginary part
of the ecf are very similar to Figs. 5 and 6 and therefore omitted.

Our second observation is that wavelet transformation tends to redistribute and
‘concentrate’ (Fisher) information in data. This point is difficult to make rigor-
ously because the quantities we are examining (in this case the ‘view’ of the data
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given by points on the ecf) are correlated, and this nonorthogonality entails (Fisher)
information structure which is not simply additive. However, this phenomenon can
be illustrated heuristically by looking at the information in individual terms. For
example, if all parameters are known except one—say α—and if this must be esti-
mated from only one point, say � cn(t), on the real ecf, by fitting to it the true cf
� cθ (t) there, then a simple Taylor expansion argument shows that the asymptotic
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variance of this estimator is

Var α̂ = [ Var � cn(t) ]

[
d � cθ (t)

dα

]−2

.

In that sense, the Fisher information per observation in � cn(t) for the parameter
α is

[ nVar � cn(t) ]−1

[
d � cθ (t)

dα

]2

. (29)

(Alternately, we could refer to this as the ‘statistical sensitivity’ of � cn(t) to this
parameter.) Formulas analogous to Eq. (29) also hold for the other stable law
parameters, as well as for  cn(t), and also for individual wavelet coefficients.

Figure 7 shows the information per observation for α, σ , and µ—in the sense
of Eq. (29)—at each point of the ecf for a stable distribution with α = 1.75, σ = 1,
and µ = 0; the curves for α and σ are computed using the real part of the cf
while that for µ is computed using the imaginary part, these being the relevant
information components for each parameter. In these plots, the ecf is viewed on
the domain t ∈ [−4, 4] with a gridding of 32 points per unit. Figure 8 shows the
information per observation for the corresponding individual wavelet coefficients
(with coarsest scales leftmost and only wavelets centred on the nonnegative axis
included). Compared to Fig. 7, it is seen that only a few wavelet coefficients con-
tain any appreciable amount of information; to show this clearly, the plots for α,
σ , and µ are not superimposed here. To further illustrate these points, Figs. 9,
10, and 11 plot the information quantities for the individual ecf points (over the
positive domain) as well as for their corresponding wavelet coefficients, for each of
the parameters α, σ , and µ, in descending order (of information). Comparing the
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Fig. 7 Information for α, σ , andµ in � cn. The pointwise ‘information’ (or statistical sensitivity)
per observation for the estimation of α, σ , and µ, using points on the real ecf
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Fig. 10 The distribution of information for σ . The information content for σ of individual wave-
let coefficients and ecf points (corresponding to the real part of the ecf), ordered from largest to
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Fig. 11 The distribution of information for µ. The information content for µ of individual wave-
let coefficients and ecf points (corresponding to the imaginary part of the ecf), ordered from
largest to smallest

rates of descent of the two curves in each plot again emphasizes that fewer wave-
let coefficients carry greater proportions of the available information. A practical
consequence of this rearrangement and concentration of Fisher’s information is
that typically fewer wavelet coefficients are required (than, say, ecf coefficients) to
obtain the same level of statistical performance for estimation and inference. The
use of fewer and less correlated coefficients also carries numerical advantages.
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We turn now to the results of a simulation study summarized compactly in
Figs. 12 and 13. These figures each consist of 6×4 arrays, with each array con-
sisting of a collection of ‘box and whisker’ plots. Each such box plot has lines at
the lower quartile, median, and upper quartile, with ‘whiskers’ showing the extent
of the remaining data, and with outliers, if any, indicated beyond the whiskers.
Each box and whisker plot summarizes the results of 100 trials. (The same 100
simulated data sets were used throughout for each sample size.) For compara-
tive purposes, box plots for estimates obtained from the four parameter maximum
likelihood procedure of McCulloch (1998) and for estimates obtained from the
four parameter regression procedure of Koutrouvelis (1980) are included within
each array. Both the McCulloch and Koutrouvelis estimators used here are based
on algorithms implemented in FracLab. In all of the results here, we used the
compactly supported Daubechies wavelet of regularity 2 (i.e., four nonzero filter
coefficients and two vanishing moments, the most symmetrical case). However, in
our experimentation we found that the exact choice of wavelet basis did not result
in appreciable differences.

Figure 12 summarizes the performance of the estimators for α. The six rows
of Fig. 12 correspond to true values of α = 1.9 (top), 1.75, 1.5, 1.0, 0.75, and
0.5 (bottom). Estimates of α were always truncated to lie in [0, 2]. The box and
whisker plots within the column 1 arrays compare the McCulloch, Koutrouvelis,
and wavelet estimators for α for the sample sizes n = 25, 200, and 1, 600 as indi-
cated on (the horizontal, i.e.) the x-axis. (These sample sizes correspond to those
used in Koutrouvelis 1980.) The wavelet estimators within the column 1 arrays are
based on wavelet coefficients of the real ecf taken over the interval [−2, 2] with
grid spacing of 16 points per unit and with all 32 wavelet coefficients included in
the regression fit. The columns 2, 3, and 4 arrays are all based on samples of size
n = 200 and show the effects of varying individually various parameters of the
wavelet regression algorithm. (Results for the other sample sizes are not included
here.) The column 2 arrays show the effect on the wavelet estimator of varying the
length of the cf support interval (0.1, 0.5, 1, 2, 4, 10) as shown on the x-axis. The
column 3 arrays show the effect of varying the number of gridpoints (8, 16, 32,
64, 128, 256) used on the ecf, as indicated on the x-axis. And, finally, the column
4 arrays show the effect of using a reduced number of wavelet coefficients (32, 8,
4, 2) as indicated on the x-axis. Algorithm parameters not being varied in column
arrays 2, 3, and 4 were otherwise held fixed at the values established for the column
1 arrays. Within each array of columns 2, 3, and 4, the first two box plots are just the
McCulloch and Koutrouvelis box plots (of sample size 200) that appear within the
leftmost column arrays. To facilitate comparisons, a full horizontal line is drawn
at the true parameter value across each of the box-plot arrays.

Figure 13 is the same as Fig. 12 except it summarizes performance of the esti-
mators for the scale parameter σ . The rows in these figures still correspond to the
values of α equal to 1.9, 1.75, 1.5, 1.0, 0.75, and 0.5, as before. Due to the statistical
invariance under scaling, only the true value σ = 1 is used throughout.

We have not included summaries here for estimates of the location parameter
µ but note that estimates of µ obtained from fitting the symmetric three-parameter
family cannot be compared directly to estimates of µ obtained from fitting a full
four-parameter stable family due to the fact that µ is not orthogonal to the skew-
ness parameter β (even when the true β = 0). It is worth noting that DuMouchel
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(1975, Table 1) does provide some asymptotic correlations ρβ,µ for these correlated
parameters for several values of α; see also Nolan (2001). Variances of estimates of
µwith β = 0 assumed known versus assumed unknown may therefore be adjusted

by applying a correction factor
(

1 − ρ2
β,µ

)
. As mentioned in the previous section,

for α and σ we do not require similar asymptotic corrections. Note, however, that
DuMouchel (1975) uses a discontinuous representation for the stables, so use of
his Table 1 for values of β other than 0 may require adjustment of the value of β.

Examining Figs. 12 and 13 we see that for most combinations of algorithm
parameters our wavelet-based estimation procedure somewhat outperforms (or at
least matches) the performance of the standard estimators, especially for α close to
2 and small values such as 0.5. This holds true even for the smaller sample sizes,
although these results are not shown in the summary figures here. We found that
for almost all configurations of sample size, ecf sampling density, and number of
wavelet coefficients retained, there is an optimal cf support range of around 1 or 2.
This likely reflects the fact that the most useful information is concentrated around
the origin of the cf; there also appears to be some trade-off concerning the density
of wavelet coefficients around this origin.

Finally, we applied our algorithms to a real data set and summarize these results
here. The data set, downloaded from http://chart.yahoo.com, consists of
the Standard and Poors 500 (‘S&P500’) daily stock market closing prices index
from January 1950 to December 1999 inclusive. Interest focussed on exploring the
tails of the daily log-return series with a view of examining if and how the high
tail differs from the low tail, and how both tails have evolved over the decades.
Accordingly, this data set was divided into five parts, corresponding to the decades
1950–1959, 1960–1969, 1970–1979, 1980–1989, and 1990–1999. Within each
decade, the positive and negative log-returns were separated (zero returns were
discarded), and within each of the resulting 10 data sets the signs of the returns
were randomized so as to produce essentially symmetrical distributions representa-
tive of the various upper and lower distributional tails. The resulting ‘lower tail data
sets’ consisted, on average, of fewer observations than the corresponding ‘upper
tail data sets’; these sample sizes are shown in Table 1. Although we note this
disparity, we do not take it further into account below.

Because interest focussed on tails of the distributions, we applied our wavelet
procedures only to selected segments of the empirical characteristic functions near
the origin. (Although the distributions resulting here will not be exactly stable,
it is expected that useful estimates will result in view of analytical connections
between the decay of density in the tails and behaviour of the cf around the origin.)
The resulting estimates for α using cf supports [−a, a] with a = 0.5, 1.0, and 2.0

Table 1 Sample sizes for the S&P500 data sets

S&P500 data Positive values Negative values

1950–1959 1,407 1,119
1960–1969 1,320 1,139
1970–1979 1,277 1,230
1980–1989 1,334 1,187
1990–1999 1,354 1,171
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Table 2 Stability index α estimates for the S&P500 data sets

S&P500 Data Koutrouvelis McCulloch Wavelets 0.5 Wavelets 1.0 Wavelets 2.0

1950–1959 pos 1.8748 1.8559 1.8882 1.8502 1.8454
1950–1959 neg 1.7025 1.5641 1.8041 1.6743 1.6368
1960–1969 pos 1.7632 1.7956 1.7493 1.7416 1.7422
1960–1969 neg 1.6765 1.5060 1.7878 1.6570 1.6096
1970–1979 pos 1.7750 1.5962 1.8307 1.7408 1.7122
1970–1979 neg 1.8788 1.6785 1.9383 1.8602 1.8538
1980–1989 pos 1.7930 1.6110 1.8776 1.7873 1.7465
1980–1989 neg 1.7337 1.5566 1.7728 1.7140 1.6713
1990–1999 pos 1.7911 1.5798 1.8609 1.7720 1.7420
1990–1999 neg 1.6152 1.4477 1.8185 1.6392 1.5652

are given in Table 2. The cf scaling was based on first standardizing the returns
by dividing by their interquartile ranges; we remark that (with this scaling) the
ecf functions appeared to follow the cfs for stable distributions very closely up to
approximately t = ±1.5 only. The estimates shown in Table 2 are each based on
64 sample points and 64 wavelet coefficients using the Haar wavelet. As a general
rule, it may be seen that the stability index estimates tend to be somewhat higher
when smaller cf supports are used; the consistency of this variation in the estimates
is indicative of the fact that stable distributions provide only an approximate fit to
this data. (Similar effects were also noted in the estimates of scale, but to conserve
space these results are not included here.) In terms of discernible patterns of varia-
tion, the decade 1970–1979 stands out, both for having a disproportionately equal
number of up versus down market days (compared to the other four decades), as
well as for having a higher index for the down versus the up days. This stands in
contrast to the clear separations between stability indices in the four other decades,
where the up days correspond to higher index values than the down days. (In fact
the 1970–1979 decade was also the worst in terms of the overall performance of
the S&P500 index.)

6 Discussion

Our purpose, in this paper, was to demonstrate that wavelet-based methods (which
hitherto have been used primarily for nonparametric applications) can also be used
effectively in certain parametric problems. We have done this by showing how
wavelets can be used to obtain estimates of the parameters of the stable laws, and
we have seen that wavelet-based methods in this context lead to procedures which
are highly efficient, robust, and also competitive with other ad hoc methods that
have been devised for this family. There remain substantial avenues for further
research.

We have seen that the computational considerations in using wavelets are, in
principle, straightforward as well as interesting numerically. A key advantage of
wavelet transformation is the manner in which it disbalances data into new ‘views’
and renders correlation matrices into more quasi-diagonal structure. It appears that
wavelet transformation also often results in rearrangement of Fisher information
into patterns of more parsimonious concentration. This allows, for example, to
carry out inference using reduced numbers of coefficients with less efficiency loss,
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to reduce ill-posedness of regression-based methods, and may sometimes even
allow us to replace generalized least squares by ordinary least squares. In fact it
was often found that little statistical efficiency was lost when only small subsets of
wavelet coefficients were used (relative to using all coefficients). Further, ad hoc
selection of which coefficients to use in such procedures can often be made in an
intuitively more straightforward way using wavelets.

We have also argued that either a wavelet basis or its ‘dual’consisting of its Fou-
rier transforms can be used to specify the ‘moments’ for a generalized regression
estimation procedure. While it seems fair to expect that which of these is used will
result in different numerical and statistical properties, the two approaches are not
equally simple to implement. In particular the computation of empirical wavelet
coefficients seems to be most easily carried out by applying wavelet transformation
to the empirical characteristic function (unless there is a closed form for the Fourier
transform of the wavelet function). Numerically, only one of these approaches has
been investigated here. An interesting question is whether an efficient algorithm
(such as a pyramid-type algorithm) can be devised for evaluating inner products
relative to such Fourier dual bases.

Finally we remark that continued efforts seem warranted to implement reliable
MLE algorithms across multiple platforms for estimating the parameters of the
stable laws (in both symmetric as well as nonsymmetric cases), especially algo-
rithms that perform reliably for small values of αwhere MLE procedures have been
notoriously difficult to implement. We also found it interesting to observe that the
procedure of Koutrouvelis (1980), while not fully efficient, performed resiliently
across a wide spectrum of parameter values.
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par méthode d’ondelettes. Comptes Rendus de l’Academie Sciences, Paris A, 315, 211–216.
Koutrouvelis, I. A. (1980). Regression-type estimation of the parameters of stable laws. Journal

of American Statistical Association, 75, 918–928.
Koutrouvelis, I. A. (1981). An iterative procedure for the estimation of the parameters of the

stable law. Communications in Statistics Part B–Simulation and Computation, 10, 17–28.
Lukacs, E. (1970). Characteristic functions. Connecticut: Hafner.
Mallat, S. G. (1989). A theory for multiresolution signal decomposition: the wavelet representa-

tion. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 674–693.
Mallat, S. G. (1998). A wavelet tour of signal processing. San Diego: Academic.



Wavelet-based estimation for univariate stable laws 807

Mandelbrot, B. B. (1963). The variation of certain speculative prices. Journal of Business, 36,
394–419

Mandelbrot, B. B. (1972). The variation of certain speculative prices. Journal of Business, 45,
542–543

McCulloch, J. H. (1986) Simple consistent estimators of stable distribution parameters. Commu-
nications in Statistics Part B—Simulation and Computation, 15, 1109–1136.

McCulloch, J. H. (1998) Linear regression with stable disturbances. In: R. Adler, R. E. Feldman,
M. S. Taqqu, (Eds.), A practical guide to heavy tails: Statistical techniques and applications
(pp. 359–376). Boston: Birkhäuser.
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