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Abstract

Chemical transmission between neurons occurs by the release of neurotransmitter packaged within vesicles of the presynaptic
neuron onto a postsynaptic target. The amount of transmitter contained within a vesicle is in part regulated by the size of the
vesicle. Thus, it is of general interest to quantify the dimension of vesicles in understanding the basic principles of chemical
synaptic transmission. These vesicles can only be measured by electron microscopic techniques. Obtaining the true dimensions of
synaptic structures is therefore complicated by stereological considerations. In this study, we suggest improved methods for
determining the distributions (and mean sizes) for populations of vesicle diameters by mathematical processes involving (1) an
implicit inversion of the empirical data distribution, (2) an explicit inversion approach, and (3) an approach based on substituting
the empirical distribution into the inversion formula and then isotonizing using an iterated convex minorant algorithm. These
procedures provide distributions that better represent the true population distributions (and means) for comparisons with other
data sets of vesicle diameter measures. © 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Characterizing structural entities of synapses, which
mediate communication between nerve cells and their
targets is important for defining the limits of cellular
interactions. Synaptic vesicles within nerve terminals
package and store neurotransmitter substances and
when released during exocytosis, cause a reaction in the
receiving (postsynaptic) cells. Synaptic vesicles are con-
centrated within the presynaptic nerve terminal and
release their contents when there is an intracellular rise
of calcium ions (Ca2+) in the nerve terminal due to
electrical depolarization. The amount of neurotransmit-
ter stored and released by a vesicle is one of the factors
that influences the size of the postsynaptic response

(Zhang et al., 1998). Thus, changes in the size of
synaptic vesicles through genetic or physiological alter-
ations have important implications for neuronal signal-
ing. For example, stimulation in the hippocampus of
rats to induce long-term potentiation induced depletion
of transmitter and a reduction in the observable vesicle
diameters within the presynaptic terminals. The reduc-
tion in vesicle size was reversible when physiological
recovery resumed (Petukhov and Popov, 1986). Also, in
Drosophila, recent studies of mutants have shown that
quantal size is related to vesicle size. Examples include
the shibire mutation, in which the vesicles become in-
creased in size (van de Goor et al., 1995; Zhang et al.,
1998). Increasingly, genetic mutations which effect
synaptic function are being studied in Drosophila, and
the relationship between synaptic structure and func-
tion requires precise assessment of synaptic structures
and matching dimensions of synaptic vesicles (Atwood
and Cooper, 1995; Cooper et al., 1995a,b, 1996; Propst
and Ko, 1987; Wong et al., 1999).
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In order to assess such structure–function relation-
ships, careful measure of synaptic vesicles and the
limitations of this measurement need to be addressed.
However, measurement of vesicular dimensions is par-
ticularly problematic because of their small size; they
can only be visualized for measurement in micrographs
obtained by electron microscopy. Specimens of nerve
terminals optimal for conventional electron microscopy
are obtained when the tissue is sectioned in the range of
50–100 nm in thickness. Vesicles are sectioned in a
random orientation; some vesicles are transected at
various planes, while others reside within the section
and between the sectioning planes, depending on the
section thickness and vesicle dimensions. Determination
of the spherical diameters offers stereological problems
that need to be addressed in order to characterize the
dimensions of the vesicles and the population of diame-
ter measurements for comparative purposes. The mea-
surement problem of spherical vesicles occurs when
vesicles are sectioned at the caps, producing various
sized projected circular images. When the center of the
spherical vesicle resides within the section, the true
diameter of the sphere will be observed in the projected
image. The projection of the varying sized caps (when
the center of the spherical vesicle lies outside the sec-
tion) and the complete vesicles from 3-D space on to
the 2-D viewing plane will result in observed circles of
various diameters. Theoretically, the smallest of the
vesicle caps should also be observable, but in practice
this is not the case. So the observable data is degraded
in at least two ways and does not represent the true
distribution of the randomly sectioned vesicles.

Most investigators report the mean diameter of mea-
sured vesicles from electron micrographs, but if the
distribution is made up of multiple sized vesicles with
varying amounts in the sample, a ‘mean’ value repre-
sents a mixed population and includes the diameters of
the ‘caps’ (degraded data). In order to better represent
a mean for such distributions we make use of a mathe-
matical approach that corrects for the biases in the
diameters of the distribution. This study illustrates that
obtaining a mean value from the measurable diameters
within a combined distribution does not yield the true
diameter of the actual vesicles in the sample, since
fragments of the vesicles distort the distribution and
because populations of vesicles with different mean
sizes may be present. By correcting the distortion of the
observed distribution of measurable vesicle diameters, a
closer approximation of the true distribution is
achieved.

2. Methods

We used electron micrographs of synapses obtained
from the abdominal slow flexor muscle in the crayfish,

Procambarus clarkii, supplied by Atchafalaya Biological
Supply Co. (Raceland, LA). Preparations were dis-
sected in a modified Van Harreveld’s crayfish solution
(Wojtowicz and Atwood, 1984). Procedures for pro-
cessing for electron microscopy are described by
Jahromi and Atwood (1974). Sections were collected on
Formvar-coated slotted grids. A log of each serial
section was kept and the thickness was determined by
interference colors of the sections while they were float-
ing on the surface of water after sectioning. Most
sections were consistently cut at 75 nm. The sections
were viewed and photographed on an electron micro-
scope at a magnification of 20 600× followed by print-
ing at a magnification of 7× . Fig. 1 is an electron
micrograph of a motor nerve terminal which illustrates
the clear core vesicles that contain neurotransmitters
and from which higher magnifications were obtained.
Calibrations were made by the use of calibrated elec-

Fig. 1. An electron micrograph of a motor nerve terminal illustrating
the clear core vesicles (arrow heads) which contain neurotransmitter.
The presynaptic terminal of the excitor axon (Pre + ) and an
inhibitor axon (− ) are shown. Only vesicles in the excitor are used in
this study since they are spherical in shape as compared to oval
vesicles contained in the inhibitor. The darkened pre- and post-synap-
tic membrane defines the synaptic site (arrows define the borders) in
which these vesicles fuse during synaptic transmission. Scale bar is
250 nm.



A. Feuer6erger et al. / Journal of Neuroscience Methods 103 (2000) 181–190 183

tron microscopic grids for each magnification setting.
Measurements of synaptic vesicle diameters were made
by a single individual with the use of an eye microme-
ter. The outermost thickness of the vesicle membrane
was taken as its diameter. To determine if the vesicles
were of a uniform diameter, perpendicular measures
were made across the projected vesicle image. The
projected circles taken for this study were generally
equidimensional. There were 933 data points collected
in this study.

3. Results

The mathematical background for the stereological
problems considered here are based on the assumption
that spheres (neglecting the possibility of overlapping)
are homogeneously distributed in three-dimensional
space, and that observations are taken within a given
random ‘slice’ through this space, defined by means of
two parallel planes of distance 2m apart. We let f(·)
denote the true density function for the radii of the
spheres in three-dimensional space, and g(·) denote the
density function of the radii of the (orthogonally pro-
jected) circles observed within the slice. In order to
deduce the relationship between f and g, it is useful to
introduce the auxiliary density function p(·) for the
radii of those spheres that intersect with our ‘slice’. It is
then easily argued that p(x) must be proportional to
(2m+2x)f(x), corresponding to the fact that larger
spheres are disproportionately more likely to be inter-
sected by the slice. We can refer to this as ‘length-plus-
thickness-biased sampling’, in analogy with the term
‘length-biased sampling’ as used, for example, in Vardi
(1982). Next, if X=x is a given observation from p(·),
and Y is the ‘corresponding observation’ from g(·), then
simple geometrical reasoning shows that Y=x with
probability 2m/(2m+2x) — corresponding to the case
that the center of the sphere falls inside the slice — and
Y=xZ with probability 2x/(2m+2x), where Z= +

1−U2 and U has the uniform distribution on [0, 1]
and is independent of X — this latter corresponding to
the case that the center of the intersected sphere falls
outside of the slice. Based on these two facts alone,
standard probability calculations can now be used to
obtain the following well-known relationship which
gives g as a function of f :

(m+m)g(y)=mf(y)+y
&�

y

f(x)


x2−y2
dx (1)

where

m=
&�

0

xf(x) dx

is the mean radius of the spheres in three-dimensional
space. Further discussion of this stereological problem

Fig. 2. Plot of Mills Ratio function u(x) on the interval [0, 10].

may be found, for example, in Baddeley et al. (1986),
Coleman (1979), Cruz-Orive and Weibel (1990),
Feuerverger and Hall (2000), Hall and Smith (1988),
Mecke and Stoyan (1980), Stoyan et al. (1987), Under-
wood (1970), and Weibel (1980).

Eq. (1) may be inverted. For example, Jakeman
(1984) obtained the inversion formula

f(x)= −
'2

p
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m
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u
�
2p(y2−x2)

2m

�
g(y) dy

(2)

where

u(x)=ex2/2 &�
x

e− t2/2 dt

is the so-called Mills ratio. (This function, which is a
simple transformation of the well-known error func-
tion, is the ratio of the probability of exceeding x to the
density function at x for a standard Gaussian random
variable.) We note that on [0, �) the function u(·) is
convex, strictly decreasing, takes on the value u(0)=

p/2 at the origin, and has tails described by the
well-known asymptotic (as x��) expansion

u(x)�
1
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A plot of the function u(x) is shown in Fig. 2. Eq. (2)
leads directly to two alternative forms, the first of
which,

m
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is based on densities (here dy is the differential in the
variable y) and the second of which

F(x)=1−
'2

p
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m
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�
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�
dG(y)

(5)

is based on the corresponding cumulative distribution
functions. In deriving Eq. (4), we used the easily ver-
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ified fact that the derivative u % of Mills ratio satisfies
u %(x)=x u(x)−1. Note that the term x/y appearing in
the integrand of Eq. (4) is bounded above by unity
there, and therefore will not cause any numerical
difficulties. Alternative, but equivalent, inversion for-
mulae have also been given by Bach (1967, 1976),
Goldsmith (1967), and others.

In practice we usually do not wish to make assump-
tions about the functional form of the density f(·); we
wish to let the data ‘speak for itself’ and therefore to
carry out the analysis ‘non-parametrically’. However in
actual electron microscopy experimentation there oc-
curs the inevitable phenomenon of data degradation in
the vicinity of the smaller observations so that the
smaller observations are either not recorded, or are
only recorded incompletely. It is essential to appreciate
that there cannot be any fully satisfactory method to
altogether eliminate this difficulty from a non-paramet-
ric analysis since we have, in effect, no data at all
concerning spheres whose radii fall within this small-
radii zone. Hence, in particular, there cannot be a
resolution of this problem possessing demonstrable
statistical optimality properties such as consistency or
efficiency in the non-parametric context. Interestingly,
however, the equations that link the 2-D and 3-D
densities together are seen to each have the following
remarkable property: except for the presence of the
unknown constant quantity m which appears in the
multiplicative proportionality factors, the value of the
density function at any particular point depends on the
value of the other density function only at that point
and at the points above that point (and not on any of
the points below that point). This holds true regardless
of which direction one goes in — whether from f to g
or from g to f. As a consequence, it fortunately is
possible to consistently estimate the shape of the 3-D
density function f(x) above that point xo (say) below
which the degradation phenomenon starts to occur; the
only error resulting there (so far as consistency of the
procedure is concerned) will be in the normalization
constant, since it involves the true 3-D mean m which
cannot be consistently estimated due to the absence of
small-radius measurements. We can however consis-
tently estimate the mean radius (in both the 2-D and
the 3-D contexts) conditionally upon their lying above
the degradation boundary.

Eqs. (2)–(5), although precise mathematically, are
not statistically stable and therefore cannot be applied
directly by using data-analogues in place of the un-
known quantities involved. Our focus in this article is
on three different and new approaches to this numerical
and statistical inversion problem. These methods were
applied to our data set obtained from thin sections of
the neuromuscular junctions of the abdominal flexor in
the crayfish. Data were pooled from five different sec-
tions of the same tissue which consisted of 933 observa-

tions of visible vesicle profiles; section thickness was
2m=75 nm. The minimum and maximum of these
observations on radii were 11.6 and 33.35 nm, respec-
tively, and the mean is 20.39 nm. A histogram for this
(uncorrected) data set is given in Fig. 3.

The first of these new methods is the so-called im-
plicit in6ersion approach whose definition was first
given, and theoretical properties investigated, in
Feuerverger and Hall (2000) where further details are
given. To describe this method, suppose that we wish to
estimate the unknown true density f by means of a
histogram density estimator f( , having a bin-width h say.
(Such an estimator is defined as just being a density
function which is constant on each of the intervals (0,
h), (h, 2h), (2h, 3h), and so on.) Now one desiratum
would be to select f( to be that histogram (of bin-width
h) which is closest to f in the sense of minimizing the
least-squares criterion function

g(f( , f)
&

(f( − f)2=
&

f( 2−2
&

f( f+&
f 2 (6)

Following now a standard statistical argument, since
the last term on the far right is independent of f( , it may
be omitted from the minimization problem. On the
other hand the first term there does not depend on the
unknown f and so is readily computable. The integral
at the middle, however, is in effect just the expectation
Ef( (X) where X is distributed according to the f density.
However due to the nice linear nature of Eq. (4), the
expectation Ef( (X) can be converted (on substitution,
and by means of a simple calculation involving a
change in the order of integration) to an expectation of
the form Eb(Y) where the random variable Y is dis-
tributed according to density function g. In fact, the
function b turns out to be given by

b(y)=
m+m

m

!
f( (y)

−
'2

p

& y

0

f( (x) dx u
�
2p(y2−x2)

2m

�"

Fig. 3. A histogram of the raw (uncorrected) data set; sample size is
n=933; section thickness is 75 nm. The data are radii of synapses
from the abdominal slow flexor muscle in the crayfish Procambarus
clarkii.
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Fig. 4. A superposition of two histograms using the data of Fig. 2.
The left-most bar of each bin corresponds to the raw (uncorrected)
data, while the right-most bar corresponds to the (corrected) his-
togram as estimated by the ‘implicit’ inversion procedure described in
the text.

be seen that the correction procedure has the effect of
shifting mass upwards. Thus in the lowest bins [(10,
12.5) and (12.5, 15)] no mass is assigned to the cor-
rected histogram, while in the (15−17.5) bin, the mass
in the corrected histogram is less than for the raw data.
On the other hand, the next four bins all show in-
creased mass assigned by the corrected estimator. For
this data set, the corrected histogram turns out not to
assign any noticeable mass to the top two bins — a
consequence of the very low mass located within those
bins, together with the vagaries of the mean squared
error criterion on which the procedure is based.

The method described and implemented above is
implicit in the sense that the optimality measure of the
estimate f( has been ‘referred back’ by means of the
criterion function (Eq. (6)) to the ‘inverse space’ of the
spheres rather than to the ‘direct space’ of the circles.
An explicit approach, described for example in
Feuerverger and Hall (2000), may be based on Eq. (4)
by simply replacing g there by a ‘kernel density
estimator’

ĝ(y)=
1
nh

%
n

i=1

K
�y−Yi

h
�

where K is an appropriate ‘kernel function’ and h is a
‘bandwidth’, and by carrying out the integration nu-
merically. We applied this procedure to our data using
the standard Gaussian kernel function K(x)= (2p)−1/2

exp(−x2/2) and bandwidth parameter h=1 nm. Fig. 5
shows a superposition of the resulting kernel density
estimator ĝ for the raw data (dotted line) and the
density estimator obtained in this way via Eq. (4) for f
(solid line). Since the estimator ĝ does not technically
lie in the function space of possible 2-D distributions
for this problem, the estimated f is seen to take on some
negative values (at the lower range). This effect is
exacerbated by the low-radius ‘data-degradation’ phe-
nomenon discussed earlier. Nevertheless, it is seen that
the correction procedure is shifting density mass up-
wards, and as we have discussed, the ‘shape’ of f is
being estimated correctly above the point below which
data-degradation begins to occur.

Our third approach involves substituting the cumula-
tive distribution function G(y) in Eq. (5) by its empiri-
cal version Gn(y), where Gn(y) equals the proportion of
the observations less than or equal to y. It turns out
that it is not difficult to prove that this procedure is in
fact consistent, so that — for large sample sizes at least
— the resulting estimator for F will (at each point x)
become close to its true value. The difficulty with this
procedure in practice, however, is that the resulting
estimator of F will typically not be a non-decreasing
function, and, further, will typically fall outside of its
mandatory [0, 1] range. Some examination of the issues
here is instructive. The empirical distribution function
Gn(y) is just an average of Heavyside functions — one

so that an estimate of Ef( (X) may then be obtained as

1
n

%
n

1

b(Yi)

Substituting this estimate into Eq. (6) in the obvious
way, the solution f( of the resulting ‘estimated’ quadratic
minimization problem may now be determined using
standard quadratic programming algorithms. A for-
mula for estimating m may be obtained using an
analogous calculation, by means of which the expecta-
tion integral m=	xf(x) dx is converted into an expec-
tation integral of the form 	n(y)g(y) dy. Solving for m
in the resulting equation then leads to

m=
mE [n(Y)]


p
2 m−E [n(Y)]

(7)

where

n(y)=
& y

0

u
�
2p(y2−x2)

2m

�
dx

=y
& 1

0

u
�y
2p(1−z2)

2m

�
dz

and the estimator, m̂, is obtained from Eq. (7) by
replacing E [n(Y)] there by the sample average

n−1 %i=1
n n(Yi)

The theory and further details of this procedure are
given in Feuerverger and Hall (2000).

The implicit inversion method described above was
applied to our data set using a histogram bin width of
h=2.5 nm. The mean radius, as determined by the
method of Eq. (7) was 22.28 nm (as compared with
20.39 nm for the raw data). The resulting histogram
estimator is shown in Fig. 4. In fact, in this figure, two
histograms are shown superimposed; within each of the
bin ranges shown, the left-most bar corresponds to the
histogram value for the raw data, while the right-most
bar corresponds to the histogram value for the implicit
inversion estimator. Essentially no mass (i.e. density
mass) occurred outside of the bin ranges shown. It may
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Fig. 5. Density estimators for the data of Fig. 2. The dashed curve is the kernel density estimator for the raw data based on a standard Gaussian
kernel with bandwidth h=1; the solid curve is the explicitly inverted (corrected) density estimate described in the text.

for each datum. A typical such Heavyside function,
H(y) say, will take on the value 0 when y lies below the
datum, and the value 1 otherwise. Thus when Gn(y) is
substituted for G(y) in Eq. (5), since Gn(y) enters
linearly in this formula, the result will just be the
superposition (or average) of terms resulting from the
individual Heavyside functions. Fig. 6 shows a typical
F(x) computed using Eq. (5) using just a single datum
in place of G(y), i.e. using a Heaviside function corre-
sponding to one particular observation. It is seen that
the resulting function is not monotone increasing —
and has monotone tendency only in the roughest sense
— and even falls below 0. The location of the ‘drop’ in
this resulting function is determined by the value of the
datum.

In the case of our data, when all of these resulting
component curves are averaged, we obtain the ‘empiri-
cal estimator’ shown in Fig. 7. This cumulative distribu-
tion function estimator falls below 0 — again partially
due to the data degradation phenomenon, and it is not
strictly increasing, even (as may be seen on close inspec-
tion of the graph) in the upper ranges for radii. A
natural resolution for these problems would be to ‘iso-
tonize’ the estimator — that is, to replace the estimated
F by that function which satisfies the required
monotonicity and [0, 1] range constraints, and which is
closest to it in the distance defined by the integrated
squared difference between functions. Such an isotoniz-
ing ‘fitting’ procedure may be carried out, for example,

by means of an iterated convex minorant algorithm as
described, for example, in Robertson et al. (1988).

In fact, this is the approach that was proposed by
Groeneboom and Jongbloed (1995) and by Jongbloed
(1995, 2000) in their investigations into the ‘thin-slice’
version of the Wicksell inversion problem. (In contrast
to the thin-slice problem, note that our data derives
from a ‘thick-slice’ experiment in the sense that it
involves a slice whose thickness is comparable to the
observations themselves, and therefore cannot be re-
garded as a slice of zero thickness.) In their context,

Fig. 6. A typical cumulative distribution function estimator F ob-
tained from Eq. (5) when G there is replaced by a Heavyside function,
i.e. by an empirical cumulative distribution function based on a single
data point.
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Fig. 7. Empirical estimator of F obtained from Eq. (5) when G there is replaced by the empirical distribution function of the raw data used in
Fig. 2.

Groeneboom and Jongbloed prove not only the point-
wise consistency of the raw estimator, but also the
uniform consistency of their isotonizing procedure.
They also prove, by detailed calculations, the very
remarkable result that the mean squared error of
their isotonized estimator is exactly one half that
of the raw estimator. In our present ‘thick-slice’ con-
text, the raw estimator (as in Fig. 7) is itself
already uniformly consistent (unlike the thin-slice case)
and it is clear that the isotonized version will also result
in gains in efficiency. We implemented the isotonizing
step using a convex minorant algorithm for our data
and obtained the estimator shown in Fig. 8. Finally,
Fig. 9 gives the histogram estimator obtained directly
from the isotonized distribution function estimator of
Fig. 8. In Fig. 9 we have again superimposed
the raw histogram estimator as the left-most bar in each
of the bins. It is seen that this estimator deletes the
density mass in the first two bins and substantially
reduces the mass in the third bin. In all higher bins,
mass is added.

The computations described in this section were car-
ried out using the S-Plus statistical computing package;
see for example, Becker et al. (1988). The quadratic
programming module used was ‘quadprog’ and the
iterated convex minorant module used was ‘monsmo’
— both available from the Carnegie Melon University
‘statlib’ website.

4. Discussion

The amount of transmitter contained within a vesicle
is one of the key factors which determines the degree of
transmission from one cell to another. The amount of
neurotransmitter in a vesicle is believed to be related to
the size of the vesicle (Zhang et al., 1998). Due to the
small sizes of synaptic vesicles (40–60 nm diameters) at
the crayfish NMJ, electron microscopic techniques
provide the only approach to image the vesicle dimen-
sions. Obtaining the true dimensions of synaptic struc-
tures is complicated by stereological considerations of
obtaining sections of an object in 3-D space and ob-
serving the projected image on a 2-D plane (Atwood
and Cooper, 1996).

The distribution in the occurrences of the projected
diameters used in this study revealed two obvious fea-
tures: (1) the population is not made up of vesicles of
uniform diameter, since there is a right-hand shoulder
of the distribution; and (2) there is degradation in the
data set on the left-hand side of the distribution be-
cause of the limits of resolution. In this study, we chose
to focus on determining a method to better determine a
mean size and distribution of the population of vesicle
diameters associated with measurements obtained from
photomicrographs of electron microscopic images. In
doing so, three mathematical processes were utilized, an
implicit inversion of the data set; an explicit approach;
and substitution of a cumulative distribution function



A. Feuer6erger et al. / Journal of Neuroscience Methods 103 (2000) 181–190188

Fig. 8. Isotonized version of the estimator shown in Fig. 6 obtained by applying a convex minorant algorithm.

for the empirical distribution together with isotoniza-
tion. These procedures provided distributions of the
measurable data set that more correctly represent the
true data set within the population, and thus provide an
ability to calculate an improved estimate of the mean of
the true distribution for comparisons to other data sets
of vesicle diameter measures.

Estimating the 3-D dimensions of non-spherical
structures from series of 2-D images has received atten-
tion over the years (DeGroot and Bierman, 1982; Gun-
dersen and Jensen, 1983; Atwood and Cooper, 1996).
Even to estimate the dimensions of ellipsoids of near-
spherical shape is not a trivial matter (Cruz-Orive,
1980). The determination of spherical diameters is a
simpler problem but still complex if the spherical popu-
lations are not homogeneous in diameter (Cruz-Orive,
1980; Clark and Moore, 1983).

Some of the variables that have an effect in determin-
ing the 3-D dimensions of vesicles from 2-D distribu-
tions of observed vesicle diameters are: (1) the thickness
of the sections; (2) the degree of electron density of the
vesicle membrane; (3) the uniformity in the dimensions
of the vesicles; and (4) the dimensions of the vesicle in
relation to the section thickness. Stereological correc-
tions of the nature proposed here will clearly be partic-
ularly important when comparing data sets derived
under different section thicknesses and/or under differ-
ent underlying population distributions.

Various fixation procedures of aldehydes and solu-
tions of differing osmolarity have been shown to alter

the observed synaptic vesicle profile distributions (Fox,
1988). In standard fixation procedures of crustacean
motor nerve terminals, the vesicles of excitatory nerve
terminals are more equidimensional than vesicles from
inhibitory terminals (Uchizono, 1967; Atwood and
Morin, 1970; Komuro, 1981), but with freeze-substitu-
tion fixation procedures, the difference in shape is not
observed (Nakajima and Reese, 1983; Atwood and Tse,
1993). Thus, freeze-substitution fixation may give the
most reliable preservation of the vesicles’ true dimen-
sions if future studies are to be made in this area.
Additionally, Fox (1988) showed that the largest error
in determining vesicle profile distributions resulted from
reader bias by various people sampling the same set of
data. In our case, the same individual measured all the
data sets. By taking various-sized data sets, Fox (1988)
found that 200 vesicles profiles were sufficient to obtain

Fig. 9. A superposition of two histograms: left-most bar in each bin
represents raw data as in Fig. 2, right-most bar is histogram obtained
from the isotonized estimator shown in Fig. 7.
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Table 1
Means and medians of the data (radii) before and after analysis

Estimator % DifferenceMean Median

20.39 20.03Raw mean
9.27Implicit 20.2722.28
4.3221.27 20.95Isotonized

made among nerve terminals to assess intrinsic differ-
ences or differences due to experimental manipulations,
the complete distribution of projected vesicle images
should be presented. This improved measure affects the
estimate volume, since the volume is 4/3pr3, where r is
the radius. In turn it is the volume which limits the
amount of transmitter that can be packaged within the
vesicle, thus regulating the degree of the postsynaptic
response.

Acknowledgements

We thank Leo Marin for tissue processing and pho-
tomicrographs of tissue, and Brenda Crowe for pro-
gramming assistance. Funded by NSERC-Canada (A.
Feuerverger), NSF grant IBN-9808631 (R.L. Cooper)
and MRC-Canada (H.L. Atwood).

References

Atwood HL, Cooper RL. Functional and structural parallels in
crustaceans and Drosophila neuromuscular systems. Am Zool
1995;35:556–65.

Atwood HL, Cooper RL. Assessing ultrastructure of crustacean and
insect neuromuscular junctions. J Neurosci Methods 1996;69:51–
8.

Atwood HL, Morin WA. Neuromuscular and axoaxonal synapses of
the crayfish opener muscle. J Ultrastruct Res 1970;32:351–69.

Atwood HL, Tse FW. Physiological aspects of presynaptic inhibition.
Adv Neur Sci 1993;1:19–65.
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advisable, note that in the present study we do not deal
with issues arising out of reader bias or out of use of
multiple tissue samples which, of course, require addi-
tional statistical tools (e.g. Fox, 1988).
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mined three ways: (1) using the raw data, (2) as deter-
mined by our ‘implicit’ approach, and (3) as determined
by our isotonizing procedure. The mean values for the
observed distribution is seen to be smaller than that of
the isotonized distribution by 4.32% and of the implicit
estimation procedure by 9.27%. Theory for determining
S.E. for the means estimated via the implicit and iso-
tonizing procedures has not yet been developed, but
these could be estimated via the computer-intensive
‘jack-knife’ method. However a rough indication of the
S.E. of these estimators is given by the S.E. of the raw
mean radius as determined by the usual formula S/
n,
where S is the sample S.D., and n is the sample size —
this value is 0.109, or 0.53% of the raw mean value.
Note, however, that this measure of accuracy makes no
allowance for the effects of data degradation at small
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