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In this paper, the authors propose saddlepoint approximation methods for fast and
accurate computation of value-at-risk in large complex portfolios. The method is
applicable to portfolios whose value may be estimated by means of a “’delta_gamma”
approximation based on a large number of underlying risk factors whose random
vector of returns has a known multivariate normal distribution for the time period
under consideration. This method is not subject to the statistical uncertainty and
computational expense of the Monte Carlo method. Some extensions of the method
to higher-order portfolio approximations and to nonnormal risk factors are also given.

1. INTRODUCTION

The accurate determination of value-at-risk (VaR) is an important problem in
modern financial applications. Current practice in this area, together with much
relevant background material, is summarized, for example, in the RiskMetrics
Technical Document (JP Morgan 1996) and by Jorion (1997). For realistic
nonlinear portfolios, such work is often carried out using Monte Carlo trials.
However, such computations can be very time and resource consuming.
Furthermore, the accuracy of the method is usually limited to order 1/4/n in
the number n of trials performed.

In this paper, we develop a method for carrying out such computations more
accurately and more quickly, without the need to rely upon Monte Carlo trials.
Our method is based on analytical formulas derived from the moment
generating function which allow us to produce very accurate estimates of
VaR. Specifically, the method involves reducing delta—gamma approximations
to appropriate quadratic forms to which highly accurate methods of saddlepoint
approximation can be applied.

The technical problem is introduced in Section 2 below, while our main
analysis is carried out in Section 3. Section 4 details the particulars of the
saddlepoint method. The speed and accuracy of the proposed method on high-
dimensional problems is demonstrated by numerical examples in Section 5.
Finally, various extensions of our methods are indicated in Section 6,
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particularly extensions for including higher-order terms and for dealing with
non-Gaussian risk factors. Some technical derivations are relegated to the
Appendix.

Previous work on “‘analytical” methods for eliminating Monte Carlo trials in
VaR work (using delta—gamma portfolio approximations) has been based on
Fourier inversion methods.! Important contributions in this regard include
those of Cardenas et al. (1997), Rouvinez (1997), Mina and Ulmer (1999), and
Duffie and Pan (1999). In particular, Duffie and Pan extend the Fourier method
to include both jumps and credit risk. See also Arvanitis ez al. (1998), as well as
references within the cited papers.” Remarks comparing Fourier and saddlepoint
approximation methods for computing VaR are given in Section 6.

2. THE TECHNICAL PROBLEM

The technical problem we consider can be described as follows. Let
X =[X,,...,X;]" be a random column vector representing the returns, over
the single period of time considered, for the k underlying risk factors on the
basis of which our portfolio is valued. In cases of interest, k may be quite large
(e.g., k = 500, or more). It is assumed (initially) that, over the single time period
in question, X has a multivariate normal distribution with zero mean vector
(since the time interval is typically small) and variance—covariance matrix X:

X ~ N0, 2). M

The matrix ¥ is constant (in the given time period) and considered to be known.
(Estimation of such covariance matrices is described in the RiskMetrics
Technical Document and may involve GARCH and related methods.)

A large complex portfolio, possibly containing derivative securities, has a
random return g(X) (over the same time period) given by some function g(-).
The function g(-) is determined by the holdings in the portfolio, and is a
function of the returns on the individual assets in the portfolio. The returns on
the individual assets are each considered to be known functions of X. Some of
these will be simple linear functions, as, for example, when the portfolio has
direct holdings in one or more of the k underlying risk factors. Others can be
more complex; for example, when derivative securities are held in the portfolio,
they may be nonlinear functions of X based on formulas such as the Black—
Scholes formula. The function ¢g( - ) is, however, considered to be known. As an
example, and to help fix ideas, if the portfolio only contains direct holdings in
the k “risk-factor assets’ (whose vector of returns is given by X) and if a is the
column vector giving the dollar amounts invested in these various assets, then

! Other approaches that have been tried include Cornish—Fisher expansion and matching moments
using the Johnson family of distributions. Of these, the first often lacks accuracy, while the second is
not, in general, consistent. See, for example, Pichler and Selitsch (2000), Mina and Ulmer (1999),
and references therein.

% The website www.GloriaMundi.org also refers to much current literature related to VaR.
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we will have a linear return g(X) =a'X for this portfolio. This case may be
treated by elementary methods.

The more general problem of interest is this: given the known multivariate
normal distribution for the returns X, and the known (but not necessarily
linear) return function g(-) for the portfolio, determine the lower ath quantile
of the distribution of ¢g(X). This quantile (often with @ = 0.05 or 0.01) is
known as as the value-at-risk (VaR) and may be related to regulatory
requirements’® regarding reserve funding requirements. One approach to this
problem is to sample X from N*(0, ) a large number of times, typically using
a Cholesky decomposition of ¥, and to estimate the VaR from the oth
quantile of the empirically obtained distribution for g(X). This Monte Carlo
approach is theoretically unbiased, but suffers in practice from several draw-
backs. For instance, it can be difficult to carry out the Gaussian sampling when
k is large, since the matrix ¥ needs first to be Cholesky factored (or a square
root found by alternate means), and sampling from N*(0, £) then requires
repeated k-dimensional matrix—vector multiplications. Further, repetitive eva-
luations of complex g functions are themselves quite time consuming. Another
drawback of Monte Carlo methods is that the resulting VaR estimate will itself
vary between one “‘experiment’ and the next, i.e., the final answer differs with
every set of trials, especially when the number of trials is small. Last, but not
least, the number of Monte Carlo trials required for estimating the ath quantile
accurately, especially when « is small, can be surprisingly large. To illustrate
this last point, Figure 1 shows four histograms which give lower o = 5% and
lower @ = 1% sample percentiles obtained from Monte Carlo samples of sizes
n =200 and n = 1000, respectively, taken directly from a standard normal
distribution. (The histograms shown are each based on 2500 such simulations.)
The true values for these percentiles, —1.645 and —2.326, respectively, are
shown on the plots by a vertical line. These histograms can be interpreted as
the sampling distribution for VaR estimates in the case of a simple portfolio
that consists of a single asset having standard Gaussian return. Even in the best
of these cases, namely for trials of size n = 1000 and the percentile o = 5%,
the VaR measures obtained are quite variable, and themselves have a 95%
spread range of (—1.72, —1.57); when translated to a typical portfolio, the
dollar amount of this Monte Carlo “error” will be quite large.

Evidently, the Monte Carlo approach for determining population percentiles
is subject to considerable sampling variability.* To assure a VaR figure having a
standard error of 0.01 in the present case would require a Monte Carlo sample
of approximately 45000 trials. The problem is even worse if the portfolio is a
nonlinear function of the underlying assets, as each iteration involves a
complicated function evaluation.

Monte Carlo computations for VaR can be speeded up to some extent, e.g.,
by using a simplifying approximation to the function g. Common among these

3 Such as those imposed by the Basle Committee on Banking Supervision.

4 See Jorion (1996) for a further discussion of this point.
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FIGURE 1. Histograms for 2500 lower 5% and lower 1% sample percentiles based on
standard normal samples of size n = 200 and n = 1000.

is the so-called delta—gamma approximation. This involves first making Taylor
series approximations for the value of each of the assets in the portfolio on
which ¢ is based. These component approximations are then summed over all
assets in the portfolio to obtain the Taylor approximation for the overall
portfolio. Since the components of X (as well as the higher terms of the Taylor
approximation) are typically small, keeping only the linear and quadratic terms
often yields a sufficiently precise approximation for the overall g function. For
historical reasons, the linear terms are called deltas, while the quadratic terms
are called gammas; the second-order Taylor expansion is known as a delta—
gamma approximation. (When still higher-order terms are used, they too are
labeled as “greeks’”.) Nevertheless, even when using a delta—gamma approxima-
tion in place of g, the Monte Carlo approach can still be computationally
demanding in portfolios which are large and based on many underlying assets.

3. SOME ANALYSIS FOR DELTA-GAMMA PORTFOLIOS

Let X =[X,,..., X;]" be the vector of returns over one time period for our risk
factors, and let g(X) be the return for the portfolio of interest over that period. It
is assumed that X follows the Gaussian distribution given in (1). A “delta—
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gamma” approximation to g(X) may then be written as’
Y=a X+ X'B X, ()

where a; is a k x 1 column vector, B; is a k x k matrix, and T denotes matrix
transposition. (Note that we do not include a factor of % with our quadratic term.)
Both a; and By, as well as the covariance X in (1), are considered to be constant
and known. The matrix B; is assumed to be symmetric; otherwise we replace it
with %(Bl + B]). For Monte Carlo simulation, X may be generated as X = HZ,
using any H such that

Y = HH', (3)

with Z;) a kx1 column vector of independent standard normals.® For
simulation, H is typically chosen to be lower triangular (the Cholesky factoriza-
tion) to minimize the computations in X = HZ;), but this is not a requirement
below. It follows that (2) can be written as

Y = GI(HZ(l)) +(HZw) BI(HZ 1)) = a3 Z;) + Z(Tl)Bzzu), 4)

where
a»=H'a, and B, = H'B,H. (5)

Here, also, B, can be assumed to be symmetric. The portfolio is permitted to
contain both long and short positions; for this and other reasons, the symmetric
matrix B, need not be nonnegative definite.” Tt will, however, have real
eigenvalues —oo < A <--- < Ay <00, and corresponding real orthonormal
right-eigenvectors Py, ..., P, which may be bound together columnwise to form
the orthogonal matrix

PZCbind(Pl,..., Pk)

In this notation, the singular-value decomposition for B, may be written as

k
By = PAP" = "1;P;P],
=1

where A = diag(Aq, ..., A;) is the diagonal matrix formed from the eigenvalues.
We next rewrite (4) as

Y=aPP Zy)+ Z{,PAP Zy=a' Z+ Z"AZ, (6)

> We are assuming here a zero-mean Gaussian distribution for X. For longer time horizons, it may
be appropriate to assume that the distribution of the risk factors is of the form X + u, with X as in
(1) and p a given vector of means. If X + x4 is used in place of X in (2), the expression is then easily
reduced to one having the same form as (2), plus a constant. The remainder of the analysis is then
essentially identical.

® Note that we will need the matrix H not only to make X independent but also for decomposition
of the gamma matrix.

7 The same assertion also holds true for Bj.
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where
a=Pay=PHa and Z=P'Z,. (7)

Note that Z=[Z,,...,Z]" also consists of independent standard normal
entries. This allows us to write (6) in the equality in distribution form

k
y< Z(a Zi+ 1,22 ®)

Here, a; are the entries of the vector P'H'a; and A ; are the eigenvalues of

H'"B,H. The moment generating function of (8) is given by

k —-1/2
My(t) = E[etY] - (l_[(l — 2/\jt)> exp< Zl 2 t) 9
j=1
= [det(/ — 2¢=B))]" P exp[ifal (27" — 2tB))'a;].  (10)

See, for example, Mathai and Provost (1992); further details are given in the
Appendix. If the maximum eigenvalue A, >0, we have the constraint
t < (x)"'; if the minimum eigenvalue A; <0, we have the constraint
t > (2x;)"". Altogether, My(t) will always be finite in an interval around the
origin; in fact, the region of finiteness will be either a finite or semi-infinite
interval, and will include the origin as an interior point.® The associated
cumulant generating function is then given by

k k
_ —_1 _ .
K(t) = log My(1) = -1 ;log(l 20t) + 4 ,21: 2 (11)
—Llogdet(1 — 2t=B)) + 1al (=" — 2tB)) ay, (12)
while its first two derivatives (which will be required below) are
k k 2 2
A ai(t —x %)
K'(t) = P+ ! ! (13)
j; 1 =25t ; (1 =21
= tr[B, (I — 2tB,X) |+ al(t= — *EB, ) — 2tB,X) 2a;  (14)
and
k 213 k a;
K'(t) = L+ ! (15)
; (1—2x;t) ;(1 -2t
=2tr(B,2)*(I — 2t£B)) > +a| (I — 2t B)) a,. (16)

Further details, together with derivations, are given in the Appendix.

8 The interval of finiteness can be large or small, but this does not affect our arguments in any way.
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4. SADDLEPOINT APPROXIMATIONS FOR DELTA-GAMMA
PORTFOLIOS

Consider first the classical problem involving identically and independently
distributed random variables Xi,..., X, drawn from a distribution whose
cumulant generating function «(t) is finite on an interval for ¢ that includes 0
in its interior. Then the saddlepoint approximation of Lugannani and Rice (1980)
for the distribution function of the sample mean X = (1/n) Y} X; is given by

PIX > ] =1— Fg(x)~1— &)+ (p(r)(’i - i) a7

where @ and ¢ are, respectively, the cumulative distribution and density
functions of a standard normal variable; an alternative approximation, due to
Barndorff-Nielsen (1986, 1991), is given by

1—F}g()2)~l—cl><r—llogl>. (18)
r u
In both cases,

r=£v2n[¢px — k(@)]* and u = Plnc’($)]"%, (19)

where the saddlepoint é is defined via the equation
K (@) = %, (20)

and the sign of r is chosen to be the same as that of q§ Other tail area
approximations are given by Daniels (1987). For further background, see also
Barndorff-Nielsen and Cox (1979, 1989) and Reid (1996). The saddlepoint
approximation® to the tail area of X is known to be extremely accurate, even for
values of n as low as 3, 2, or even 1. Furthermore, it is exact when the underlying
distribution is either normal, gamma, or inverse Gaussian. See, for example,
Daniels (1980), Hampel (1974), Feuerverger (1989), and Ronchetti and Field
(1990). This high degree of accuracy derives from the third-order error structure
of the saddlepoint approximation and, specifically, from equalities'” such as
PIX >x]=1—-®0) +onu ' =r )+ on>?.

° It is difficult to provide a simple intuitive explanation, based on (17) and (18), for the exceptional
effectiveness of saddlepoint approximations. These approximations arise from certain asymptotic
mathematical methods. Note, however, that saddlepoint approximations can sometimes be viewed
as Edgeworth expansions applied at the mean value of an exponentially tilted density. If f(x) is a
density function, an exponentially tilted version is the density e?* f(x) / ffcoo e’ f(x) dx. The parameter
0 is chosen so that the mean of the tilted density is at that value x at which the approximation is
desired; Edgeworth expansions are most accurate at the mean value. Regularity conditions, under
which saddlepoint approximation methods hold, are discussed, for example, by Barndorff-Nielsen
and Cox (1989) and Jensen (1995), and are satisfied in the instances we describe. The main
requirement is the existence of the cumulant generating function in an interval which includes the
origin in its interior.

19 See, for example, Daniels (1987), Lugannani and Rice (1980), and Barndorff-Nielsen and Cox
(1979, 1989).
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The quantity (8) in our VaR application does not involve a sample mean or
total; nevertheless, it does involve a significant degree of convolution, so that the
saddlepoint method is again applicable with a high degree of accuracy. We shall
amply demonstrate this point further below. Note, however, that because the
convolution (8) does not consist of identically distributed quantities, it is
necessary to modify the approximation formulas so that K(¢f) now plays the
role of nk(t). In this new, more relevant, notation, the saddlepoint formulas for
the tail areas of (8) continue to be given by (17) and (18), except that (19) is
replaced by

r==+v2[pi — K(@)]"* and u=¢K"@)'", 1)

while (20) becomes'!

K'(p) = *. (22)

Here, K, K, and K" are as given in (11), (13), and (15). If it is desired to
compute (17) for x in the vicinity of the distribution mean (where ¢ will be close
to zero), then r and u will both be close to zero, causing numerical problems

when evaluating
1 1
d=du,r)=——-.
u r
However, following Andrews, Fraser, and Wong (2000), and references therein,
near ¢ = 0 we may use the approximation

2
Oy —
dm,__3_|_ 3

o
6Jn " 24n (23)

where o3 and a4 are standardized cumulants;'? alternatively, we may use the
linear approximation d = a + br, with d and b fitted (near the singularity) by
simple linear regression. In the context of our K(¢) function, we use n = 1 in
(23), with a3 and a4 as standardized cumulants of K(t). Note that, at the
singularity point, (23) gives d = —a3/6.4/n, leading to the value % — a3/ 12nn
for the right-hand side of (17).

5. NUMERICAL STUDIES

Our computational methods were implemented on an SGI Challenge computer
using the S-Plus statistical software (version 5.1) (see, e.g., Becker, Chambers,
and Wilks 1988). The form (8) is an arbitrary linear combination of single
degree of freedom noncentral chi-squared variates whose coefficients need not

"' Note that the expressions (21) and (22) involve primarily a change in notation, with K(t)
replacing n«(t). Alternately, we may think of these expressions as giving the saddlepoint
approximation for the case of a sample of size n = 1, but from the convolved distribution defined
by K(1).

'2 The jth standardized cumulant «; is defined by «;/a/, where «; is the jth cumulant, and o7 is the
second cumulant, i.e., the variance.
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FIGURE 2. Exact cumulative distribution functions and their Barndorff-Nielsen, and
Lugannani and Rice saddlepoint approximations for the distribution of Z + bZ? for
b= 41,+10, with Z standard normal.

have the same sign. Owing to improvements in accuracy that result from
convolution, the worst case scenarios—for quality of the saddlepoint approx-
imations proposed here—will correspond to small values of the number & of
terms in (8). In order to study this limitation in accuracy, we examined the
worst-case scenario k = 1; specifically, we examined the quality of saddlepoint
approximations to the distribution of a single term Z + bZ> for various values
of b. Since Z+bZ> is quadratic, its exact tail probabilities are easily
determined. Typical results are given in Figure 2. In this figure, for the
indicated values of b, and, in each case, for the segment of the curve where
the approximation error is greatest, the exact cumulative distribution function
(CDF) is shown as a solid line, and superimposed upon this are the
saddlepoint approximated cumulative distribution functions for both the
Lugannani and Rice and Barndorff-Nielsen forms of the approximation, these
being shown as dashed and dotted lines, respectively. The cumulative distribu-
tion function curves in these worst-case scenarios are seen to be extremely
close, and are sometimes indistinguishable. Note also that, as b tends either to
0 or to +oo, the quantity Z + bZ> will tend, respectively, towards the normal
or chi-squared cases; however, for both of these distributions, the saddlepoint
approximation is known to be exact. Furthermore (J. L. Jensen, private
communication), since each of the third and higher cumulants of any
convolution U + V, after standardization, is less than the largest of the
corresponding cumulants of U and V, it follows that the normal approximation
at the mean-value point for U + V should (in some appropriate sense) be better
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than the worst of the normal approximations for each of U and V; con-
sequently the saddlepoint approximation for U + V should be no worse than
the worst of the saddlepoint approximations for U and V. (Well-behaved
distributions, of course, will do much better than this.) Our conclusion,
therefore, is that the saddlepoint approximation will have a very high degree
of accuracy for any portfolio for which the risk-factor returns are normally
distributed with correctly specified covariance and for which a delta—gamma
approximation is appropriate.

To demonstrate how our method performs numerically in the context of a
large complex portfolio, we randomly generated an arbitrary nonnegative
definite covariance matrix X of dimension 400 x 400; we also randomly
generated an arbitrary vector a; of length 400 and an arbitrary (nonsymmetric)
400 x 400 random matrix B;, where a; and B; correspond to the notation at (2).
This numerical complexity corresponds to a large delta—gamma portfolio
mapped onto 400 risk factors, all of which contribute nonlinearly to every
holding. For this arbitrary ‘“data”, computation of the two saddlepoint
approximated cumulative distribution functions, shown in Figure 3, took well
under one minute of computer time. The two approximations are seen to
coincide almost perfectly, and, although the exact distribution cannot be
computed in this instance, we know by the foregoing analysis that the true
curve should also be in nearly perfect coincidence with its saddlepoint approx-
imants. The required VaR values may be read off (or interpolated) from such
saddlepoint-based curves or, alternatively, may be determined very quickly by
Newton—Raphson type procedures.

1.04

0.8

e
o
1

----- Barndorff-Nielsen
Lugannani and Rice

Tail probability

N
~
L

0.2

-2 0 2 4 6
Value-at-risk (x 10°)

FIGURE 3. Barndorff-Nielsen, and Lugannani and Rice saddlepoint approximations for
a (randomly generated) large portfolio.
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FIGURE 4. Comparison of the empirically determined 1% and 5% VaR values based on
Monte Carlo trials (at various sample sizes), with the saddlepoint approximated VaR
values (shown as horizontal lines), for our (randomly generated) large portfolio.

Figure 4 is based on the same randomly generated portfolio but involves up
to 100000 Monte Carlo evaluations on this portfolio. As these simulations
evolved, we computed the empirical 1% and 5% VaR values for various
numbers of trials and plotted them. The horizontal lines (at —5.3 x 10* and
—8.8 x 104) give, respectively, the 5% and 1% VaR values as determined by the
saddlepoint method, while the dots and circles give, respectively, the correspond-
ing Monte Carlo determined VaR values at the various numbers of trials shown.
As can be seen, in the limit of large numbers of Monte Carlo simulations, the
empirically determined 5% and 1% VaR values are settling to those that were
determined by the saddlepoint method.

6. EXTENSIONS AND REMARKS

In this section, we indicate some extensions of our methods to portfolios with
more severe nonlinearities, and to non-Gaussian risk factors. We also comment
on connections between the saddlepoint and Fourier methods.

6.1 Higher-Order Effects

For a portfolio with nonlinearities that cannot be adequately described by
quadratic approximation, one possibility might be to divide it into two
subportfolios, the first of which may adequately be regarded as quadratic, and
the second of which is dealt with using Monte Carlo or other methods. The two
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resulting returns distributions (together with some assessment of their depend-
ence) could then be “convolved” using ad hoc methods to obtain an approx-
imate VaR estimate for the overall distribution. A more rigorous approach can
be based on splitting the portfolio return function into two parts:

9(X) = g1(X) + 92(X), 24)

where ¢g;(X) is a quadratic approximation to the overall portfolio, while g,(X)—
the difference between ¢g(X) and g,(X), i.e., the error made by the quadratic
pricing—is typically only a small part of g(X). The desired cumulative distribu-
tion function of g(X) can be written as

E[1(9(X) < ¢)] = E[I{g:(X) < )] + E[I(9(X) <¢) = L(1(X) < )], (29)

where I is the 0—1 indicator function and E is the expectation operator. The first
term on the right is determined by the methods we have discussed. The second
term on the right involves the expectation of a difference which will usually be 0,
and which will only occasionally be +1 or —1. Hence, Monte Carlo evaluation
of this expectation can be based on a reduced number of trials.'* This approach
estimates the cumulative distribution function of g(X) simultaneously for all c,
and smoothing can be applied across values of ¢ to further improve accuracy.

Finally, we remark that higher Taylor series based portfolio approximations
such as

g(X) = ZaiXi + Z Zbi,_/Xin + Z Z Z e XiX X,
* Z Z Z Zdi,j,k,IXinXle +--- (26)

can be handled by determining the first few cumulants of such expansions using:
(1) linearity in the arguments of multivariate cumulant functions; (2) the Leonov—
Shiryaev expansions for multivariate cumulants of products of random variables;
and (3) the fact that multivariate cumulants of multivariate normal distributions
are zero for cumulants beyond the covariance. See, for example, Brillinger (1975,
§2.3) for details of computations of this type. With four (or more) cumulants thus
available, we may then substitute the resulting Taylor expansion for the cumulant
generating function into the saddlepoint approximation.

The asymptotic accuracy of saddlepoint approximations can be shown to
carry over whenever at least four cumulants are used; see, for example, Fraser
and Reid (1993). One possibility is to first obtain K(¢) using a delta—gamma
approximation to the portfolio, and then add to it a polynomial to correct the
first four (or more) cumulants. It is also worth remarking that the cumulants of
(26) can also be computed for an empirical distribution of the X’s (as would be
obtained from historical data, for example); furthermore, since nonparametric
kernel density estimates are just convolutions of a kernel function'* with an

13 For variance reduction techniques, see Fuglsbjerg (2000).

'* The use of centered Gaussian kernels is obviously preferred here since these possess only a single
nonzero cumulant.
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empirical distribution, computation of the cumulants of (26) under such
densities can be feasible as well.

6.2 Non-Gaussian Risk Factors

We next consider extensions to non-Gaussian risk factors. Since the distribu-
tion of portfolio returns under a mixture distribution for the risk factors is, in
general, just the corresponding mixture of the portfolio returns under the
components of the mixture, and since any distribution can in fact be approx-
imated as a linear combination of Gaussians (a proof of this assertion can be
based on Wiener’s theorem concerning the closure of translates of functions
having nonzero Fourier transform), then substantial generalizations to non-
Gaussian risk factors are possible. Indeed, since convolutions are a special case
of mixtures, and if the distribution of the risk factors can be modeled as the
sum of a multivariate normal and an independent random vector, then it is
sometimes possible to apply saddlepoint approximations to the resulting
multivariate normal-based components and then to average these appropri-
ately. As a special case of this, note that nonparametric kernel density estimates
based on a multivariate normal kernel are just convolutions of the multivariate
normal kernel with an empirical multivariate distribution, which in turn is just
a mixture of normals with as many mixture components as data points. To
illustrate the technique, one common ‘robustness” distribution involves a
mixture of two multivariate normals, the first of which occurs, say 95% of
the time, and the second of which occurs the remaining 5% of the time and
has covariance matrix, say, 10 times larger than the first. In this case, we can
compute the portfolio returns under each of the two normal distributions—
using a saddlepoint approximation method in each case—and then “mix” the
resulting cumulative distribution function approximations according to the
same proportions.'”> Note that it is particularly fast and simple to recompute
the saddlepoint approximations when the variance—covariance matrix is
changed only by a constant multiple, say from ¥ to s*%, where s is a positive
scale quantity. Under this change, H changes to sH, while a, and B, change to
sa, and s> B,, respectively. The matrix P of column-bound eigenvectors for the
new B, remains unchanged, but the diagonal matrix A of eigenvalues changes
to s°A. Overall, the new representation for (8) involves a;’s that are s times
larger, and A;’s that are s> times larger. Consequently these quantities can be
obtained essentially without additional computational labor, and so therefore
can the associated transform quantities My(t), K(¢), and so on. Indeed, the new
version of the function K(t) in (11) can be obtained from the old version
simply by replacing the argument ¢ by s°t and dividing the second term on the
right in (11) by s In this way, one can very efficiently obtain saddlepoint
approximations for a large number of rescalings of the variance—covariance
matrix X.

5'If F, and F» denote the two resulting distribution function estimates in this case, then the
resulting approximation will be F = 0.95F; 4+ 0.05F,.
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More generally, consider a scale mixture generated by multiplying a multi-
variate N¥(0, X) distributed vector X by a common random scaling factor §
which has density function %(s) and is independent of X. The corresponding
version of (8) becomes

k
Y £ (a;52;+1;5°73). @7)

Jj=1

The moment generating function of this quantity is easily shown to be
o0
M, (1) :J My y(st, st)h(s) ds, (28)
0

where My y(t, u), the bivariate moment generating function of (U, V) with
U=)a;Z;and V= Z)L]-Z_Z-, is given by

1/2 k P
My y(t, 1) = E[eV*"] (1—[(1_2,\ u)) exp( Z 12 2). (29)

For certain scale-mixture distributions A(s), moment generating functions of the
type (28) can readily be computed either analytically or computationally. If the
scale-mixture distribution A(s) is such that M;(t) is not finite (as would happen,
for instance, if we tried to produce a multivariate ¢-distribution in this way), then
the computation (28) can still be carried out provided that characteristic
functions are used instead of moment generating functions; the resulting
characteristic function can then be inverted by Fourier methods.

6.3 Comparison with Fourier Method's

Finally, we point out some comparisons between the saddlepoint approximation
methods developed here and Fourier inversion.

1. These methods are very different mathematically. In particular, saddlepoint
approximation involves only real-valued functions and elementary
operations, while Fourier methods involve the FFT and numerical
integration and are therefore somewhat more difficult to implement.

2. Fourier inversion methods can suffer from numerical inaccuracy in the far
tails of the distribution; saddlepoint approximation methods do not and can
in fact be used to “correct” Fourier inversion results in the tails.

3. Saddlepoint approximation methods require the existence of (but not
necessarily full knowledge of) the moment generating functions, while
Fourier methods do not.

4. Saddlepoint approximation methods are applicable when only four or more
moments are available; for Fourier inversion the full characteristic function is
required and cannot be replaced by a Taylor approximation without risk of
serious error in the tails.

Journal of Risk



Computation of value-at-risk for nonlinear portfolios

5. Fourier methods are now well developed, while saddlepoint approximation
methods are currently under intensive development.

6. The two methods are best viewed as being complementary.

APPENDIX

In this appendix, we establish some transform characteristics for the distribution
corresponding to (8). By direct integration, the joint characteristic function of
(Z, Z%), where Z is a single standard normal, is readily determined to be

E[eitZ+iu Zz] _

1 .
N eXp<_2 1 — 2iu>'

It follows that the characteristic function of a single term of the form aZ + AZ>

is given by
1 at
Ele it(azZ+12%)
[e 1= =55, EApry

and therefore that the characteristic function of (8) is given by

k
or() = B[] = (H,/l—zm r) < Zl 20 t)

or, alternatively, by
12 I~ at
t) = [det(I — 2itB,)]” —: — ). Al
(1) = [det( - 2itB,)] exp( 2?:11—m,z) (A1)

It is worth noting that expressions such as (A.1) can be written in matrix form
using the original variables a; and B; of equation (2). To do this, we first note
that

det(I — 2itB,) = det(I — 2itH' B, H)
= det{H'[(H")'"H™" - 2itB,|H}
=det H det[(H") 'H™' — 2itB,]det H
= det = det(=~! = 2itB))
=det(/ — 2itXB;) or det(I —2itB\X).
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Note, secondly, that

2

aj T a1
—_— = I —2itA
;1—2i,\jt @ (I-2ith) "a

=a' PTP(I —2itA) "' P Pa

= a3 [P(I = 2itA) P ' a,

= a3 (I - 2itB,) 'a,

=alH(I - 2itH'B;H) 'H'a,
=al(x7' = 2itB)) g

=a](I —2itEB))'Ta; or dal=(I—2itB,X) 'a,

where we have used the fact that © = HH'. Therefore, altogether—in terms of
the original variables a;, B;, and ¥—we may rewrite (Al) in the matrix form,
say,

oy(t) = [det(I — 2itTB))]* exp[-1al (27" - 2itB)) 'a)]. (A.2)

We remark, in passing, that the distribution of (2) can be determined by
numerical Fourier inversion of (A.1), as given, for example, by Feuerverger
and McDunnough (1981). See, however, the last paragraph of Section 6.
Observe, next, that the moment generating function of (8) is given by (9), or
in matrix notation by (10). The associated cumulant generating function is then
given by (11), or in matrix notation by (12), while its first two derivatives are as
in (13) and (15).

We complete this appendix by showing how equations (13) and (15) can also
be written in matrix notation involving only the original quantities a;, B;, and
3. To show this, we consider the five types of terms arising in (13) and (15) and
make repeated use of the facts that tr(AB) = tr(BA), a= P'H'a,, ¥ = HH',
H'B/H = PAP", and P'P = I. Within these derivations, we assume H' to be
invertible; observe, however, that the form of each final result is such that this
invertibility requirement can be eliminated by elementary continuity arguments.
Turning now to the five terms arising in (13) and (15), we have first

>~

Zl_kié“ = tr[A(] — 2tA)""] (A.3)
j=1 J

= tr[PAPTP(I — 2tA)"' PT]

= tr[H'B,H(I — 2tH B,H)™']

= te[BHH"(H")"'(I — 2tH" B,H) ' H"]

= tr[B, 2(I — 2tB;%)""]. (A.4)
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Second,
k 2
;(l_“’w —d"(1-2tA)a (A.5)
= al HP(I — 2tA)"'P"P(I — 2tA)"' P"H'q,
—alH(I —2tPAP") (1 = 2tPAP") 'H"q,
—alH(I —2tH'B\H)""(I = 2tH"B,H)'H"q,
—aHH' (H") '(1 = 2tH"ByH)"'"H'(H")"'(1 = 2tH"B,H)'H q,
=a]X(I —2tB;X) a, or aj(I—2tEB)) *%a;. (A.6)
Thirdly,
k ah
;m a"A(I = 2tA) N1 =2tA) (A.7)
=alHPAP"P(I —2tA)"'P"P(I —2tA)"'P"H'a,
—aHH' ByHH"(H") " '(1 = 2tH"ByH)"'"H"(H")™!
x (I —2tH'ByH) 'H'q,
=da]SB,X(I — 2tXB)) 2a. (A.8)
Next,
Xk:L = tr(AA(I — 2tA) 11 = 2tA) ™) (A.9)
(1 —22)
= trf[PAP"PAP"P(I — 2tA) "' PTP(1 — 2tA)~' P"]
= tr[(H"B,H)(H"B,H)(I — 2tH"B,H)"'(I1 — 2tH" B H)™']
= tr[(ByH)(H"ByH)H' (H")"'(I —2tH"B,H) "H"(H")™!
x (I —2tH"ByH)""H"]
= tr[(B; 2)*(I — 2t2B;) 2. (A.10)
And finally,
k
; 0= 2x e =d'(I—2tA)a (A.11)

=a HP(I = 2tA) " 'PTP(1 = 2tA) ' PTP(I1 — 2tA) "' P"Hq,
=a H(I - 2tH B,H)"'(I - 2tH"B,H) (I - 2tH'B,H) 'H q,
=aHH'(H") '(I = 2tH"ByH) 'H'(H") !
x (I —2tH"ByH) '"H'(H") (1 = 2tH"B,H) 'H q,
=a (I — 2t$B)) 3a,. (A.12)
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Substituting (A3)—(A12) in (13) and (15), we thereby obtain the matrix forms
given in (14) and (16).
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