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Abstract

This paper concerns the nonstandard problem of uniformro@bation for nonperiodic functions
over the real line. New algorithms are developed for thisstamdard statistical problem and inte-
grated mean squared error bounds are established. We shbthé¢hupper bound of the integrated
mean squared error for our new procedure is the same as fatahdard case; hence these new
estimators attain the lower bound minimax, and hence optirate of convergence. Our method has
potential applications to such problems as the deblurrfrgptical images which have been subjected
to uniform motion over a finite interval of time. We also tréda case when the support of the uniform
is not given and must be estimated. The numerical propestiear algorithms are demonstrated and
shown to be well behaved.

AMS Subject Classificatiorrrimary 62G20. Secondary 65R32.

Key-words: Deconvolution; characteristic functions; Fourier invens rate optimality; uniform dis-
tribution.

1. Introduction and summary

When signals pass through filters or systems that are limehtime invariant, the result-
ing output is a convolution of the original signal with thedifs impulse response function.
In typical applications, the output signals are observahiéthe input signals are not. For
this and related reasons, deconvolution is an importafiienoin signal and image process-
ing, as well as in many engineering applications. This mobalso falls under the broader
category of statistical inverse problems.
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The literature related to deconvolution — and associatggssgtal inverse problems, such
as when noise is subsequently added to the system — is theeeattensive. Within statistics,
convolution of densities occurs, for example, in measurgreeror and related statistical
models, in which independent random variables are addedheg The prototypical prob-
lem involves contaminated independent observations ceatpof the true observations plus
independent additive noise. In this setting, which is the that motivates this work, the ob-
jective is to recover the density of the true observatioosifthe contaminated observations,
given the noise distribution or some defining charactesstiereof.

Statistical deconvolution problems have been studied byymaathors, both in terms of
the framework above, and in the broader scope of statisticatse problems. In so doing a
standard framework has emerged with some of the deconenlptpers being Carroll and
Hall [4], Fan [9], Stefanski and Carroll [18], Zhang [20],caBiggle and Hall [6], to name
but a few, where further details and references to parti@palications may be found. In
the broader context of statistical inverse problems, oftllieconvolution is just a special
case, are the papers by Koo [15], Fan [8, 10], Mair and Ruymda@], and Cavalier and
Tsybakov [5], again to name only a few.

The references mentioned above are representative of@asthinamework for the study
of statistical deconvolution as well as statistical inegpsoblems where a well defined the-
ory has emerged. Nevertheless, there does exist a nonslgredantirely practical situation
to which the standard framework does not apply. This is tise @ehere the independent er-
rors, contaminating the true observations, come from aumifdistribution — the so-called
uniform deconvolution problem. This problem is practigadf considerable importance
because convolution with a uniform distribution corresg®iin signal processing terms)
to the blurring that occurs when an optical device undergmé&®rm motion with a finite
exposure time; see for example Bertero and Boccacci [2]mRhe purely statistical point
of view, which is the one emphasized here, uniform decoriaius of special interest due
to its unusual features and asymptotics. In particular|enthie characteristic function of a
uniform distribution declines inversely to it's frequenaynevertheless oscillates, touching
zero at every point on a lattice except at the point corredimgnto the zero frequency.
Therefore the standard asymptotic results referred toghbadw not directly apply to uni-
form deconvolution. The key issue which we address in thpepa: can one obtain mean
integrated squared error bounds in this nonstandard casesh®l show that, with appro-
priate modifications to the usual estimators, such bourndsifiborm deconvolution can be
achieved over certain smooth classes of nonperiodic fomstiAlthough other authors have
attempted to address this issue with varying degrees oésacesee van Es [7], O’'Sullivan
and Choudhury [17], Hall, Ruymgaart, van Gaans and van Rtg]j Groeneboom and
Jongbloed [11], and Johnstone and Raimondo [14] — for umifdéconvolution in statistics,
as well as related statistical inverse problems, our resydpear to be the most substantive
available thus far for this problem.

We now summarize the contents of this paper. In section 2, weige the standard
theory for deconvolution with smooth (i.e. polynomial) cheteristic function of the er-
ror and present a standard result for smooth deconvolufioe-periodic functions over
Sobolev ellipsoids. This will provide the standard framékwoln section 3, we examine
the nonstandard problem associated with deconvolutidmmggpect to a uniform error dis-
tribution. This problem is nonstandard in the sense thateasiced polynomial bound to
the characteristic function is matched with a zero boundhenother side so that standard
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deconvolution theorems cannot be used to assess the it@@gna@an-squared error. Nev-
ertheless, we show that it is still possible to derive theesapper bound rate for uniform
deconvolution. Motivation for this is discussed in sub&et8.1 while the asymptotic prop-
erties of our new procedures are studied in subsection 3@ case when the parameter of
the uniform distribution is unknown corresponds, for imsta, to optical blurring when the
exposure time or the speed of uniform motion is not knownipedg, this case is dealt with
in section 4. Finally, a numerical demonstration is prodidesection 6.

We remark that the engineering literature also makes neéeréo deconvolution under
uniform blurring. See, e.g., Bonmassar and Schwartz (1988)en the divisor has zeros,
a widely used regularization approach involves boundirgddnominator away from zero
by adding a positive regularization parameter, the sadalViener filtering approach. The
procedure we investigate, however, is based on a subdhadifferent approach.

Notation used throughoutis as follows. Denote the realtiyp® and letL?(R) be the set
of square integrable real valued functions®RnWe denote th&? norm by ||f|? = [|f|?
for f € L(R). Forx € R, we denote it's positive part by, = maxx,0). For order of
magnitude we use the Vinogradov notation: for two sequefmgsand{b,}, we symbolize
|an| < c|bn| for somec > 0 asn — oo, by a, < b, asn— . Also Landau’s in probability will
be used, so that if the above two sequences are randomgthe®p(b,) asn — o means
P(lan|/|bn| > ¢) — O for somec > 0 asn — oo. If there exist constants€ ¢ < C < o« such
thatclan| < |bn| < Clan| asn — o, we shall denote this ba, =< b, asn — . Expectation
will be denoted byE and variances and covariancesYgr andCov. Finally, for complex
quantities, overlines denote complex conjugation.

2. Smooth deconvolution

In this section we review the known result for deconvolutidmon-periodic functions
on the real line following the approach of Fan [9].

2.1. Preliminaries

We begin by considering the measurement error problem
Yj = Xj +¢€j, (2.2)

whereX; andg; are independent real valued random variableg ferl,... n. Let fy, fx
and f; denote the densities &f, X ande, respectively. Then

() = fx # Fe (%), (2.2)

wherex € R and forf,h € L2(R), f xh(x) = [ f(x— y)h(y)dydenotes convolution.
The Fourier transform of € L?(R) is defined by

o(t) = /R f(x)edx, (2.3)
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wherei? = —1 andt € R, with Fourier inversion being

(0 = 5 [ g(e P,

wherex € R. The Fourier transform is also referred to as a charadtefisiction, and the
characteristic functions ofy, fx and f; will be denoted bypy, ¢x and ¢, respectively.
Fourier transforming (2.2) gives

v (t) = dx(t) Pe(t) (2.4)

wheret € R.

In the nonparametric context, the parameter of intere$t iand this must be estimated
from the datayy,...,Y,. To do this it is assumed thd¢ and hence als¢. are known, and
we form the empirical characteristic functiondf= ¢y

1 n

_ jtY;
Pn(t) = ; lee' i
fort € R. Using (2.4) leads to an estimatedyf,
$n(t)
t)= 25
Px (t) be () (2.5)
fort € R, followed by empirical inversion
fo L[ ¢n(®) it
fx(x) = 27_['R¢£(t)W(ant)e dt (2.6)

for xe R, whereW(t) is an appropriate window function, aagl | 0 an appropriate sequence
of tuning (or bandwidth) parameters.

The above is known as the deconvolution problem and (2.6)dsvk as a deconvolution
density estimator. One statistical objective is to try tderstand how welfy approximates
fx. Various measures can be used; in this paper we use’therm and examine how fast
| fx — fx||2 converges to zero as— co. We note that although other metrics can be used,
theL? norm is the natural metric when Sobolev ellipsoids are taieethe parameter space,
as we do in this paper, since one can then invoke Planchéeataila.

2.2. Mean integrated squared error bounds

Let fx denote an estimator d§ and suppose the latter belongs to the Sobolev ellipsoid
ox@ = {1: 10, [t=1]¥|2<q}, @)

wheref (S denotes the—th derivative off. We say thaff is asymptotically bounded over
the class of densities iBs(Q) if it satisfies

sup E||fx—fx||2<< nh asn— oo, (2.8)
fx€0s(Q)

wherer, is called the (upper bound) rate of convergence.
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The characteristic functiog (t), t € R, of the noise or error distribution in a deconvolu-
tion problem is called smooth if

Colt| V< |pe(t) < caft] ™, as [t| — oo, (2.9)

where 0< ¢g < ¢; < w0 andy > 0.

We then have the following which is essentially Theorem laf ], hence we state the
result without proof.

Theorem 2.1. Let s> 1/2, Q > 0 and supposex(t) satisfies(2.9). Then the estimator
(2.6) satisfies

sup E H fAX _ fXHZ < n2/(2s+2yt))
fx €Os(Q)

as N— oo,

Remark 2.2. As an example, the Gamma distribution with shape paramete® and scale

B has characteristic function given ¥ —iBt)~“ and so has a tail that declines at the rate
[t|~9. For this error distribution, Theorem 2.1 says that theefstsachievable rate of con-
vergence for deconvolving the densitynis2 (25+2a+1) wheres is the number of bounded
derivatives which the unknown density is assumed to posBkxe also that for the double-
exponential distribution, whose characteristic funci®given by(1+ 8%t%)~1, the upper
bound rate is1%(25t%, The Gamma distributions are examples of smooth distobstiin
that they satisfy

dolt| Y < [@(t)] < daft| ¥ (2.10)

for positive constantsly,d1, andy > 0, as|t| — . Note that the uniform distribution
satisfies the right hand side of (2.10) with= 1, but does not satisfy the left hand side.

Remark 2.3. In the proof of the upper bound, only the left inequality of9Ris needed.
The right inequality is used for the lower bound calculatidrich in this case can be shown
to be the same as the upper bound. The lower bound calculzdioibe derived using the
results of Fan [10].

3. Uniform deconvolution

In this section we pursue a nonstandard, but practicallpmamt deconvolution problem.
Specifically, in (2.1), we assume thgs are independently uniformly distributed ¢ah, h].
We shall assume here thlat> 0 is known so that the convolution (2.2) leads, in obvious
notation, to the equatiof (t) = ¢y (t) = ¢x(t) ¢<(t) among the characteristic functions,
where

h i
0e (1) = (1/2h) /7 o dx— S'”rftht) .
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For notational simplicity, we select units so thet 1 and¢(t) = sindt) = sin(t)/t, and

consequently

_ (@
sind(t)

The difficulty here, of course, is that sifti¢ does not satisfy the left side of (2.9) and we
therefore cannot apply Theorem 2.1; see also Remark 2.actiitfis because

ox(t)

0 < singt) < |t|* (3.1)

forallt € R, with the lower bound attained at integer multiplesmthat this is a nonstandard
deconvolution problem. We shall show that despite this teomtkard feature, we can still
obtain an estimator that achieves the same rate of convezgenin Theorem 2.1. We first
however, provide some motivation.

3.1. Motivation for our estimator

A natural, if naive, proposal for an estimator of the chagestic function ofX is

l¢n jtY;
1 z .:lel j
_n&)
leading to a proposed Fourier inversion-based densitynati
- oy el .
fx () ! 2 W(ant) e ™ dt, (3.3)

~ 2mJ « sindt)

whereW(t) is some appropriate window function, aagl| 0 an appropriately selected se-
guence of tuning (or bandwidth) parameters. An immediatdlem with the estimator
(3.3) is that while the expected value (under the model) efrthmerator of the integrand
in (3.3) is zero wherever the denominator has a zero, the sia®e not hold true for the
sample values of the numerator. Hence the ratio of the ctaarstic functions in (3.3) will
have ‘singularities’ at the points= + 1, +-271, +377, - - - Which constitute a lattice except for
one point having been removed.

Various devices may be considered in an effort to bridgestagyularities. Since charac-
teristic functions are uniformly continuous functionshwiheir roughest point at the origin,
are typically smoother away from the origin, and (at leastifensities) tend to 0 g — oo,
one might try to establish intervals around the singulan{soover which the ratio (3.2) of
the characteristic functions would not be computed diyebtit should instead be estimated
by bridging across these intervals by smoothing estimasddeg of the ratio at locations
nearby but outside those intervals. Alternatively, at teeog of sin¢t), we could consider
applying I'Hopital’s rule to the ratio (3.2); thus at theiptst = ki, wherek = +1,+2, ...,
we are led to estimatgy (t)/{sindt)} as
« ki ity

. ;Y,e' .

(=1)
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These values could then be combined with the bridged estsmaéntioned above. We may
carry this idea a little further by recalling that I'Hopiitarule stems from a Taylor expansion
argument. This suggests using ratios of Taylor expansiansd the singularity points. At
the singularities the true values of the constant coeffisief the Taylor expansions are
known to be zeros, so it suffices to estimate, say, only trealinquadratic, and perhaps
a few higher coefficients in the numerator. The denominatothe other hand, is known
precisely, and therefore does not need to be expanded. Hensatably small intervals
aboutty = krrfor k = +1,+2, - - -, the estimator for the ratio of the characteristic funcsion
would have a form such as

1i(t—1to) ¥ Y€ + Ji2(t—to)2 y Y2Elo"i + ..
n sindt) '

We may note further that the coefficients of the numeratocareelated so that when cor-
recting one coefficient it should be advantageous to simetasly (linearly) also correct
the others, taking the covariance structure into accourgs& covariances are not difficult to
compute and estimate. We also remark that if Taylor expansare taken to extremes and
the numerator expanded to infinite order at a singulégjtgxcept with the first (i.e. the con-
stant) term set equal to zero, we would then just recoveruingenator sample characteristic
function, but recentered, so that fdn the vicinity ofty, we would just have replaced the es-
timated characteristic functiapy(t) by ¢n(t) — n(to). Statistically, this merely incorporates
the categorical information in the model thigto) = ¢x (to) sinc(tp) = 0. The final estimator
would then just consist of blending together — in the nunueratthe ¢, (t) = %z?zleiwi
function with thegn(t) — ¢n(to) functions near the singularities.

A different approach might be based on a nonparametric segne-type model

$n(t) = ¢ (t) +e(t) = Px(t)pe(t) +€(t) (3.4)

where the multiplier functiog, (t) is known, and where the random functie() acts as an
error term. For large sample sizeshis zero mean random functieft) behaves essentially
like a Gaussian process, with a covariance structure tlegtsgy computed and estimated.
We could then undertake to fit a smooth functip(t) within this model using a procedure
that constrains for the smoothness, boundedness (ande extant possible, nonnegative
definiteness) ofpx(t), taking the covariance structure of the error into accopathaps
using splines or regularized likelihood procedures.

Closer to the approach that we seek to develop here is th&a@eiust, but very smoothly,
the estimated (t) function so that it will have zeros at thert singularity points. In fact,
Shannon’s Sampling Theorem could be used to produce anialfpesmooth ‘corrector’
function, namely

sin(t — k)

¢t) = k;ofpn(k") kT (3.5)

which would be subtracted fromin(t). In the sense of being Fourier bandlimited (in the
data-domain) (3.5) is the smoothest function which taketherspecified corrected values
at the singularities. We remark that even if an infinite nundfg¢erms is used in (3.5) the
variance ofé (t) remains bounded, although in practice we might limit the sarterms
corresponding to singularity points actually in sample, within the segment of the char-
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acteristic function used in the Fourier inversion; let thpsints correspond to# |k| < K.
Separating out real and imaginary components, and contpteims for the positive and
negativek we see that

sin(t — k)

E0 = Y nlkm T

K sin(t —km)  sin(t 4 km)
kleq)n(kn){ t_km | tikn }

sin(t —km)  sin(t + k)
t—km t+km

S O¢n(k
+Ik21 On( T[){

~

= O ¢n(km) sin(t — km))

2_ 122
& t2 —kerr

K . 2kt
+1 kzl O¢n(km) sin(t — km)) PR
so that

PR t 0 @n (k1) + ki O g (k1)
&(t) =2sin(t) k;(—l)" 2122 )

whered and 0 denote the real and imaginary parts of a complex quantitymétical
experiments show that this corrector function has exceptiproperties in practice and it
will turn out that there are good theoretical reasons fa.thi

In search of an asymptotically optimal corrector functiase, shall now try to find one
based on the asymptotically normal behaviour of points enstitmple characteristic func-
tion, and based on the fact that the sample characteristatifun is unbiased with a covari-
ance structure thatis known aﬁ)ﬂ;(n*l/ 2) estimable. To begin with, standard computations
give

nCov(¢n(s), dn(t)) = d(s—t) - d(P(t)
and, using @n(t) = [@n(t) + Pn(—t)]/2 andO gn(t) = [Pn(t) — ¢n(—t)]/2i, we obtain
nCov (0 ¢n(s),0 ¢n(t)) = % [O¢(s—t)+0¢(s+1)]-0¢(s)0¢ (1) (3.6)
NCov( (9. On(t) = 3 [09(s— 1)+ DB(s+0] - D99 T8(1)  B7)
1

nCov(U¢n(s),U¢n(t)) = 5[0 o(s—t) ~D@(s+1)] - Dp(9)Ue(t). (3.8)
Observe now that fos andt different, but both of fornkr for integersk #4 0, many of the
terms on the right in (3.6) - (3.8) vanish; in fact, the real @naginary parts on(km) for
k=1,2,---, are all uncorrelated with common variang21Now suppose that we seek, in a
simple linear way, to correct the sample valuggft) for somet on the basis of information
contained in the observed valuesgpfat the known true zerds= ki, k £ 0. Becaus@, is
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an average of bounded iid random functions, it is asymptiyimormal at finite collections
of points so it is natural to consider regression-basedection. Since the predictors here
are uncorrelated, the corrections can be determined forg@dictor individually, and then
just added together. Now in the standard regression prollemB3X + e for zero mean
random variableX, Y ande, we would selec3 = Cov(X,Y)/Var(X), and the correction
would be taken to b@X. Hence the correction ta ¢, (t) due to the observed departure of
O ¢n(km) from zero would be given by

{0t —km)+0¢(t+km)} -0 pn(kr).

Likewise, we obtain the correction b¢n(t) due to the observed non-zero valuelgi, (kr),
and the corrections t@l¢,(t) due to the observed real and imaginary partspedkr).
Putting together these four terms, the overall correctiaphtt) due to the nonzero value of
®n(km) is found to be

{O¢(t—km)+ 0 (t+km)}O dpn(km) + {0 (t — k) + O (t+ k) } O (k)
+i [{—0¢(t—km) + O (t+ k) } O ¢pn(krr) + {0 ¢ (t —krr) — O ¢ (t+ krr) } O (k)|
which simplifies to
Pn (k) - ¢ (t — k) + Pn(krT) - @ (t 4 k7).
It follows that the regression-based corrector functiogiven by

gt = ; ¢n (k) - @ (t — k). (3.9)
k£0

Since¢ = ¢x x sinc and sind 0, and also sincéx | 0, typically at good rates, we see that
for eachk the correction fog, (k) affectsgn(t) only fort in the vicinity ofkr. Therefore

in typical applications, only a fewk—terms need to be preserved in the sum (3.9). Of
course, the functiog = ¢y in (3.9) is unknown, but it can, in the first instance, be eatad
empirically from theY;j’s, and in the second instance, it can be estimated by myifipkn
initial estimate ofgx by the sinc function, a procedure which can be iterated. Rieaidy,
however, it will turn out that the fact that in the corrector function is unknown and has
to be estimated does not affect the asymptotic propertiéseofesulting estimator. Indeed,
we shall see that even if thfex component ofp = ¢x x sinc in the corrector function is not
estimated consistently, the convergence rate of the negu@stimator is unaffected.

It turns out that this regression-based correction proeeidLhighly effective in practice.
Furthermore, the similarity in character of (3.9) and (35)art explains the high numerical
effectiveness that is observed for the Shannon corredit;occurs largely becaugeis
essentially just the sinc function for valuest@round the origin.

We can now write down our final proposal for an estimatofygfnamely

£ _ 1/ ch(t) —itx
fx(x)_ﬁﬁm sy V@t e (3.10)

where

Py (t) = ¢n(t) — ; n(km) - ¢ (t — k), (3.11)
k£0
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is a modified empirical characteristic function. Th&here is some characteristic function
satisfying@ ' (t) = ¢y (t) sindt), wheregy is itself some characteristic function. It will turn
out that for rate bound¢; does not need to be selected to consistently estigyateor
example we may seledt; to be Gaussian with variance matching the sample variance of

the data, less the known variance for the uniform error term.
3.2. Mean integrated squared error bound
Our main result for uniform deconvolution can now be stated a

Theorem 3.1. Supposep; is uniform, and that X and Y have finite variance. Then the
estimator(3.10)satisfies

E | fx — fx||* <« n-2/@s+3),
for s> 1/2 as n— oo, provided only thatpT(t) = ¢;2(t)sino(t) with ¢;2 (t) being a charac-

teristic function possessing a variance.

3.3. Proof of Theorem 3.1

To determine the integrated mean squared error of our estimuee first apply Plancherel’s
formula to obtain:

. o 2
ZH]E,/,OOHX(X)_ fy (x)[2dx = ./WE Sqi’;é(tt)) Wiart) — ox(t)| dt. e
where
®n(t) = n(t) - ; (k) - ¢ (t —km) (3.13)
k#0
and

bolt) = -y &
J

The function®y(t) is just the numerator in (3.10) written usimgd (t) = ¢;(t)sino(t) in
place of¢(t) = ¢x(t)sindt) in the corrector term (3.9). We do this firstly becayge)
appearing in the corrector function (3.9) is not actuallpn and so needs to be estimated,
and also because we will seek to understand the consequarestinating incorrectly the
¢ function in the corrector. For the moment we treatdHé) terms as being nonstochastic.

Next, we decompose (3.12) as a sum of two terms, namely tegraited squared bias

2n/|]EfA(x)—f(x)\2dx:/ E®n(l) i
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and the integrated variance

2

27T/]E]fA(x) ()| dx _/ ‘%é(tt)) (ant) — px(OW(at)| dt.  (3.15)

The bias term (3.14) may be written as
[ 16 W(ant) - 17,

and ifW is just the boxcar functiow/(t) = 1 on[—1,1] and O elsewhere, it becomes
J, ilexOP

To compute the variance term (3.15) we shall first requireséduzate

nVar(®n(t))

n(Cov<¢n ;}:pn (km)¢ t—krr ), dn(t) ;bqbn ()¢ t—érr))

nVar(gn(t)) — 20 Z’_Cov(¢n(t),¢n(kn))¢T(t—kn)
k#£0

+ nkgogoq)‘f(t — k) Cov(¢n(kn), pn(£71)) §T(t — £71)

{1-19)*} - 2Dz¢t—kn¢’ft—kn+§]¢ t—kn

This may be rearranged as

nVar(®n(t))

- {1— 5 |¢<t—kn>|2}

k=—00

2. (3.16)

LS [et—km— Tt —km[*~ o) - ¢7()

k=—o0

We shall need to understand the behavioun@ér(®,(t)) /sinc(t) and now undertake
to show that this function is bounded by a polynomial of dedte

Lemma 3.2. Suppos&arX,Vary < c. Then
nVar(|®n(t)) /siné(t)| < co+ Caft| + ot

forsomeg,c; € R,and @ > Oforallt € R.

Proof. To prove this, first note that each of the three terms in (3id@pntinuous, and
when divided by sinf(t), each of the three resulting terms respectively tend tot0-a®.
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Furthermore, the third of these terms, i.e.

2
60070 (5o ) =[ex0 -0l

and is therefore bounded by 2. We next observe that the atbeftthe three termsin (3.16)
are eachr-periodic. Since the sfit) occurring in siné(t) = (sin(t) /t)? is alsor-periodic
the first two terms ofiVar(®,(t)) /sincé(t) will then just ber-periodic functions multiplied
byt2. Therefore, as far as these two terms are concerned, we neto establish that their
limits are finite also at = rrand it then will follow that the functiomVar(®n(t)) /sinc(t)
is bounded by a polynomial of degree 2.

To examine the first component then, we first isolate fromattdrm

sin

2
(1—[¢(t—m)) (%) . (3.17)

Here we will need to assume thétand hence als¥ possess variances. Then singéu)|?
is the characteristic function of the symmetrized versibiY @ will be asymptotic to 1-
3(202)u? asu — 0 whereo? is the variance of. Hence a$ — 11(3.17) will be asymptotic
to aZ(t — m)2(t/sin(t))? and consequently will approach the constaft2. The remaining
terms of the first component, namely

2
3 otk (ﬁ)

5 ke () (LY

ast — rrthis approaches

k;lw))(((l_ YmF ( ”—nk")z : k; (ﬁ)z - g

and therefore is bounded.
Likewise we first isolate the term

pe-m-gT-mf (g )2

sin(t)
appearing in the second component. This term equals
2/sint—m\?/ t \?
ol —
‘q)x(t ) — gt n)‘ ( o ) (Sm(t)) . (3.18)

But nearu = 0 we havepy (u) — ¢y (u) asymptotic td (ux — iy, )u, wherepy andu are the
means corresponding tix and ¢;2 so that ag — 17 (3.18) approaches(ux — u;)z. The
remaining terms of the second component sum to

sz'l ‘ dx (t — k) — @ (t — kn)‘2 (Sir;(t__k;m ) 2 (sir:(t) ) 2,
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and ag — rrthis approaches

which again is bounded. Hence altogether we have establlibla¢ the term in question is
bounded by a polynomial of degree 2. O

Returning now to our proof of the Theorem, by Lemma 3.2, weehibat

- - at
E||fx - B |7 < 207 g
n J-ay

nag

On the other hand

[t = [l

< a;
since we are assuminfy € ©¢(Q). Putting the above two together, we have

A 1
Efo— fx||2<< @4—&%5

asn — . Choosinga, = n~%/(25t3) gives the lower bound for the right hand side of the
above, and hence

E H fAX _ fXHZ < n2/(2s2+1)
asn — oo,

Remark 3.3. Three useful observations are in order. Firstly, upon cainlgithe last two
terms in (3.16) into a single sum it emerges that the cheice: ¢ in (3.13) minimizes the
variance and hence the mean square error of our estimatote (Nat¢™ does not appear
in the bias component.) This may be considered as an altegrtatthe derivation of the
optimal regression-based corrector carried out in se&i@nalternately, it may be viewed
as a confirmation of that result. Secondly, itis also cleamfthe derivation here that asymp-
totic rate bound does not require the optimal selecfiér= ¢; in fact it suffices thatpT(t)
equal the singt) function multiplied by any characteristic functiq&i(t) which possesses
a finite variance; we shall always impose this requiremenp t). Thirdly, this observa-
tion explains the exceptionally good behaviour which isavlzed in numerical experiments
using the Shannon corrector (3.5); it corresponds to taditit) equal to sin¢t) multiplied
by the degenerate characteristic function which iderticduals 1. As a practical point,
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we mention that the corrector function needs primarily totam just those terms wheke
corresponds to singularities within the interval over vihilce integral (3.10) is evaluated —
i.e., where the weight functiow is nonzero — and may therefore be taken to have only a
finite number of terms. Nevertheless the sinc function deetink rapidly enough that the
infinite sum also converges. Finally, we remark that our arguts here have required, in a
rather fundamental way, th&thave finite variance.

Remark 3.4. While any finite variance choice f(qif; leads to rate bounds for our estimator,
the choicecp;[ = ¢x also provides asymptotically the best constant for that fat our
estimator. In practice, when optimality of that constantlésirable one would normally
replace¢;2 by an estimate opx.

4. Estimating the uniform parameter

In this section we show that when the paramétef theU [—h, h] uniform distribution
for the error terms is unknown it may, under broad conditidres estimated consistently
with an Op (1/4/n) rate. Because this is substantially faster than the corvergrate of
the deconvolution density estimator the case of unknbwdoes not materially affect the
asymptotic behaviour of the estimators.

Observe firstly that in order fdrto be identifiable from the characteristic functigrof Y
it is necessary that thggxk component should not admit any uniform distribution fast@n
the convolution algebra for distributions) other perhédgsitadditional factors df [—h, h].
We must also require that the location of any additional g@fapy not interfere with our
ability to asymptotically identify the lattickr/h, k = +1,4-2 --- formed by the zeros of
¢u; this condition is, of course, very mild. Finally, in ordévat we be able to estimate
with rateOp (1//n) from an estimate of the true zerofccurring atrr/h we shall require
the behaviour opx to be such thap is differentiable att/h with a nonzero derivative there.
It is not a material restriction to assume that the first zérd im fact corresponds to the first
zero ofdy, especially if the data has been centered prior to analsapurely for the sake
of brevity we shall assume this to be the case. (The charstitdunction for noncentered
data will have aré“! type of factor which produces zeros.) In this case the devivaf
¢ will in fact be negative atr/h. Note also that an empirical characteristic function will
typically not have exact zeros on its real and imaginaryspsirhultaneously; we therefore
choose to work primarily with zeros of the real part. Indeedrfearly symmetrical distri-
butions the imaginary part of the empirical characterigticction will typically contain less
information abouh than the real part.

The parametehn can be estimated in may ways, and the most efficient way to dalso
necessarily depend on the context. For example, using ad gahaé¢ ofJ, we may consider
using a test statistic such as

J
Z|¢n<jn/h>|2 (4.1)
=

which will have the distribution of §2;/2 variable when the value bfis correct; this obser-
vation leads to a range of plausible valuestofWhenh is correct, the real and imaginary
terms in (4.1) are asymptotically independent normals wattiances 1/2.) Minimizing this
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statistic over the ‘inside’ range fdr will lead to a consistent estimate bf For reasons
of power/efficiency, it may be preferable to use only the cemhponents of the empirical
characteristic function points in (4.1).

In fact, often the first zerdp say, of the real part ofn(t) is all that is needed, ankl
can then be estimated from it &s= m/f,. The estimation of such first zeros has been
considered in Welsh [19], Heathcote and Husler [13], andBkaker and Husler [3]. In
particular, [19] considered the numerical determinatifrigoand proved its almost sure
convergence to the true first zetg, Under mild conditions, Theorem 3.1 of [13], shows
thatfo is asymptotically normal with meatg and variancee//n, where the constamtis
given byc = o(to)/|U (to)| wherea?(t) = 3[1+u(2t) — 2u(t)], U'(t) is the derivative of
u(t), andu(t) = O¢(t). Note that in our contextr(to) = 1/+/2 andu'(to) = (h/m)ux (to)
whereux (t) is just the real part opx.

The work of [13] misstates a moment condition, and is based aather complicated
weak convergence argument. The correct result may be derivee much simpler fashion
as follows. Let

cogXt)

be the real part of the empirical characteristic functiod an
u(t) = EcogXt)

be the real part of the characteristic function. Let
Th = inf{t : Un(t) =0}

be the first zero of the empirical characteristic functiod an
to=inf{t:u(t) =0}

be the first zero of the characteristic function. Whgis properly behaved (as it is in our
application), Welsh [19] showed th&t — tg almost surely. Now consider, for eaohthe
Taylor expansion

Un(fh) = Un(to) + (tn —to) U5 (t) (4.2)

wheret;: lies betweerty andf,. If, for eachn, we select, to be the rooff,,, then the left
sides of each of the equations (4.2) will be zero and so canliedto give

(4.3)

where nowf, lies betweerty and T, and hence tends tg by [19]'s result.
Now for a fixedt,

n
Url](t) = —% Z Xj sin(th)
=1
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and this converges to
u'(t) = —E{Xsin(Xt)}.

But sinceX sin(Xt) is uniformly bounded byX|, then provided|X| < c« we will have that
U'(t) is continuous irt using the Dominated Convergence Theorem. Furthermorefatdni
Law of Large Numbers will apply to give that)(t) tends tou'(t) uniformly over any finite
interval int; see, e.g., Andrews [1]. Consequently the denominator.B) (ill converge to
U (to) in view of Welsh's result. We therefore find thgtis asymptotically normal:

dnfo 1
\/ﬁ(Tn—tO) N (0, 2|u’(t0)|2>

where—d is convergence in distribution. Note that our argumenegebn the finiteness
of E|X| in a fundamental way; this moment condition cannot be reldxg no others are
required. Sincéis Op (1/4/n) estimable, using such an estimated valuenfior the decon-
volution algorithm does not affect its asymptotic propesti

5. Non-homogeneous case

The nonhomogeneous case in which our observations havebeeslved withJ [—h;, h;]
uniform errors using a different (but knowhj in each case can be handled, for example,
as follows. Eacle"i /sing(h;t) is an unbiased estimator fg% and these estimators can be
judiciously combined as

fx(x) = % Zl /o; Pn ()W (ant) e ™dt, (5.1)
&

where

O (1) — i — 510N 9 (t — kr/hy)sing(t — krt/hy)
nilt) = singt — krt/hj)

and where the functio¢;[ can be estimated using methods analogous to before. Wisle th
appears to be a reasonable estimator in this context, wetlate¢he terms in it are not
identically distributed and this increases the compleaftgny asymptotic considerations.

6. Numerical experiment

The uniform deconvolution procedures developed in se@iarere implemented using
the S-Plus statistical software package and extensiveiexgetation showed our methods
to be numerically well-behaved. As an illustration of thesibavorkings of our methods,
parts (a) — (h) of Figure 1 are based on a simulated samplegfimonmal mixture distribution
in which 50% of the observations come from a normal with me&rafid standard deviation
0.2 and 50% of the observations come from a normal with me@8 and standard deviation
0.1. These X’ observations were then convolved with independent erfias a uniform
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Figure1l. An experiment in uniform deconvolution based on a sample efz =
1000 and a signal from a normal mixture model.
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distribution on[—1, 1]. The parameter values fdx were chosen for clarity of the graphical
presentation. Because we are dealing with a fully nonpatréargroblem, and so as to
ensure that the key features of our methods are fully evidenused a large random sample
of sizen= 1000 in producing Figure 1. For purposes of this illustmatiwe also eliminated
one minor source of variation by taking exactly 500 of the@ 6Bservations from each of
the two respective components of the normal mixture.

Part (a) of Figure 1 shows the real parts of the true and etihreharacteristic functions
for the uniform error terms. Here, as elsewhere in Figurestimates are shown as dots,
while true values are shown as a solid line. Here these tweesiare rather close together
and therefore cannot be distinguished. For conveniencéawe superimposed (both here
and in other parts of this figure) horizontal lines at T,21m, - -- which are the singularity
points of the unifornU [—1, 1] error distribution. Part (b) of the figure shows the real part
of the true and estimated characteristic functions for sign'al’ variableX. Here again, the
true and estimated curves virtually coincide except at éngdr values of the argumeint
This figure is provided only for illustrative purposes; iraptice we would, of course, not
have direct access to values of tkeariables.

Part (c) of Figure 1 shows the real parts of the true and estiingharacteristic functions
fortheY's, i.e., for the convolved data. The two curves are agaitequiose here except for
small differences that occur at valuestdietween about 5 and 10. Part (d) is the same as
part (c) except based on the imaginary parts of the charstitefiunctions. The numerical
values for the imaginary parts may be noted to be fairly snfab is owing to the fact that
the density foiX is not unduly far from being symmetrical about the origin.

Part (e) of Figure 1 shows what happens if one tries to naestiynate the characteristic
function of X by simply dividing the estimated characteristic functidnyoby the known
characteristic function for the uniform errors. This plstfor the real components of the
characteristic function. As we approach each of the ‘siagty’ pointst = 7,21, - - - then,
depending upon whether the real part of the sample chaistatdunction differs from 0
by being positive or negative there, the estimated chaiatitefunction ofX will approach
~+00 from one side and-o from the other side of the singularity. The grid-spacingfosed
here only allows this effect to be seen clearly from the I€&econd singularity, as well as
from the right and left, respectively, of the third and fdusingularities. The values of the
estimates between the second and third singularities Hiefial delow the visible part of
the plot.

A number of methods for uniform deconvolution have beenwudised in this paper. The
method illustrated in parts (f) and (g) for estimating thalrand imaginary components
of the characteristic function of is based on simply using a corrector function obtained
from multiplying the sinc function corresponding to the lmocharacteristic function of
the uniform error with the characteristic function of a natmistribution whose variance is
the sample variance of thédata less the known variance of the uniform error distrdouti
In other words, a normal distribution was used here in plafcm@q);[ function, and its
variance was taken to be an estimate of the varianee-ef particularly simple procedure
to implement. Itis seen that in this instance the real charstic function is underestimated
slightly fort between 5 and 15 and overestimated somewhdtdbiove 15; the imaginary
characteristic function is estimated fairly accuratelyehe

Finally, part (h) of Figure 1 gives the Fourier inversion bétestimated characteristic
function of X. Tukey tapering, based on cosine half-bells, was appliéat pv invoking
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an FFT-based algorithm. In this instance it is seen thatwleebumps of the true density
function (solid line) are estimated rather faithfully; tredt part of the density is in fact
estimated quite accurately here although the estimatesitgieloes fall below 0 at the left;
the right part of the density here is less well estimated,i®utill accurate in its broad
features. Of course, the density estimate for the convofveata (not shown here) does not
evidence the two distinct bumps that occur in the density.of

Acknowledgements

Andrey Feuerverger and Peter Kim were supported by the BlaBaiences and Engi-
neering Research Council (Canada) grants OGP9133 and QG&4@spectively.

References

Andrews, D., 1992. Generic uniform convergengeonometric Theory8, 241-247.

Bertero, M., Boccacci, P., 198Mtroduction to Inverse Problems in Imaginmstitute of Physics, Bristol.

Braker, H.U., Husler, J., 1991. On the first zero of an emplircharacteristic functionl. Appl. Probah.28,
593-601.

Carroll, R.J., Hall, P., 1988. Optimal rates of convergefaredeconvoluting a densityJ. Amer. Statist.
Assoc, 83, 1184-1186.

Cavalier, L., Tsybakov, A., 2002. Sharp adaptation for isggproblems with random noiserobab. Theory
Relat. Fields123, 323-354.

Diggle, P.J., Hall, P., 1993. A Fourier approach to nonpaitaim deconvolution of a density estimaté.
Roy. Statist. SocSer. B 55, 523-531.

van Es, A.J., 1991. Uniform deconvolution: nonparametreximum likelihood and inverse estimation.
Nonparametric functional estimation and related topicseSes, 1990)Y191-198. NATO Adv. Sci. Inst.
Ser. C Math. Phys. Sci., 335, Kluwer Acad. Publ., Dordrecht.

Fan, J., 1991. On the optimal rates of convergence for nanpetric deconvolution probleménn. Statist.
19, 1257-1272.

Fan, J., 1992. Global behaviour of deconvolution kerneireges.Statist. Sinical, 541-551.

Fan, J., 1993. Adaptively local one-dimensional subproislevith application to a deconvolution problem.
Ann. Statist.21, 600-610.

Groeneboom, P., Jongbloed, G., 2003. Density estimatidhdaruniform deconvolution modelStatist.
Neerleandica57, 136-157.

Hall, P., Ruymgaart, F., van Gaans, O., van Rooij, A., 206deiting noisy integral equations using wavelet
espansions: A class of irregular convolutionsShate of the Art in Probability and Statistics: Festschrift
for Willem R. van Zweb33-546, IMS, Beachwood, OH.

Heathcote, C.R., Husler, J., 1990. The first zero of an eogbicharacteristic functionStochastic Process.
Appl, 35, 347-360.

Johnstone, .M., Raimondo, M., 2004. Periodic boxcar declotion and diophantine approximatioAnn.
Statist, 32, 1781-1804.

Koo, J.-Y., 1993. Optimal rates of convergence for nonpatamstatistical inverse problemann. Statist.
21, 590-599.

Mair, B.A., Ruymgaart, F.H., 1996. Statistical inversdrastion in Hilbert scalesSIAM J Appl Math 56,
1424-1444.

O’Sullivan, F., Choudhury, K., 2001. An analysis of the rofgpositivity and mixture model constraints in
Poisson deconvolution problems.Comput. Graph. Statistl0, 673—696.

Stefanski, L., Carroll, R.J., 1990. Deconvoluting kernehsity estimatorsStatistics 21, 169-184.

Welsh, A.H., 1986. Implementing empirical characteristinction proceduresStatist. Probab. Lett4,
65—67.

Zhang, C.H., 1990. Fourier methods for estimating mixingsitees and distributionsAnn. Statist. 18,
806-830.



