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Abstract

This paper concerns the nonstandard problem of uniform deconvolution for nonperiodic functions
over the real line. New algorithms are developed for this nonstandard statistical problem and inte-
grated mean squared error bounds are established. We show that the upper bound of the integrated
mean squared error for our new procedure is the same as for thestandard case; hence these new
estimators attain the lower bound minimax, and hence optimal, rate of convergence. Our method has
potential applications to such problems as the deblurring of optical images which have been subjected
to uniform motion over a finite interval of time. We also treatthe case when the support of the uniform
is not given and must be estimated. The numerical propertiesof our algorithms are demonstrated and
shown to be well behaved.

AMS Subject Classification:Primary 62G20. Secondary 65R32.
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1. Introduction and summary

When signals pass through filters or systems that are linear and time invariant, the result-
ing output is a convolution of the original signal with the filter’s impulse response function.
In typical applications, the output signals are observable, but the input signals are not. For
this and related reasons, deconvolution is an important problem in signal and image process-
ing, as well as in many engineering applications. This problem also falls under the broader
category of statistical inverse problems.
∗1559-8608/08-3/$5 + $1pp – see inside front cover
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The literature related to deconvolution – and associated statistical inverse problems, such
as when noise is subsequently added to the system – is therefore extensive. Within statistics,
convolution of densities occurs, for example, in measurement error and related statistical
models, in which independent random variables are added together. The prototypical prob-
lem involves contaminated independent observations composed of the true observations plus
independent additive noise. In this setting, which is the one that motivates this work, the ob-
jective is to recover the density of the true observations from the contaminated observations,
given the noise distribution or some defining characteristics thereof.

Statistical deconvolution problems have been studied by many authors, both in terms of
the framework above, and in the broader scope of statisticalinverse problems. In so doing a
standard framework has emerged with some of the deconvolution papers being Carroll and
Hall [4], Fan [9], Stefanski and Carroll [18], Zhang [20], and Diggle and Hall [6], to name
but a few, where further details and references to particular applications may be found. In
the broader context of statistical inverse problems, of which deconvolution is just a special
case, are the papers by Koo [15], Fan [8, 10], Mair and Ruymgaart [16], and Cavalier and
Tsybakov [5], again to name only a few.

The references mentioned above are representative of a standard framework for the study
of statistical deconvolution as well as statistical inverse problems where a well defined the-
ory has emerged. Nevertheless, there does exist a nonstandard yet entirely practical situation
to which the standard framework does not apply. This is the case where the independent er-
rors, contaminating the true observations, come from a uniform distribution – the so-called
uniform deconvolution problem. This problem is practically of considerable importance
because convolution with a uniform distribution corresponds (in signal processing terms)
to the blurring that occurs when an optical device undergoesuniform motion with a finite
exposure time; see for example Bertero and Boccacci [2]. From the purely statistical point
of view, which is the one emphasized here, uniform deconvolution is of special interest due
to its unusual features and asymptotics. In particular, while the characteristic function of a
uniform distribution declines inversely to it’s frequency, it nevertheless oscillates, touching
zero at every point on a lattice except at the point corresponding to the zero frequency.
Therefore the standard asymptotic results referred to above, do not directly apply to uni-
form deconvolution. The key issue which we address in this paper is: can one obtain mean
integrated squared error bounds in this nonstandard case? We shall show that, with appro-
priate modifications to the usual estimators, such bounds for uniform deconvolution can be
achieved over certain smooth classes of nonperiodic functions. Although other authors have
attempted to address this issue with varying degrees of success – see van Es [7], O’Sullivan
and Choudhury [17], Hall, Ruymgaart, van Gaans and van Rooij[12], Groeneboom and
Jongbloed [11], and Johnstone and Raimondo [14] – for uniform deconvolution in statistics,
as well as related statistical inverse problems, our results appear to be the most substantive
available thus far for this problem.

We now summarize the contents of this paper. In section 2, we provide the standard
theory for deconvolution with smooth (i.e. polynomial) characteristic function of the er-
ror and present a standard result for smooth deconvolution of non-periodic functions over
Sobolev ellipsoids. This will provide the standard framework. In section 3, we examine
the nonstandard problem associated with deconvolution with respect to a uniform error dis-
tribution. This problem is nonstandard in the sense that a one sided polynomial bound to
the characteristic function is matched with a zero bound on the other side so that standard
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deconvolution theorems cannot be used to assess the integrated mean-squared error. Nev-
ertheless, we show that it is still possible to derive the same upper bound rate for uniform
deconvolution. Motivation for this is discussed in subsection 3.1 while the asymptotic prop-
erties of our new procedures are studied in subsection 3.2. The case when the parameter of
the uniform distribution is unknown corresponds, for instance, to optical blurring when the
exposure time or the speed of uniform motion is not known precisely; this case is dealt with
in section 4. Finally, a numerical demonstration is provided in section 6.

We remark that the engineering literature also makes reference to deconvolution under
uniform blurring. See, e.g., Bonmassar and Schwartz (1999). When the divisor has zeros,
a widely used regularization approach involves bounding the denominator away from zero
by adding a positive regularization parameter, the so-called Wiener filtering approach. The
procedure we investigate, however, is based on a substantially different approach.

Notation used throughout is as follows. Denote the real lineby R and letL2(R) be the set
of square integrable real valued functions onR. We denote theL2 norm by‖ f‖2 =

∫ | f |2
for f ∈ L2(R). For x ∈ R, we denote it’s positive part byx+ = max(x,0). For order of
magnitude we use the Vinogradov notation: for two sequences{an} and{bn}, we symbolize
|an| ≤ c|bn| for somec> 0 asn→∞, byan ≪ bn asn→∞. Also Landau’s in probability will
be used, so that if the above two sequences are random, thenan = OP(bn) asn→ ∞ means
P(|an|/|bn| > c) → 0 for somec > 0 asn→ ∞. If there exist constants 0< c≤C < ∞ such
thatc|an| ≤ |bn| ≤C|an| asn→ ∞, we shall denote this byan ≍ bn asn→ ∞. Expectation
will be denoted byE and variances and covariances byVar andCov. Finally, for complex
quantities, overlines denote complex conjugation.

2. Smooth deconvolution

In this section we review the known result for deconvolutionof non-periodic functions
on the real line following the approach of Fan [9].

2.1. Preliminaries

We begin by considering the measurement error problem

Yj = Xj + ε j , (2.1)

whereXj andε j are independent real valued random variables forj = 1, . . . ,n. Let fY, fX
and fε denote the densities ofY, X andε, respectively. Then

fY(x) = fX ∗ fε(x), (2.2)

wherex∈ R and for f ,h∈ L2(R), f ∗h(x) =
∫

f (x−y)h(y)dydenotes convolution.

The Fourier transform off ∈ L2(R) is defined by

ϕ(t) =

∫

R

f (x)eitxdx, (2.3)



436 Andrey Feuerverger, Peter T. Kim & Jiayang Sun

wherei2 = −1 andt ∈ R, with Fourier inversion being

f (x) =
1

2π

∫

R

ϕ(t)e−itxdt,

wherex∈ R. The Fourier transform is also referred to as a characteristic function, and the
characteristic functions offY, fX and fε will be denoted byϕY, ϕX andϕε , respectively.
Fourier transforming (2.2) gives

ϕY(t) = ϕX(t)ϕε (t) (2.4)

wheret ∈ R.
In the nonparametric context, the parameter of interest isfX and this must be estimated

from the dataY1, . . . ,Yn. To do this it is assumed thatfε and hence alsoϕε are known, and
we form the empirical characteristic function ofϕ ≡ ϕY

ϕn(t) =
1
n

n

∑
j=1

eitYj

for t ∈ R. Using (2.4) leads to an estimate ofϕX ,

ϕ̂X(t) =
ϕn(t)
ϕε (t)

(2.5)

for t ∈ R, followed by empirical inversion

f̂X(x) =
1

2π

∫

R

ϕn(t)
ϕε (t)

W(ant)e
−itxdt (2.6)

for x∈R, whereW(t) is an appropriate window function, andan ↓ 0 an appropriate sequence
of tuning (or bandwidth) parameters.

The above is known as the deconvolution problem and (2.6) is known as a deconvolution
density estimator. One statistical objective is to try to understand how well̂fX approximates
fX . Various measures can be used; in this paper we use theL2 norm and examine how fast
E‖ f̂X − fX‖2 converges to zero asn→ ∞. We note that although other metrics can be used,
theL2 norm is the natural metric when Sobolev ellipsoids are takenas the parameter space,
as we do in this paper, since one can then invoke Plancherel’sformula.

2.2. Mean integrated squared error bounds

Let f̂X denote an estimator offX and suppose the latter belongs to the Sobolev ellipsoid

Θs(Q) =

{

f : f ≥ 0,
∫

f = 1,‖ f (s)‖2 ≤ Q

}

, (2.7)

where f (s) denotes thes−th derivative off . We say thatf̂X is asymptotically bounded over
the class of densities inΘs(Q) if it satisfies

sup
fX∈Θs(Q)

E
∥

∥ f̂X − fX
∥

∥

2 ≪ rn as n→ ∞, (2.8)

wherern is called the (upper bound) rate of convergence.
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The characteristic function,ϕε (t), t ∈ R, of the noise or error distribution in a deconvolu-
tion problem is called smooth if

c0|t|−γ ≤ |ϕε (t)| ≤ c1|t|−γ , as |t| → ∞, (2.9)

where 0< c0 ≤ c1 < ∞ andγ ≥ 0.

We then have the following which is essentially Theorem 1 of Fan [9], hence we state the
result without proof.

Theorem 2.1. Let s> 1/2, Q > 0 and supposeφε(t) satisfies(2.9). Then the estimator
(2.6)satisfies

sup
fX∈Θs(Q)

E
∥

∥ f̂X − fX
∥

∥

2 ≪ n−2s/(2s+2γ+1)

as n→ ∞.

Remark 2.2. As an example, the Gamma distribution with shape parameterα > 0 and scale
β has characteristic function given by(1− iβ t)−α and so has a tail that declines at the rate
|t|−α . For this error distribution, Theorem 2.1 says that the fastest achievable rate of con-
vergence for deconvolving the density isn−2s/(2s+2α+1) wheres is the number of bounded
derivatives which the unknown density is assumed to possess. Note also that for the double-
exponential distribution, whose characteristic functionis given by(1+ β 2t2)−1, the upper
bound rate isn−s/(2s+5). The Gamma distributions are examples of smooth distributions, in
that they satisfy

d0|t|−γ ≤ |ϕ(t)| ≤ d1|t|−γ (2.10)

for positive constantsd0,d1, and γ ≥ 0, as |t| → ∞. Note that the uniform distribution
satisfies the right hand side of (2.10) withγ = 1, but does not satisfy the left hand side.

Remark 2.3. In the proof of the upper bound, only the left inequality of (2.9) is needed.
The right inequality is used for the lower bound calculationwhich in this case can be shown
to be the same as the upper bound. The lower bound calculationcan be derived using the
results of Fan [10].

3. Uniform deconvolution

In this section we pursue a nonstandard, but practically important deconvolution problem.
Specifically, in (2.1), we assume theε j ’s are independently uniformly distributed on[−h,h].
We shall assume here thath > 0 is known so that the convolution (2.2) leads, in obvious
notation, to the equationϕ(t) ≡ ϕY(t) = ϕX(t)ϕε (t) among the characteristic functions,
where

ϕε (t) = (1/2h)

∫ h

−h
eitx dx=

sin(ht)
ht

.
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For notational simplicity, we select units so thath = 1 andϕε(t) = sinc(t) ≡ sin(t)/t, and
consequently

ϕX(t) =
ϕY(t)
sinc(t)

.

The difficulty here, of course, is that sinc(t) does not satisfy the left side of (2.9) and we
therefore cannot apply Theorem 2.1; see also Remark 2.3. In fact it is because

0≤ sinc(t) ≤ |t|−1 (3.1)

for all t ∈R, with the lower bound attained at integer multiples ofπ , that this is a nonstandard
deconvolution problem. We shall show that despite this nonstandard feature, we can still
obtain an estimator that achieves the same rate of convergence as in Theorem 2.1. We first
however, provide some motivation.

3.1. Motivation for our estimator

A natural, if naive, proposal for an estimator of the characteristic function ofX is

ϕ̂X(t) =
1
n ∑n

j=1eitYj

sinc(t)
(3.2)

leading to a proposed Fourier inversion-based density estimate

f̂X(x) =
1

2πn

∫ ∞

−∞

∑ j e
itYj

sinc(t)
W(ant)e−itx dt , (3.3)

whereW(t) is some appropriate window function, andan ↓ 0 an appropriately selected se-
quence of tuning (or bandwidth) parameters. An immediate problem with the estimator
(3.3) is that while the expected value (under the model) of the numerator of the integrand
in (3.3) is zero wherever the denominator has a zero, the samedoes not hold true for the
sample values of the numerator. Hence the ratio of the characteristic functions in (3.3) will
have ‘singularities’ at the pointst = ±π ,±2π ,±3π , · · · which constitute a lattice except for
one point having been removed.

Various devices may be considered in an effort to bridge these singularities. Since charac-
teristic functions are uniformly continuous functions with their roughest point at the origin,
are typically smoother away from the origin, and (at least for densities) tend to 0 as|t| → ∞,
one might try to establish intervals around the singular points over which the ratio (3.2) of
the characteristic functions would not be computed directly, but should instead be estimated
by bridging across these intervals by smoothing estimated values of the ratio at locations
nearby but outside those intervals. Alternatively, at the zeros of sinc(t), we could consider
applying l’Hôpital’s rule to the ratio (3.2); thus at the points t = kπ , wherek = ±1,±2, ...,
we are led to estimateϕY(t)/{sinc(t)} as

(−1)k kπ i
n ∑

j
Yje

itYj .
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These values could then be combined with the bridged estimates mentioned above. We may
carry this idea a little further by recalling that l’Hôpital’s rule stems from a Taylor expansion
argument. This suggests using ratios of Taylor expansions around the singularity points. At
the singularities the true values of the constant coefficients of the Taylor expansions are
known to be zeros, so it suffices to estimate, say, only the linear, quadratic, and perhaps
a few higher coefficients in the numerator. The denominator,on the other hand, is known
precisely, and therefore does not need to be expanded. Hence, in suitably small intervals
aboutt0 = kπ for k = ±1,±2, · · · , the estimator for the ratio of the characteristic functions
would have a form such as

1
n

i(t − t0)∑ j Yjeit0Yj + 1
2 i2(t − t0)2 ∑Y2

j eit0Yj + · · ·
sinc(t)

.

We may note further that the coefficients of the numerator arecorrelated so that when cor-
recting one coefficient it should be advantageous to simultaneously (linearly) also correct
the others, taking the covariance structure into account. These covariances are not difficult to
compute and estimate. We also remark that if Taylor expansion were taken to extremes and
the numerator expanded to infinite order at a singularityt0, except with the first (i.e. the con-
stant) term set equal to zero, we would then just recover the numerator sample characteristic
function, but recentered, so that fort in the vicinity oft0, we would just have replaced the es-
timated characteristic functionϕn(t) byϕn(t)−ϕn(t0). Statistically, this merely incorporates
the categorical information in the model thatϕ(t0) = ϕX(t0)sinc(t0) = 0. The final estimator
would then just consist of blending together – in the numerator – theϕn(t) ≡ 1

n ∑n
j=1eitYj

function with theϕn(t)−ϕn(t0) functions near the singularities.

A different approach might be based on a nonparametric regression-type model

ϕn(t) = ϕ(t)+e(t) = ϕX(t)ϕε (t)+e(t) (3.4)

where the multiplier functionϕε(t) is known, and where the random functione(t) acts as an
error term. For large sample sizesn, this zero mean random functione(t) behaves essentially
like a Gaussian process, with a covariance structure that iseasily computed and estimated.
We could then undertake to fit a smooth functionϕX(t) within this model using a procedure
that constrains for the smoothness, boundedness (and, to the extent possible, nonnegative
definiteness) ofϕX(t), taking the covariance structure of the error into account,perhaps
using splines or regularized likelihood procedures.

Closer to the approach that we seek to develop here is the ideato adjust, but very smoothly,
the estimatedϕ(t) function so that it will have zeros at thekπ singularity points. In fact,
Shannon’s Sampling Theorem could be used to produce an especially smooth ‘corrector’
function, namely

ξ (t) = ∑
k6=0

ϕn(kπ)
sin(t −kπ)

t −kπ
(3.5)

which would be subtracted fromϕn(t). In the sense of being Fourier bandlimited (in the
data-domain) (3.5) is the smoothest function which takes onthe specified corrected values
at the singularities. We remark that even if an infinite number of terms is used in (3.5) the
variance ofξ (t) remains bounded, although in practice we might limit the sumto terms
corresponding to singularity points actually in sample, i.e. within the segment of the char-
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acteristic function used in the Fourier inversion; let these points correspond to 06= |k| ≤ K.
Separating out real and imaginary components, and combining terms for the positive and
negativek we see that

ξ (t) = ∑
0 6=|k|≤K

ϕn(kπ)
sin(t −kπ)

t −kπ

=
K

∑
k=1

ℜϕn(kπ)

{

sin(t −kπ)

t −kπ
+

sin(t +kπ)

t +kπ

}

+ i
K

∑
k=1

ℑϕn(kπ)

{

sin(t −kπ)

t −kπ
− sin(t +kπ)

t +kπ

}

=
K

∑
k=1

ℜϕn(kπ)sin(t −kπ))
2t

t2−k2π2

+ i
K

∑
k=1

ℑϕn(kπ)sin(t −kπ))
2kπ

t2−k2π2

so that

ξ (t) = 2sin(t)
K

∑
k=1

(−1)k t ℜϕn(kπ)+kπ i ℑϕn(kπ)

t2−k2π2 ,

whereℜ and ℑ denote the real and imaginary parts of a complex quantity. Numerical
experiments show that this corrector function has exceptional properties in practice and it
will turn out that there are good theoretical reasons for this.

In search of an asymptotically optimal corrector function,we shall now try to find one
based on the asymptotically normal behaviour of points on the sample characteristic func-
tion, and based on the fact that the sample characteristic function is unbiased with a covari-
ance structure that is known andOP(n−1/2) estimable. To begin with, standard computations
give

nCov(ϕn(s),ϕn(t)) = ϕ(s− t)−ϕ(s)ϕ(t)

and, usingℜϕn(t) = [ϕn(t)+ ϕn(−t)]/2 andℑϕn(t) = [ϕn(t)−ϕn(−t)]/2i, we obtain

nCov(ℜϕn(s),ℜϕn(t)) =
1
2

[ℜϕ(s− t)+ ℜϕ(s+ t)]−ℜϕ(s)ℜϕ(t) (3.6)

nCov(ℜϕn(s),ℑϕn(t)) =
1
2

[ℑϕ(s− t)+ ℑϕ(s+ t)]−ℜϕ(s)ℑϕ(t) (3.7)

nCov(ℑϕn(s),ℑϕn(t)) =
1
2

[ℜϕ(s− t)−ℜϕ(s+ t)]−ℑϕ(s)ℑϕ(t) . (3.8)

Observe now that fors andt different, but both of formkπ for integersk 6= 0, many of the
terms on the right in (3.6) - (3.8) vanish; in fact, the real and imaginary parts ofϕn(kπ) for
k= 1,2, · · · , are all uncorrelated with common variance 1/2. Now suppose that we seek, in a
simple linear way, to correct the sample value ofϕn(t) for somet on the basis of information
contained in the observed values ofϕn at the known true zerost = kπ , k 6= 0. Becauseϕn is
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an average of bounded iid random functions, it is asymptotically normal at finite collections
of points so it is natural to consider regression-based correction. Since the predictors here
are uncorrelated, the corrections can be determined for each predictor individually, and then
just added together. Now in the standard regression problemY = βX + e for zero mean
random variablesX, Y ande, we would selectβ = Cov(X,Y)/Var(X), and the correction
would be taken to beβX. Hence the correction toℜϕn(t) due to the observed departure of
ℜϕn(kπ) from zero would be given by

{ℜϕ(t −kπ)+ ℜϕ(t +kπ)} ·ℜϕn(kπ) .

Likewise, we obtain the correction toℜϕn(t) due to the observed non-zero value ofℑϕn(kπ),
and the corrections toℑϕn(t) due to the observed real and imaginary parts ofϕn(kπ).
Putting together these four terms, the overall correction to ϕn(t) due to the nonzero value of
ϕn(kπ) is found to be
[

{ℜϕ(t −kπ)+ ℜϕ(t +kπ)}ℜϕn(kπ)+{ℑϕ(t−kπ)+ ℑϕ(t +kπ)}ℑϕn(kπ)
]

+i
[

{−ℑϕ(t−kπ)+ ℑϕ(t +kπ)}ℜϕn(kπ)+{ℜϕ(t−kπ)−ℜϕ(t +kπ)}ℑϕn(kπ)
]

which simplifies to

ϕn(kπ) ·ϕ(t −kπ)+ ϕn(kπ) ·ϕ(t +kπ) .

It follows that the regression-based corrector function isgiven by

ξ (t) = ∑
k6=0

ϕn(kπ) ·ϕ(t −kπ) . (3.9)

Sinceϕ = ϕX ×sinc and sinc↓ 0, and also sinceϕX ↓ 0, typically at good rates, we see that
for eachk the correction forϕn(kπ) affectsϕn(t) only for t in the vicinity ofkπ . Therefore
in typical applications, only a fewk−terms need to be preserved in the sum (3.9). Of
course, the functionϕ ≡ ϕY in (3.9) is unknown, but it can, in the first instance, be estimated
empirically from theYj ’s, and in the second instance, it can be estimated by multiplying an
initial estimate ofϕX by the sinc function, a procedure which can be iterated. Remarkably,
however, it will turn out that the fact thatϕ in the corrector function is unknown and has
to be estimated does not affect the asymptotic properties ofthe resulting estimator. Indeed,
we shall see that even if theϕX component ofϕ = ϕX ×sinc in the corrector function is not
estimated consistently, the convergence rate of the resulting estimator is unaffected.

It turns out that this regression-based correction procedure is highly effective in practice.
Furthermore, the similarity in character of (3.9) and (3.5)in part explains the high numerical
effectiveness that is observed for the Shannon corrector; this occurs largely becauseϕ is
essentially just the sinc function for values oft around the origin.

We can now write down our final proposal for an estimator offX , namely

f̂X(x) =
1

2π

∫ ∞

−∞

Φn(t)
sinc(t)

W(ant)e−itx dt , (3.10)

where

Φn(t) = ϕn(t)− ∑
k6=0

ϕn(kπ) ·ϕ†(t −kπ), (3.11)
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is a modified empirical characteristic function. Theϕ† here is some characteristic function
satisfyingϕ†(t) = ϕ†

X(t)sinc(t), whereϕ†
X is itself some characteristic function. It will turn

out that for rate boundsϕ†
X does not need to be selected to consistently estimateϕX; for

example we may selectϕ†
X to be Gaussian with variance matching the sample variance of

the data, less the known variance for the uniform error term.

3.2. Mean integrated squared error bound

Our main result for uniform deconvolution can now be stated as

Theorem 3.1. Supposeϕε is uniform, and that X and Y have finite variance. Then the
estimator(3.10)satisfies

E
∥

∥ f̂X − fX
∥

∥

2 ≪ n−2s/(2s+3),

for s> 1/2 as n→ ∞, provided only thatϕ†(t) = ϕ†
X(t)sinc(t) with ϕ†

X(t) being a charac-
teristic function possessing a variance.

3.3. Proof of Theorem 3.1

To determine the integrated mean squared error of our estimator, we first apply Plancherel’s
formula to obtain:

2π E

∫ ∞

−∞

∣

∣ f̂X(x)− fX(x)
∣

∣

2
dx=

∫ ∞

−∞
E

∣

∣

∣

∣

Φn(t)
sinc(t)

W(ant)−ϕX(t)

∣

∣

∣

∣

2

dt , (3.12)

where

Φn(t) = ϕn(t)− ∑
k6=0

ϕn(kπ) ·ϕ†(t −kπ) (3.13)

and

ϕn(t) =
1
n ∑

j
eitYj .

The functionΦn(t) is just the numerator in (3.10) written usingϕ†(t) ≡ ϕ†
X(t)sinc(t) in

place ofϕ(t) ≡ ϕX(t)sinc(t) in the corrector term (3.9). We do this firstly becauseϕ(t)
appearing in the corrector function (3.9) is not actually known and so needs to be estimated,
and also because we will seek to understand the consequencesof estimating incorrectly the
ϕ function in the corrector. For the moment we treat theϕ†(t) terms as being nonstochastic.

Next, we decompose (3.12) as a sum of two terms, namely the integrated squared bias

2π
∫

∣

∣E f̂ (x)− f (x)
∣

∣

2
dx=

∫

∣

∣

∣

∣

EΦn(t)
sinc(t)

W(ant)−ϕX(t)

∣

∣

∣

∣

2

dt (3.14)
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and the integrated variance

2π
∫

E
∣

∣ f̂ (x)−E f̂ (x)
∣

∣

2
dx=

∫

E

∣

∣

∣

∣

Φn(t)
sinc(t)

W(ant)−ϕX(t)W(ant)

∣

∣

∣

∣

2

dt . (3.15)

The bias term (3.14) may be written as
∫

|ϕX(t)|2 |W(ant)−1|2dt ,

and ifW is just the boxcar functionW(t) = 1 on[−1,1] and 0 elsewhere, it becomes
∫

|t|>a−1
n

|ϕX(t)|2dt .

To compute the variance term (3.15) we shall first require to evaluate

nVar(Φn(t))

= nCov

(

ϕn(t)− ∑
k6=0

ϕn(kπ)ϕ†(t −kπ), ϕn(t)− ∑
ℓ 6=0

ϕn(ℓπ)ϕ†(t − ℓπ)

)

= nVar(ϕn(t))−2ℜ ∑
k6=0

Cov(ϕn(t),ϕn(kπ))ϕ†(t −kπ)

+ n ∑
k6=0

∑
ℓ 6=0

ϕ†(t −kπ)Cov(ϕn(kπ),ϕn(ℓπ))ϕ†(t − ℓπ)

=
{

1−|ϕ(t)|2
}

−2ℜ ∑
k6=0

ϕ(t −kπ)ϕ†(t −kπ)+ ∑
k6=0

∣

∣ϕ†(t −kπ)
∣

∣

2
.

This may be rearranged as

nVar(Φn(t))

=

{

1−
∞

∑
k=−∞

|ϕ(t −kπ)|2
}

+
∞

∑
k=−∞

∣

∣ϕ(t −kπ)−ϕ†(t −kπ)
∣

∣

2−
∣

∣ϕ(t)−ϕ†(t)
∣

∣

2
. (3.16)

We shall need to understand the behaviour ofnVar(Φn(t))/sinc2(t) and now undertake
to show that this function is bounded by a polynomial of degree 2:

Lemma 3.2. SupposeVarX,VarY < ∞. Then

nVar
(

|Φn(t))/sinc2(t)
∣

∣≤ c0 +c1|t|+c2|t|2

for some c0,c1 ∈ R, and c2 > 0 for all t ∈ R.

Proof. To prove this, first note that each of the three terms in (3.16)is continuous, and
when divided by sinc2(t), each of the three resulting terms respectively tend to 0 ast → 0.
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Furthermore, the third of these terms, i.e.

∣

∣ϕ(t)−ϕ†(t)
∣

∣

2
(

t
sin(t)

)2

=
∣

∣

∣
ϕX(t)−ϕ†

X(t)
∣

∣

∣

2

and is therefore bounded by 2. We next observe that the other two of the three terms in (3.16)
are eachπ-periodic. Since the sin2(t) occurring in sinc2(t) = (sin(t)/t)2 is alsoπ-periodic
the first two terms ofnVar(Φn(t))/sinc2(t) will then just beπ-periodic functions multiplied
by t2. Therefore, as far as these two terms are concerned, we need only to establish that their
limits are finite also att = π and it then will follow that the functionnVar(Φn(t))/sinc2(t)
is bounded by a polynomial of degree 2.

To examine the first component then, we first isolate from it the term

(

1−|ϕ(t−π)|2
)

(

t
sin(t)

)2

. (3.17)

Here we will need to assume thatX and hence alsoY possess variances. Then since|ϕ(u)|2
is the characteristic function of the symmetrized version of Y it will be asymptotic to 1−
1
2(2σ2

Y)u2 asu→ 0 whereσ2
Y is the variance ofY. Hence ast → π (3.17) will be asymptotic

to σ2
Y(t−π)2(t/sin(t))2 and consequently will approach the constantπ2σ2

Y. The remaining
terms of the first component, namely

∑
k6=1

|ϕ(t −kπ)|2
(

t
sin(t)

)2

= ∑
k6=1

|ϕX(t −kπ)|2
(

sin(t −kπ)

t −kπ

)2( t
sin(t)

)2

;

ast → π this approaches

∑
k6=1

|ϕX((1−k)π)|2
(

π
π −kπ

)2

≤ ∑
k6=1

(

1
1−k

)2

=
π
3

and therefore is bounded.
Likewise we first isolate the term

∣

∣ϕ(t −π)−ϕ†(t −π)
∣

∣

2
(

t
sin(t)

)2

appearing in the second component. This term equals

∣

∣

∣
ϕX(t −π)−ϕ†

X(t −π)
∣

∣

∣

2
(

sin(t −π)

t −π

)2( t
sin(t)

)2

. (3.18)

But nearu= 0 we haveϕX(u)−ϕ†
X(u) asymptotic toi(µX −µ†

X)u, whereµX andµ†
X are the

means corresponding toϕX andϕ†
X so that ast → π (3.18) approachesπ(µX − µ†

X)2. The
remaining terms of the second component sum to

∑
k6=1

∣

∣

∣
ϕX(t −kπ)−ϕ†

X(t −kπ)
∣

∣

∣

2
(

sin(t −kπ)

t −kπ

)2( t
sin(t)

)2

,
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and ast → π this approaches

∑
k6=1

∣

∣

∣
ϕX((1−k)π)−ϕ†

X((1−k)π)
∣

∣

∣

2
(

1
1−k

)2

≤ 2 ∑
k6=1

(

1
1−k

)2

=
2π
3

which again is bounded. Hence altogether we have established that the term in question is
bounded by a polynomial of degree 2. �

Returning now to our proof of the Theorem, by Lemma 3.2, we have that

E
∥

∥ f̂X −E f̂X
∥

∥

2 ≤ const
n

∫ a−1
n

−a−1
n

t2dt ≪ 1
na3

n
.

On the other hand
∥

∥E f̂X − fX
∥

∥

2
=

∫

[−a−1
n ,a−1

n ]c
|φX(t)|2dt

=

∫

[−a−1
n ,a−1

n ]c
t−2st2s|φX(t)|2dt

≤ a2s
n

∫

[−a−1
n ,a−1

n ]c
t2s|φX(t)|2dt

≤ a2s
n

∫ ∞

−∞
t2s|φX(t)|2dt

≪ a2s
n

since we are assumingfX ∈ Θs(Q). Putting the above two together, we have

E
∥

∥ f̂X − fX
∥

∥

2 ≪ 1
na3

n
+a2s

n

asn → ∞. Choosingan ≍ n−1/(2s+3) gives the lower bound for the right hand side of the
above, and hence

E
∥

∥ f̂X − fX
∥

∥

2 ≪ n−2s/(2s+2+1)

asn→ ∞.

Remark 3.3. Three useful observations are in order. Firstly, upon combining the last two
terms in (3.16) into a single sum it emerges that the choiceϕ† = ϕ in (3.13) minimizes the
variance and hence the mean square error of our estimator. (Note thatϕ† does not appear
in the bias component.) This may be considered as an alternative to the derivation of the
optimal regression-based corrector carried out in section3.1; alternately, it may be viewed
as a confirmation of that result. Secondly, it is also clear from the derivation here that asymp-
totic rate bound does not require the optimal selectionϕ† = ϕ ; in fact it suffices thatϕ†(t)
equal the sinc(t) function multiplied by any characteristic functionϕ†

X(t) which possesses
a finite variance; we shall always impose this requirement onϕ†(t). Thirdly, this observa-
tion explains the exceptionally good behaviour which is observed in numerical experiments
using the Shannon corrector (3.5); it corresponds to takingϕ†(t) equal to sinc(t) multiplied
by the degenerate characteristic function which identically equals 1. As a practical point,
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we mention that the corrector function needs primarily to contain just those terms wherek
corresponds to singularities within the interval over which the integral (3.10) is evaluated –
i.e., where the weight functionW is nonzero – and may therefore be taken to have only a
finite number of terms. Nevertheless the sinc function does decline rapidly enough that the
infinite sum also converges. Finally, we remark that our arguments here have required, in a
rather fundamental way, thatX have finite variance.

Remark 3.4. While any finite variance choice forϕ†
X leads to rate bounds for our estimator,

the choiceϕ†
X = ϕX also provides asymptotically the best constant for that rate for our

estimator. In practice, when optimality of that constant isdesirable one would normally
replaceϕ†

X by an estimate ofϕX .

4. Estimating the uniform parameter

In this section we show that when the parameterh of theU [−h,h] uniform distribution
for the error terms is unknown it may, under broad conditions, be estimated consistently
with an OP (1/

√
n) rate. Because this is substantially faster than the convergence rate of

the deconvolution density estimator the case of unknownh does not materially affect the
asymptotic behaviour of the estimators.

Observe firstly that in order forh to be identifiable from the characteristic functionϕ of Y
it is necessary that theϕX component should not admit any uniform distribution factors (in
the convolution algebra for distributions) other perhaps than additional factors ofU [−h,h].
We must also require that the location of any additional zeros of ϕX not interfere with our
ability to asymptotically identify the latticekπ/h, k = ±1,±2, · · · formed by the zeros of
ϕU ; this condition is, of course, very mild. Finally, in order that we be able to estimateh
with rateOP (1/

√
n) from an estimate of the true zero ofϕ occurring atπ/h we shall require

the behaviour ofϕX to be such thatϕ is differentiable atπ/h with a nonzero derivative there.
It is not a material restriction to assume that the first zero of ϕ in fact corresponds to the first
zero ofϕU , especially if the data has been centered prior to analysis,and purely for the sake
of brevity we shall assume this to be the case. (The characteristic function for noncentered
data will have aneiµt type of factor which produces zeros.) In this case the derivative of
ϕ will in fact be negative atπ/h. Note also that an empirical characteristic function will
typically not have exact zeros on its real and imaginary parts simultaneously; we therefore
choose to work primarily with zeros of the real part. Indeed for nearly symmetrical distri-
butions the imaginary part of the empirical characteristicfunction will typically contain less
information abouth than the real part.

The parameterh can be estimated in may ways, and the most efficient way to do sowill
necessarily depend on the context. For example, using a small value ofJ, we may consider
using a test statistic such as

J

∑
j=1

|ϕn( jπ/h)|2 (4.1)

which will have the distribution of aχ2
2J/2 variable when the value ofh is correct; this obser-

vation leads to a range of plausible values forh. (Whenh is correct, the real and imaginary
terms in (4.1) are asymptotically independent normals withvariances 1/2.) Minimizing this



On Optimal Uniform Deconvolution 447

statistic over the ‘inside’ range forh will lead to a consistent estimate ofh. For reasons
of power/efficiency, it may be preferable to use only the realcomponents of the empirical
characteristic function points in (4.1).

In fact, often the first zero,̂t0 say, of the real part ofϕn(t) is all that is needed, andh
can then be estimated from it asĥ = π/t̂0. The estimation of such first zeros has been
considered in Welsh [19], Heathcote and Hüsler [13], and byBraker and Hüsler [3]. In
particular, [19] considered the numerical determination of t̂0 and proved its almost sure
convergence to the true first zero,t0. Under mild conditions, Theorem 3.1 of [13], shows
that t̂0 is asymptotically normal with meant0 and variancec/

√
n, where the constantc is

given byc = σ(t0)/ |u′(t0)| whereσ2(t) = 1
2[1+ u(2t)− 2u2(t)], u′(t) is the derivative of

u(t), andu(t) = ℜϕ(t). Note that in our contextσ(t0) = 1/
√

2 andu′(t0) = (h/π)uX(t0)
whereuX(t) is just the real part ofϕX.

The work of [13] misstates a moment condition, and is based ona rather complicated
weak convergence argument. The correct result may be derived in a much simpler fashion
as follows. Let

Un(t) =
1
n

n

∑
j=1

cos(Xj t)

be the real part of the empirical characteristic function and

u(t) = Ecos(Xt)

be the real part of the characteristic function. Let

Tn = inf{t : Un(t) = 0}

be the first zero of the empirical characteristic function and

t0 = inf{t : u(t) = 0}

be the first zero of the characteristic function. Whent0 is properly behaved (as it is in our
application), Welsh [19] showed thatTn → t0 almost surely. Now consider, for eachn, the
Taylor expansion

Un(t̂n) = Un(t0)+ (t̂n− t0)U ′
n(t

∗
n) (4.2)

wheret∗n lies betweent0 and t̂n. If, for eachn, we select̂tn to be the rootTn, then the left
sides of each of the equations (4.2) will be zero and so can be solved to give

Tn = t0−
Un(t0)
U ′

n(t∗n)
(4.3)

where noŵtn lies betweent0 andTn and hence tends tot0 by [19]’s result.

Now for a fixedt,

U ′
n(t) = −1

n

n

∑
j=1

Xj sin(Xj t)
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and this converges to

u′(t) = −E{X sin(Xt)} .

But sinceX sin(Xt) is uniformly bounded by|X|, then providedE|X| < ∞ we will have that
u′(t) is continuous int using the Dominated Convergence Theorem. Furthermore a Uniform
Law of Large Numbers will apply to give thatU ′

n(t) tends tou′(t) uniformly over any finite
interval int; see, e.g., Andrews [1]. Consequently the denominator in (4.3) will converge to
u′(t0) in view of Welsh’s result. We therefore find thatTn is asymptotically normal:

√
n(Tn− t0) →d N

(

0,
1

2|u′(t0)|2

)

where→d is convergence in distribution. Note that our argument relies on the finiteness
of E|X| in a fundamental way; this moment condition cannot be relaxed but no others are
required. Sinceh is OP (1/

√
n) estimable, using such an estimated value forh in the decon-

volution algorithm does not affect its asymptotic properties.

5. Non-homogeneous case

The nonhomogeneouscase in which our observations have beenconvolved withU [−h j ,h j ]
uniform errors using a different (but known)h j in each case can be handled, for example,
as follows. EacheitYj /sinc(h jt) is an unbiased estimator forϕX and these estimators can be
judiciously combined as

f̂X(x) =
1

2πn

n

∑
j=1

∫ ∞

−∞
Φn, j(t)W(ant)e−itx dt , (5.1)

where

Φn, j(t) =
eitYj −∑k6=0ei(kπ/h j )Yj ϕ†

X(t −kπ/h j)sinc(t −kπ/h j)

sinc(t −kπ/h j)

and where the functionϕ†
X can be estimated using methods analogous to before. While this

appears to be a reasonable estimator in this context, we notethat the terms in it are not
identically distributed and this increases the complexityof any asymptotic considerations.

6. Numerical experiment

The uniform deconvolution procedures developed in section3 were implemented using
the S-Plus statistical software package and extensive experimentation showed our methods
to be numerically well-behaved. As an illustration of the basic workings of our methods,
parts (a) – (h) of Figure 1 are based on a simulated sample froma normal mixture distribution
in which 50% of the observations come from a normal with mean 0.2 and standard deviation
0.2 and 50% of the observations come from a normal with mean−0.3 and standard deviation
0.1. These ‘X’ observations were then convolved with independent errorsfrom a uniform
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(c)  Real (cf) for Y = X + U
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(d)  Imag (cf) for Y = X + U
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(e)  Naively estimated Real cf of X
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(f)  Estimated Real cf of X
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(g)  Estimated Imag cf of X
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(h)  True & estimated density of X
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Figure 1. An experiment in uniform deconvolution based on a sample size of n =
1000 and a signal from a normal mixture model.



450 Andrey Feuerverger, Peter T. Kim & Jiayang Sun

distribution on[−1,1]. The parameter values forfX were chosen for clarity of the graphical
presentation. Because we are dealing with a fully nonparametric problem, and so as to
ensure that the key features of our methods are fully evident, we used a large random sample
of sizen = 1000 in producing Figure 1. For purposes of this illustration, we also eliminated
one minor source of variation by taking exactly 500 of the 1000 observations from each of
the two respective components of the normal mixture.

Part (a) of Figure 1 shows the real parts of the true and estimated characteristic functions
for the uniform error terms. Here, as elsewhere in Figure 1, estimates are shown as dots,
while true values are shown as a solid line. Here these two curves are rather close together
and therefore cannot be distinguished. For convenience, wehave superimposed (both here
and in other parts of this figure) horizontal lines att = π ,2π , · · · which are the singularity
points of the uniformU [−1,1] error distribution. Part (b) of the figure shows the real parts
of the true and estimated characteristic functions for the ‘signal’ variableX. Here again, the
true and estimated curves virtually coincide except at the larger values of the argumentt.
This figure is provided only for illustrative purposes; in practice we would, of course, not
have direct access to values of theX variables.

Part (c) of Figure 1 shows the real parts of the true and estimated characteristic functions
for theY’s, i.e., for the convolved data. The two curves are again quite close here except for
small differences that occur at values oft between about 5 and 10. Part (d) is the same as
part (c) except based on the imaginary parts of the characteristic functions. The numerical
values for the imaginary parts may be noted to be fairly small; this is owing to the fact that
the density forX is not unduly far from being symmetrical about the origin.

Part (e) of Figure 1 shows what happens if one tries to naivelyestimate the characteristic
function ofX by simply dividing the estimated characteristic function of Y by the known
characteristic function for the uniform errors. This plot is for the real components of the
characteristic function. As we approach each of the ‘singularity’ pointst = π ,2π , · · · then,
depending upon whether the real part of the sample characteristic function differs from 0
by being positive or negative there, the estimated characteristic function ofX will approach
+∞ from one side and−∞ from the other side of the singularity. The grid-spacing fort used
here only allows this effect to be seen clearly from the left of second singularity, as well as
from the right and left, respectively, of the third and fourth singularities. The values of the
estimates between the second and third singularities here all fall below the visible part of
the plot.

A number of methods for uniform deconvolution have been discussed in this paper. The
method illustrated in parts (f) and (g) for estimating the real and imaginary components
of the characteristic function ofX is based on simply using a corrector function obtained
from multiplying the sinc function corresponding to the known characteristic function of
the uniform error with the characteristic function of a normal distribution whose variance is
the sample variance of theY data less the known variance of the uniform error distribution.
In other words, a normal distribution was used here in place of the ϕ†

X function, and its
variance was taken to be an estimate of the variance ofX – a particularly simple procedure
to implement. It is seen that in this instance the real characteristic function is underestimated
slightly for t between 5 and 15 and overestimated somewhat fort above 15; the imaginary
characteristic function is estimated fairly accurately here.

Finally, part (h) of Figure 1 gives the Fourier inversion of the estimated characteristic
function of X. Tukey tapering, based on cosine half-bells, was applied prior to invoking



On Optimal Uniform Deconvolution 451

an FFT-based algorithm. In this instance it is seen that the two bumps of the true density
function (solid line) are estimated rather faithfully; theleft part of the density is in fact
estimated quite accurately here although the estimated density does fall below 0 at the left;
the right part of the density here is less well estimated, butis still accurate in its broad
features. Of course, the density estimate for the convolvedY data (not shown here) does not
evidence the two distinct bumps that occur in the density ofX.
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Heathcote, C.R., Hüsler, J., 1990. The first zero of an empirical characteristic function.Stochastic Process.
Appl., 35, 347–360.

Johnstone, I.M., Raimondo, M., 2004. Periodic boxcar deconvolution and diophantine approximation.Ann.
Statist., 32, 1781–1804.

Koo, J.-Y., 1993. Optimal rates of convergence for nonparametric statistical inverse problems.Ann. Statist.,
21, 590–599.

Mair, B.A., Ruymgaart, F.H., 1996. Statistical inverse estimation in Hilbert scales.SIAM J Appl Math, 56,
1424–1444.

O’Sullivan, F., Choudhury, K., 2001. An analysis of the roleof positivity and mixture model constraints in
Poisson deconvolution problems.J. Comput. Graph. Statist., 10, 673–696.

Stefanski, L., Carroll, R.J., 1990. Deconvoluting kernel density estimators.Statistics, 21, 169–184.
Welsh, A.H., 1986. Implementing empirical characteristicfunction procedures.Statist. Probab. Lett., 4,

65–67.
Zhang, C.H., 1990. Fourier methods for estimating mixing densities and distributions.Ann. Statist., 18,

806–830.


