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ABSTRACT 

General conditions for the asymptotic efficiency of certain new inference procedures based on 
empirical transform functions are developed. A number of important processes, such as the empirical 
characteristic function, the empirical moment generating function, and the empirical moments, are 
considered as special cases. 

RESUME 

On developpe des conditions generales garantissant l'efficacit6 asymptotique de certaines nou- 
velles procedures d'inf6rence fondees sur des transformations empiriques. Ces conditions s'ap- 
pliquent a un ensemble de processus importants, y compris la fonction caracteristique empirique, la 
fonction g6neratrice des moments, ainsi que les moments empiriques eux-memes. 

1. INTRODUCTION AND SUMMARY 

This paper is concerned with the asymptotic efficiency of certain new inference pro- 
cedures based on transforms. These can be viewed as being alternatives to maximum 
likelihood, but applicable to a large number of statistical problems where maximum 
likelihood is not feasible. As the methods involved are fairly broad, a number of alterna- 
tive viewpoints are presented. In particular, the contexts of estimation and testing are both 
considered below. 

Suppose xj, j = 1,2,... , n, are independent and identically distributed with density 
fe(x), where 0 E 0, but the true value 0 = 00 is unknown. Let Fo(x) and Fn(x) denote 
the actual and empirical cumulative distribution functions. The transform procedures with 
which we are concerned are based in each case on a kernel g,(x) such that 

Wog,(x) - Go(t)- g,(x)dFo(x) (1.1) 

exists and is finite for all 0 E 0 and all t E T. An empirical version of this transform (or 
expectation) may be defined as 

ig,(x) = Gn(t) fg,(x)dFn(x) = gt,(Xj). (1.2) n 

*Based on an invited talk to the Canadian Statistical Society's annual meeting in Halifax, 1981. 
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It turns out that the kernel functions g,(x) potentially of interest in statistical contexts 
are numerous. However, the following examples are typical: 

(1) Take g,(x) = 1, x - t, and 0 otherwise. Then eogt and $gt (equivalently Go G,) 
coincide with F0, Fn, respectively. 

(2) Take g,(x) = e'. Then eog, and 6g, coincide with the moment generating function 
(mgf) Lo(t) = f e'xdFo(x), when it exists, and the empirical mgf L,(t) = f e'dF(x) = 
( In) , e'Xi, respectively. 

(3) Take g,(x) = ei'. Here teg,, {g, are complex-valued and coincide with the charac- 
teristic function (cf) +o(t) = f e"'dFo(x) and its empirical version 4,(t) = f ei"dF(x) 
= (l/n) X ei"i, respectively. 

Focusing on the expectation %og, and the empirical expectation tg, (equivalently, the 
transforms Go, Gn), consider now the possible procedures of inference concerning the 
unknown parameter 0. Since ;0g, = e0g,, we may write 

=gt = tog, + e,(t), t E T, (1.3) 

where 0ee"(t) = 0. By the strong law of large numbers, we have en(t) -> 0 almost surely 
for every t E T, and hence any countable collection in T. This suggests the consistency 
of procedures based on fitting togt to ~g, by various means. Under further conditions the 
process {e,(t), t E T} will, asymptotically and in varying degrees, have the properties of 
a Gaussian process. This normality, combined with a concern for asymptotic efficiency, 
suggests a variety of procedures for study. 

Let ti, t2, . . . , tk be a fixed finite subset of T. Let eog and ~g be k x 1 vectors having 
entries to0g, %g, respectively, and assumed for the moment to be real. We may indicate 
now the procedures with which we are concerned. [Some related procedures are in- 
vestigated in an unpublished thesis by Brant (1982), who also discusses the approximation 
of the full likelihood via transforms; see also Jarrett (1973).] For convenience, the context 
here is estimation. We have the following classes of methods: 

(A) Moment (linear) methods. Estimate 0 by solving 

d'~eg = d' g (1.4) 

where d is a k x 1 vector of constants. 
(B) Regression (quadratic) methods. Estimate 0 by minimizing 

(%g - e0g)'Q(%g - etg) (1.5) 

where Q is a k x k nonnegative definite matrix of constants. 
(C) k - L methods. Estimate 0 by maximizing the asymptotic normal form of the 

likelihood of % g. This may be taken as 

k det 
-log det 2 - og)det - (g - tog), (1.6) 

where ~ = n Varo(^g) = [Covo(g,,, gj)], or as just the second term of this expression. 
[It can be shown that this yields an asymptotically equivalent estimate, in that the two 
estimates differ only by a factor which is o( 1/Vn).] 

The above three procedures are to a certain extent new, and are discussed more fully 
below. We content ourselves here with remarking that the term "k - L method" is based 
on the fact that the procedure is restricted to a finite grid of k points in T, and is 
likelihood-based. Finally, we note that the procedures as described above appear to be of 
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"discrete" type, but have in fact "continuous" analogues. In particular (1.4) may be 

replaced by 

If g,dH(t)= og, dH(t), (1.7) 
T T 

while (1.5) may be replaced by 

II (f gs - $og)(6g, - Wog,)A(ds,dt), (1.8) 
TxT 

where A(ds, dt) is nonegative definite. 
Presumably an analogue for (1.6) is possible also, along the lines of Parzen (1961) or 

Grenander (1981, Ch. 3), and is of great interest statistically, but will not be pursued here. 
However, it would seem clear that the discrete and continuous versions are intimately 
connected. In particular, it would be of interest to compare the continuous-form likelihood 
based on the asymptotic normal law of the transform process with the actual nonasymptotic 
likelihood of the xj's. 

While our general approach, as well as some of the procedures presented, may be new, 
many particular and important cases have appeared in earlier work involving, for example, 
the transforms based on the kernel functions 1 - 3 provided above. The most extensive 
of this literature is related to the empirical characteristic function (ecf), owing perhaps to 
the very special properties enjoyed by the Fourier transform. 

The first reference to the ecf of which we are aware appears in Parzen (1962), and early 
applications are provided by Heathcote (1972, 1977), Press (1972, 1975), and Paulson, 
Halcomb, and Leitch (1975). A systematic study of the ecf with a view towards applica- 
tions is undertaken in Feuerverger and Mureika (1977). Further probability investigations 
are provided by Kent (1975), Csorgo (1981), and Marcus (1981). The efficiency of a 
suitable class of ecf procedures was investigated and proved first in two papers by the 
authors (198 la and 1981b). These papers, hereafter referred to as FM-1 and FM-2 
respectively, provide the principal motivation for the present investigation, and some 
familiarity with them will prove helpful here. Finally we mention also Feigin and 
Heathcote (1976), Thornton and Paulson (1977), Tarter (1979), Feuerverger and 
McDunnough (1980), Koutrouvelis (1980a, 1980b), Koutrouvelis and Kellermeier 
(1981), Kellermeier (1980), Murota and Takeuchi (1981), and Hall and Welsh (1983). 

The empirical moment-generating function (emgf), which is similar to the ecf in certain 
limited ways, is applied in the studies by Quandt and Ramsey (1978), Leslie and Khalique 
(1980), and Read (1981). The efficiency of these procedures, not previously known, is 
resolved below. 

Our other example, where tog, = Fe and tg, = F,, appears simplest in the sense that 
if use of F6 is permitted, then many classical inference procedures, such as maximum 
likelihood, become immediately accessible. However it is useful, and the basic ideas may 
be illustrated, if we consider this "transform" from the viewpoint of the nonclassical 
procedures (A) - (C) which concern us here. Thus suppose, for example, that Fn and Fo 
are to be used in a moment method of continuous type. Let us write the estimation equation 
(1.7) in the form 

h(x)Fo(x)dx = h(x)F,(x)dx (1.9) 

and seek that function h(x) leading to estimators of smallest asymptotic variance. A 
variational approach to this problem is possible as detailed in FM-1, but not required in 
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the present case. In fact the optimal h(x) depends on the unknown 00 and is given by 

&2 log f(x) 
h (x) = . () (1.10) 

To see this, transform (1.9) using integration by parts into the form 

fu(x)dFo(x)= fu(x)dFn(x), (1.11) 

where h(x) and u(x) are related through 

h(x) du(x) (1.12) 

The "optimal" u(x) is now easily guessed, since if 

a log fe(x) 
u(x) = uo(x) = l 

(1.13) do 
then (1. 11) may be recognized as just the likelihood equation. Of course, we require u(') 
to be a function of x alone, but the optimal choice clearly will be u0o(x). It is easily verified 
that (1.10) provides an efficient solution for the procedure (1.9). 

Further, concerning the example where 0og, = F0 and ;g, = F,, fix -oo<t, 
< t2 < * * < tk < o and consider now the discrete moment procedure 

d'F0 = d'F, (1.14) 

where d, Fo, F, are k x 1 vectors. What is the optimal choice for the vector d of constants? 
Using a first-order expansion for F0 at 00, the solution of (1.14) may be given as 

A d'(Fn - Foo) - 0 + d (1.15) 
dF0 

dj- 
d0o 

with asymptotic variance [cf. (2.3)] 

n Var()= d'%d_, (1.16) 
dFe 

d'do 
d0o 

where % has (i, j)th entry 

Feo(max(ti, tj)) - F00(ti)Foo(tj). (1.17) 

As (1.16) is the ratio of a quadratic form and a squared linear form, it is minimized by 

d0o 
d= ^ 'd (1.18) 

and attains the minimum value of 

dF0 dF0 
n V(ard( ) o (dHo 

' 

(1.19) 

Using (1.17), the value of (1.19) could now be evaluated, since the component 
[F0o(max(ti, tj))] has a known inverse, while the component [F0o(ti)F00(tj)] is of unit rank 
and thus may be adjusted for using Bartlett's identity. We omit these steps here, as the 
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value of (1.19) may be established (as in the following section) by a simpler argument. 
We note here however that this value [given by the expression (2.5)] can be made 
arbitrarily close to the Cramer-Rao lower bound by selecting the grid {tj} to be sufficiently 
fine and extended. 

The procedure (1.14) is the discrete version of (1.9), and several questions of real 
interest now arise. For example, as {tj} becomes finer and more extended, do the values 
of the entries of d given by (1.18) trace out a function proportional to (1.10) except for 
some adjustment for any unevenness of the {tj} spacing? We conjecture that for general 
kernel functions g,(x) and under fairly broad conditions a result of this type must be true. 

This paper consists of five sections and is primarily concerned with the efficiency of the 
transform procedures introduced here. Presumably, it should be possible to treat the 
efficiency of various inferential methods (estimation, testing, etc.) by means of a single 
unified approach, but how this may be done is not quite clear. Instead, Section 2 is 
concerned with efficiency in the estimation context, while Section 3 is concerned with 
efficiency in the testing context. Sections 2 and 3 are restricted to discrete-case consid- 
erations. Some treatment of the continuous case is undertaken in Section 4. Finally, a 
number of remarks and brief examples indicating the generality and usefulness of trans- 
form methods is provided in Section 5. The present paper is self-contained, but we 
mention again that some familiarity with FM-1 and FM-2 may be helpful. 

2. EFFICIENCY IN ESTIMATION 

In this section we consider discrete estimation procedures based on the transform Ge(t) 
= Wog,(x) and its empirical version Gn(t) = Wgt(x). Here the context is parametric with 
0 E 0, where O is a real open interval. 

Let tl, t2,..., tk be fixed points in T, and let Zg, 0eg be k x 1 vectors having entries 

tg, and og,;, respectively (g being assumed real here). Then, except for a constant, the 
asymptotic form of the log likelihood for tg is given by 

1log 1 - - 20g)'o! ( gg - e;0g), (2.1) o2 4n 2g 

where o- = n Var(Eg) = Var(g) and has entries Cov(g,(x),g,(x)). The form (2.1) 
suggests estimating the true 0o by that OkL which minimizes the criterion function 

(g - W g)' _ (g - 0g). (2.2) 

We refer to this as a k-L procedure, since it involves, essentially, an (asymptotic) 
likelihood based on k fixed points. We now utilize Theorem 6.1 of FM-2, with the 
correction that the covariance matrix in part (b) should read 

1 aF-' adF aF' /aF) ' 
n ae/ arT arT ad/ 

It follows that under mild conditions, OkL is asymptotically N(00o, u/n), where 

-2 a0g' X- a0eg 
-CkL 0= g; e (2.3) 

evaluated at 0 = 00. (Explicit reference to this will often be omitted.) 
We consider here the problem of when okL can be made arbitrarily close to the Cramer- 

Rao bound -'(00), where 
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a log fo(x))2 I(0) = 
logf'(x). (2.4) 

This has already been demonstrated in FM-1, FM-2 for the ecf which we may represent 
here in the form 

g,(x)Jsin tx, t > 0, 
gt( ) = costx, txO 

A further example is furnished by 

g, , f1, x t, 
g,(x)={O, x=t, o x>t, 

associated with the distribution function. Here (2.3) may be evaluated directly, but it is 
easier to appeal to the multinomial nature of Zg. Thus [e.g. see Rao (1965), Section 5e] 
we find that 

Cr=kL ( 
= og ) (2.5) 

j=1 

where Pj = G(tj) - G(tj ) and G(to) = 0, G(tk+ ) = 1. This is just a discrete approx- 
imation to I(0), and so the k-L procedure again permits arbitrarily high efficiency. 

In order to treat the general case, it is convenient, as in FM-1, to introduce a related 
method which we refer to as a generalized moment procedure. Take d to be a fixed k x 1 
vector, and consider the equation 

d'(&g - e0g) = 0. (2.6) 

As in FM-1, FM-2, this yields an estimator OM which is asymptotically N(00, u/n), 
where 

2 d' od 
M = dg (2.7) 

(d' a00 
This is minimized by taking 

d = do a= o'dg (2.8) 

and in this case, (2.7) is seen to reduce to (2.3). Of course, the optimal weights do depend 
on the unknown 00, but may be estimated. The implied two stage procedure will have the 
same asymptotic distribution as that which uses the optimal do, provided only that a 
consistent estimate of do is used. 

Continuing now, and with a view to more general two-stage procedures, consider a class 
NC of functions h(') and the corresponding estimation equations 

th(x) = 0h(x), (2.9) 

where h(x) = n-' Xji h(xj). For an h(x) E e we take ?h to be a consistent estimate 
satisfying (2.9) for n sufficiently large. (Simple conditions which guarantee the existence 
of such a h are given in Theorem 6.1 of FM-2.) It is straightforward to show that ?h is 
asymptotically N(0o, U2h/n), where 

2 Varoo[h(x)] 
( hx(2.10) 

a 00 

308 Vol. 12, No. 4 
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Recall now the so-called regression identity which, in obvious notation, may be written 
as 

;(YI - 1 )2 = [(I - I)- , (Y2 - -2 )]2 + P2r2, (2.11) 

where ,3 = r12/cr2. If we set y i = logf(x)/00o and Y2 = h(x), then we obtain the 
well-known identity 

I(0o) = E00ah(x) + b - logf( 

Co 2h(x), alog fo(x)) 

+ Varoo[h(x)] 

- O + o ah(x) + b- 
a log f(x)]2 (2.12) 

where a, b are constants depending on h and 0o and have the property of minimizing the 
last term in (2.12). Now consider a sequence of functions hi E X1. Note that (2.9), (2.10) 
are unaltered if h, is replaced by ahl + b where a, b are constants. Then by (2.12) we have 

2, -> I-'(0o) if and only if there are constants a,, b1 such that 

a log f(x) 
alhl(x) + b--> ao 

00o 
where convergence is in L2(fo0). 

This last result, together with the asymptotic distribution equivalence, noted earlier, of 
the k-L and generalized moment precedures, leads directly to the following: 
THEOREM 2.1. The k-L procedure applied to {G,(t) = g,t(x)} admits arbitrarily high 
asymptotic efficiency if and only if the closure in L2(f0o) of the space of functions 
2k=1 djgt,(x), where k, t,, t2, ..., tk are arbitrary, includes the true score a logfj(x)/00o. 

We note that as 00 is unknown, we generally would require the stated criterion to hold 
regardless of the value of 00 in 0. Due to questions concerning selection of the {tj} in 
practice, we generally would require that the theorem hold also if the {tj} are restricted to 
an arbitrary countable and dense grid T' C T. 

3. EFFICIENCY IN TESTING 

We consider first the problem of testing, in the context of goodness of fit, the hypothesis 
H: = 00 on the basis of a sample xi, x2,. ., xn from a true distribution specified by 0 
= 0i. As in the k-L procedure for estimation, we select k points t1, t2,... ,tk in T 
corresponding to the functions g, (x),... ,g,,(x). The asymptotic normality of 6(g), 
where g has entries g,(x) and % denotes empirical expectation, suggests the use of a 
quadratic distance 

DQ = n(%g - Eog)'Q(Zg - Eog), (3.1) 

where Eog is evaluated using 0 = 00 and Q is a nonnegative definite matrix of constants. 
Large values of DQ will constitute evidence against H. The observed level of significance 
(OLS) of this test is the statistic 

OLS = Poo(DQ > observed value), (3.2) 

so that small values of OLS constitute evidence against H. 
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One measure of the goodness of this test is its approximate Bahadur slope [a discussion 
of the exact Bahadur slope may be found in Brant (1982)], defined for 01 * 00 as 

c(0,) )-lim (- log OLS), (3.3) 

where OLS is the approximation to OLS obtained through use of the asymptotic distribu- 
tion of 6g in the calculation of (3.2). This measure is discussed in Bahadur (1960), where 
it is shown that for real 0 

c(01) c 2J(0o, 01), (3.4) 
where J(00, 01) is the Kullback-Liebler information number. Moreover, equality is ob- 
tained for the likelihood ratio test. Now g is asymptotically N (1 g, I/n) where 
%'g is evaluated under 0 = 01, and I = n Varo,(ig). Since DQ = nd + o(n), where 
d = (l,g - W0g)'Q(lg g - '0g) we have 

c(0,) = lim(-2logP(z'Az > ndQ)) (3.5) 
n--oo n 

where z consists of k independent N(0, 1) variables and A = %0Q$o, where %o = 
n Varo0(5g). Let Xi > h2 > * k* > k be the eigenvalues of A. Then by Lemma (2.4) of 
Gregory (1980) we have 

c(01) = lim [- log P ( Xz 2 ndQ) 
n-.-- oo n Z- 

j=! 

= dQ/XA. (3.6) 

It follows that the approximate Bahadur efficiency of the DQ test is 

dQ 
eB(0I) = 2J(0 0) (3.7) 

Now suppose 0 is defined on a real interval. Then of particular relevance in large 
samples is eB = lim0,-, eB(0)). Indeed, Wieand (1976) has shown that eB corresponds, 
under general conditions, to the limiting (a -> 0) Pitman effienciency. For the DQ test, 
Wieand's results hold provided there is a neighborhood N0o of 0o and a constant M such 
that for all n > M/ld 

Po,( D2/n - dQ > edQ) - 8 for all 01 E No (3.8) 
for every preassigned e > 0 and 0 < 8 < 1. Now, using Markov's inequality, we have 

-< 0, ID 
2 In - . 

Po,(ID /n - dQI edQ) 
Q C 

D /n (3.9) Q F^/ -^l.s). 
0 - '0 

~dQ(3.9) 

Setting Q = P'AP where A = diag(I, ..., k) and corresponding eigenvectors forming 
the columns of P, we have 

D /n = ih'Ah = 2Xjhj (3.10) 

and 

dQ= a'Aa = SX;aJ, (3.11) 

where hj and aj are the entries of h = P(%g - 0og) and a = P(lIg - 0og). Then (3.9) 
is 

310 Vol. 12, No. 4 



TRANSFORM METHODS 

k 
2 2 

EdQ, = i a < j 1Varo h hij * hj + aj 

1 X- ~jVaro,1 hj(x) 5 
'< 1 d XVar 2hj(x)(cnn h I + lajl (3.12) 

VnEQ ' 
' 

where hj(x) denotes one of the n terms constituting the average hj(x). Now since the 

hj(x)'s are simple affine transformations of the g,(x)'s (the transformations not involving 
81), and the aj's of the Ig,(x)'s, it follows that (3.8) will hold if 

%,[g(x)]2 ': M' for all 0, E No, and j. (3.13) 

This condition is very mild, and whenever it is satisfied, the efficiencies quoted will have 
the dual interpretation of Bahadur and Pitman efficiencies. 

Provided 0 is identifiable from E0(g), the DQ test is consistent. For 01 * 00 implies DQ 
-* oo. Furthermore, an "optimal" test amongst all DQ tests may be arrived at by choosing 
that Q which maximizes the (Pitman or Bahadur) efficiency eB. For real 0 we have, as 01 
-> 00o, 

2J(00, 01) - I(0o)(0 - 00)2 (3.14) 
and 

dQ - (0 -_ 0o)2 ag'Q ao0 (3.15) 

so that 

ac&~g'QO~g 
od Q0 aoo 

eB= * (3.16) 

Now, setting y = 2atg/a0o, we have 

y'Ay eB I(0) (3.17) 

and this is maximized by taking A = . It follows that the optimal Q is simply %o0 and 
the optimal DQ test is based on 

DQ = nZg - og)' o' (g - og), (3.18) 

with corresponding efficiency 

1(6o)( d6o 8 ? a6o) (3.19) 

The results of Section 2 now imply that (3.19) may be made arbitrarily close to one if and 
only if the score function a log fo(x)/d0o may be approximated in the mean-square sense 
by affine transformations of the g's. Finally, turning to the general problem of testing a 
simple hypothesis of a vector paramter 0, it is clear from the results above that the 
likelihood-ratio test applied to the asymptotic likelihood of g,, (x),..., g,k(x) will have 
arbitrarily high asymptotic efficiency compared to the likelihood-ratio test based on 
xi,..., x, if and only if a log fo / 00 can be approximated by means of linear combinations 
of the g,'s. 
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4. THE CONTINUOUS CASE 

The procedures in the previous two sections are based on a finite set tl, t2,..., tk of T 
and hence are of "discrete" type. However, the procedures have natural "continuous" 
analogues in the case where g,(x) is a measurable function of t. We treat only the testing 
context in any detail here; brief remarks on the estimation context appear at the end of the 
section. In particular, we shall discuss tests of the hypothesis H: 0 = 00 based on large 
deviations of 

D2 = nff ( g s, t )(tg, - o0g,)B(s,t)dsdt (4.1) 

for some positive semidefinite integrable kernel B(s, t). The asymptotic distribution of D2 
under H is, under general conditions, given by the distribution of 

D2 = fz(s)z(t)B(s,t)dsdt, (4.2) 

where {z(t)} is a zero-mean Gaussian process with 

Ez(s)z(t) = E(gsg,) - EgsEg, = K(s, t). (4.3) 

Now suppose B(s, t) is continuous. Then, by Mercer's theorem, 

B(s, t) = [ i(i(s)i(t), (4.4) 

where Ri, )i are the eigenvalues and corresponding orthonormal eigenvectors of the kernel 
B(s, t): 

ij4)i(t) = fi(s)K(s, t)ds. (4.5) 

We therefore have 

D2 = RiZ2, (4.6) 

where the 

Zi = z(s)Oi(s)ds (4.7) 

are independent N(O, 1) variables. Furthermore 

D2= SjLiZ2, (4.8) 

where 

i = 
fzn(s)(i(s)ds (4.9) 

and 

z,(s) = n(, gs- eogs). (4.10) 

The zi have zero mean and unit variance, and are uncorrelated. The results (4.6) and (4.8) 
may be noted as being analogous to the decomposition of the Cramer-von Mises statistic 
given by Durbin and Knott (1972). Consequently, each of the individual components, of 
(4.6) represents a certain aspect of the departure from H so that the corresponding 
estimates in (4.8) may be of value in much the same way as components in an analysis 
of variance. 
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Turning now to questions of efficiency, since D2 may be approximated by statistics DQ 
of discrete type, then in view of the results in the previous section, tests based on D2 should 
have high efficiency compared to the likelihood-ratio test. Perhaps more surprising [but 
see also (2.9) and (2.10) of FM-2] is that we may in general restrict ourselves to kernels 
B(s, t) of unit rank. Thus, taking B(s, t) = b(s)b(t), we have 

D2= (b(s)(cgs - 
ogs)ds) (4.11) 

and 

2 = 
b(s(s)(s)ds) - bX, (4.12) 

where 

b = f b(s)b(t)K(s,t)dsdt. (4.13) 

Let db = [f (Clgt - ~ogt)b(t)dt]2. Then, arguing essentially as before, we find 

lim (--logP(D2 > ndb)) = db (4.14) 
n-- oo n 

so that the limiting (01 -> 00) approximate Bahadur efficiency is given by 

[ b(t) et I 
eb = (4.15) 

I(0o) b(s)b(t)K(s, t)dsdt 

We may now apply a variational argument as in FM-1 to find that eb is maximized when 
b(t) = bo(t), where bo(-) satisfies 

Jbo(s)K(s,t)ds = 0 g, (4.16) 

which gives a maximal efficiency 

emax = I-'(0) bo(t) o dt 

a o(x) 
=1-(o)J 

f 
H h(x)dx, (4.17) 

where 

h(x) = fbo(t)g(x)dt. (4.18) 

We may now see from (4.17) that a sufficient condition for em,a = 1 is that (to within a 
constant) 

Ologe~(x) 
h(x) = alog () (4.19) d o0 

so that, in addition to (4.16), bo(t) satisfies 

a log fo(x) 
a00 = Jbo(t)g,(x)dt. (4.20) a ~~~~~~~~~~~(.0) 
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Actually (4.20) implies (4.16), as may be seen directly: 

f bo(s)K(s,t)ds 

= bo(s)o(gsg,)ds- jbo(s)6og,sog,ds 

= og,ft bo(s)gogsds - 
;og,of bo(s)g,ds 

o(gt log fe(x) +a log f) = 
H 8' aoo / + o''M e 0 a 0 o a 00 

f fo(x) = Jg,(x) o dx + 0 

0^'a 
a eg,. 

Hence the condition (4.20) is sufficient for emax = 1. It is worth noting that (4.20) will also 
be necessary whenever the family {f0(x)} is complete in the sense of having no unbiased 
estimator of zero. To see this, note that if two different h(x) functions give the same value 
for (4.17), then, by completeness, the difference of these functions must be a constant. 
To sum up, the continuous procedure (4.11) will be efficient provided that b(t) = bo(t) 
satisfying (4.20). 

Finally, we remark that while phrased in the context of testing, the results of this section 
relate directly to estimation as well. For consider a "continuous" moment-type estimation 
procedure given by the equation 

fb(t)(6g,- ;og,)dt = 0. (4.21) 

Then, a differential argument gives the asymptotic variance of the resulting estimator as 
the inverse of the expression (4.15) but without the I(00) factor. The arguments subsequent 
to (4.15) then apply nearly verbatim, and we find that the estimator corresponding to 
(4.21) attains, asymptotically, the Cramer-Rao bound, provided b(t) = bo(t) satisfying 
(4.20). The optimal bo(t) depends on the unknown 00 but, of course, may be estimated, 
and the resulting two-stage procedure is asymptotically efficient. It is worth noting that 
(4.21) may be written in the form 

f b(t)g,(x)dtd[F,(x) - F(x)] = 0 (4.22) 

and becomes, with b(t) = bo(t) satisfying (4.20), 

logfx) d[Fn(x) - F(x)] = 0, (4.23) 

which may be compared with the likelihood equation. 

5. SOME REMARKS AND APPLICATIONS 

1. 

The broader context for the considerations of this paper involves the Hilbert spaces 
L2(fA), 0 E 0. Finiteness of Fisher information means that for every 0 the score function 
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a logfo(x)/dO is an element of L2(A). The equality (2.12) may be viewed as providing 
the loss of information associated with replacing maximum likelihood by the procedure 
(2.9). With a,b chosen to minimize too[ah(x) + b - logf9(x)/d00]2, this quantity 
represents the squared distance between the score function and its projection onto the 
manifold associated with h(x) and measures the information loss. Hence, it may be seen 
that the efficiency of k-L-type procedures depends upon whether the score functions are 
approximable, in the manner of Theorem 2.1, in the spaces L2 (f). This statement involves 
a collection of Hilbert spaces (indexed by 0). However, it appears that there is no need 
to deal with the collection aspect per se, but only with the individual spaces. Often we will 
have a countable set of functions g,(x), which will be complete in all the spaces. In these 
cases the efficiency requirement will be met. However, note that completeness is not 
required - only that within each space the manifold spanned by the functions should 
include the score. 

2. 

If F is a distribution function having bounded support, say on (0, 2'r) for convenience, 
then, as is well known, the functions eix for integers n are complete in L2(F). Thus if the 
family {t} is supported on (0, 2'r), it follows that the integer coordinates of the empirical 
characteristic function will suffice for purposes of asymptotic efficiency in this case. 

3. 

Using straightforward arguments it is possible to establish that any countable collection 
of the functions eit where the values of t are dense in (-oo, oo) is complete in any space 
of the type L2(F). Using Theorem 2.1, we are therefore led to a proof of the efficiency 
of ecf procedures alternative to the proofs given in FM-1, FM-2. 

4. 

According to Theorem 4.12 of Kufner and Kadlec (1971), we have that the functions 
x, n = 0, 1,2,..., are complete in L2(fO) provided that 

fo(x) < ce-~IXl for xi > R. (5.1) 

Using Theorem 2.1, we therefore have 

THEOREM 5.1. Iffor every 0 E 0 there are c, 1, and R such that (5.1) holds, then the 
k-L procedure applied to the empirical moments, Si x4, where j = 1, 2,,.. , k, is 
arbitrarily highly efficient. 

Note that for this result to be useful, it is necessary that values of W;x" be known. 
The Gaussian case affords an interesting example. If x - N(Rx, 02), then it is well 

known that 

x 2 = " n-(21) (n - )! ) (5.2) 

and 

C^X2n+ I = 2n+ 2n-(2n + 1)! ( .)21+ 
1 

=0 2"(21 + 1)!(n - )! (5.3) 

for positive integers n. Hence the covariance structure, and the form of the k-L procedure, 
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for the first k empirical moments can be determined, though with some difficulty. A 
simpler approach may be based on the sufficiency of ;xi and 2x, . For k > 2, the density 
function for Ex-, j = 1, 2, ..., k, has (in obvious notation) the form 

hoe(;x, . . ., X) = hl)"(x i,, 2x)h)(X .c...,X | Xix, ), (5.4) 

where the last factor is independent of 0. It follows that the asymptotic normal form of the 
distribution for the empirical moments will also factor in this form and that the k-L 
procedure for k > 2 is in fact identical to the procedure for k = 2. This latter is now easily 
shown to reduce to the usual MLE procedure. 

5. 

The so-called positive stable laws provide a striking application of the methods pro- 
posed here. According to Lemma 2.1 of Brockwell and Brown (1981), the functions x-.~, 
j = 0, 1, 2,..., are complete in the spaces L2(F) associated with the positive stable laws 
having index a - P/(1 + 3). Further, the expected values [ibid., Equation (4)], and 
hence the covariance structure of the negative moments, are easily determined. A k-L 
procedure based on the negative moments is therefore easily implemented and will have 
arbitrarily high asymptotic efficiency. In fact we may note from the results of Brockwell 
and Brown that a very few moments generally suffice for high efficiency. 

6. 

For the empirical mgf we have the following quite general result: 

THEOREM 5.2. Suppose the family {fH} satisfies the conditions (5.1). Then the empirical 
mgf Ze"' admits arbitrarily high asymptotic efficiency. Further, the grid {t,} may be 
restricted arbitrarily close to the origin. 

The proof of this result is fairly straightforward. The condition implies that the functions 

x", n = 0, 1,2, ..., and e',.t E ( -, T) (for some T > 0) are elements of the space L2(Af). 
By Kufner and Kadlec (1971), Theorem 4.12, the functions x" are complete in L2(fo). 
However, these may be approximated by means of the e'-. In particular we have, using 
exponential bounds and the dominated-convergence theorem, 

etx _ 2 (tx 

lim a0n _h hi - ii ? 
t-0 t" J 

for all n - 0. Consequently the arbitrarily high asymptotic efficiency of the k-L procedure 
applied to We'r- follows from Theorem 2.1. 
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