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Abstract: If Xl, X 2 are independent with common density g symmetric about zero, then P ( X  l + aX 2 > O) = ½ for all real a. 
We provide a counter example to show that the converse is false and thus settle a question posed by Burdick (1972). 
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A substantial part of the theory of  characteriza- 
tion problems is devoted to the deduction of prop- 
erties of  a summand from properties of the char- 
acteristic funtion of the sum (see e.g. Lukacs (1970) 
or Kagan, Linnik and Rao (1973) for numerous 
instances). Because it is so simple to characterize 
symmetric distributions as exactly those with real 
characteristic functions, it is intriguing to note that 
as soon as summand inference is involved subtle- 
ties can begin to arize. The problem studied in 
Burdick (1972) and pursued here is an instance of  
this phenomenon. 

Suppose that X 1 and X 2 are independent ran- 
dom variables with common density g ( x ) .  If g ( x )  
is symmetric about the origin then we may readily 
see that 

e (  + ax2 > o) = ½ (1) 

for all real a. It is somewhat tempting to believe 
that characterizes symmetric densities. Burdick 
(1972) proved that if a fractional moment  

f l x : g ( x )  dx < oo (2) 

exists for some ~>  0 than (1) implies g ( x ) =  
g ( - x )  almost everywhere. Burdick then asked if 
the condition that a fractional moment exists could 
be omitted. In this note we construct an asymmet- 
ric g for which (1) holds and so provide a negative 
answer to Burdick's question. Our construction is 
based on a lemma of Freedman and Diaconis 
(1982). 

We first state the following result. 

Lemma.  Let  3(1, X 2 be independent with a common 
continuous distribution function G. Then 

P (  X 1 + a X  2 < O) = ½ for  all a (3) 

i f  and only i f  

~ l ( t ) ~ 2 ( t )  --- 0 f o r a l l t  (4) 

where ¢bl, and ¢1~ are the Fourier-Stielt jes tran- 
forms 

, l ( t ) = f  °° eitxd[G(eX)-G(-eX)] 
--OO 

= y i ,  d [  G ( y )  - G ( - y ) ]  (5)  
--oo 
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and 

,/,~(t) = f_~ e ' 'x d[G(e  -x)  + G ( -  e-X)] 

/2 = y - i t d [ G ( y ) + G ( - y ) ] .  (6) 

Proo|.  By the convolution formula (e.g. Feller 
(1970, p. 144)) we have that (3) is equivalent to 

f ~ _ ~ G ( - x )  d G ( x )  = ½, a * 0 ,  (7) 

together with 

o(0)=½.  (8) 

Further (7) is equivalent to the pair of conditions 

f :  [ G ( X ) - G ( - X ) ] d G ( x ) = O ,  a > 0 ,  (9) 
00 Ot 

s;[ (x) ( x)] G -- + G  - d G ( x ) = l ,  a > 0 . ( 1 0 )  
oo a 

But actually (8) is a consequence of (10): just 
make the change of variables x/a--) y and take 
the limit a ~ oo. Furthermore, (9) and (10) actu- 
ally are equivalent to each other. To see this, first 
write (9) and (10), respectively, in the forms 

(11) 

f0°°[G(X) + G ( - x ) ]  d [ G ( x ) - G ( - x ) ]  = 1  

(12) 

and then apply intergration by parts to (12); make 
the change of variables x /a  --, x; finally the change 
of notation a---, 1/a. Hence, altogether, (3) and 
(11) are equivalent. 

Next in (11) put a = e - t  and make the variable 
change x ~ e -y to get 

[G(et-,)-O(-e,-,)] 
--00 

• d [ a ( e - ' ) + a ( - e - Y ) ] - - O  forall  t. (13) 

But this is the convolution of G(eX) - G ( - e  -x)  
and G ( e - X ) + G ( - e  -~) whose Fourier-Stieltjes 
transforms are ¢x and 42- Consequently (13) is 
equivalent to (4). 
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Remark. The condition in the lemma that G be 
continuous may be omitted provided we replace 
(3) by 

P ( X  1 +otX 2 < 0) + ½ P ( X  1 + aX 2 = 0) = ½. 

The same proof continues to hold except that 
instead of using right-continuous G we use the 
symmetric form G( x ) = ½( G( x + ) - G( x - )) with 
appropriate conventions for the Steiltjes integral. 

Turning now to the counterexample let G have 
denstiy g so that 

£ Ol(t)  = ei'Xu(x) dx 
oo 

and 

~ 2  ( l )  = eitXo(x) dx 
- o o  

where 

u(x)=eX(g(e  x) + g ( -  eX)) 

and 

o(x) = e-X(g(e-X)-  s ( -  e-X)). 

Observe that u and v here are in correspon- 
dence with the even and odd parts of g (but need 
not in themselves be even or odd.) Now, according 
to the proof of I.emma 3 of Freedman and Di- 
aconis (1982), there exists a probability density-of 
the form 

/ =  c(A + 8/2) 

having characteristic function 

1=c(1, + '12) 

such that /1 >/0, f l  is real and vanishes off [ - 1, 1], 
and ~ is purely imaginary and vanishes off 
[-3,  -21u[2, 3]. 

The functions fl and f2 can be selected so that 
8 * 0, thus making sure that f is not symmetric. If 
we now set 

u(x )=c f l ( x  ) and v ( x ) = c S f 2 ( - x  ), 

the nonzero segments of the Fourier transforms of 
u and o will not overlap. On solving for g we 
obtain 

g(u) -- ~ I ul-X{ Yl(lnl u I) + (sgn u)S/2(ln[ul) ). 



By our construction we see that g is a density 
which satisfies (4) and therefore (3). Because ~ ~ 0 
we have that g is not symmetric, and thus the 
problem posed by  Burdick (1972) is solved. 

As a final observation, we note that by Burdick's 
theorem, g cannot possess a fractional moment. 
We can however show that g can posses a x-th 
logarithmic moment  for any particular value of K. 
This follows from an immediate change of varia- 
bles and from the fact that the construction of fx 
and f2 permits them to have moments of arbi- 
trarily large order. 

We do not know if it is possible to construct a 

density satisfying (1) which posses logarithmic mo- 
ments of all orders. 
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