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ABSTRACT

The asymptotically optimal test statistics of the form

= L Zn)U(Xi) for independent identically distributed observations
i=1

in the Neyman-Pearson context are derived under symmetry constraints

on the function U(\'), specifically for U(:) required to be symmetric or

antisymmetric (i.e. an even or odd function). The calculations are

based on the exact Bahadur slope and variational methods are required.

Expressions for the asymptotic relative efficiency of these procedures are

derived.

1. INTRODUCTION

Let X;,X5,...,X; be identically and independently distributed ran-

dom variables from density f. For the problem of testing H,: f =f,

versus H;: f =f;, the Neyman-Pearson optimal test statistic may be

written in the form
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T, = iz U(X) = [ U(x) dFq(x) (1.1)
where
U(x) = log 223 = (1.2)

Our object here is to consider the situation where the function U(*) in
(1.1) is subject to symmetry constraints, specifically, the cases where
U(") is required to be an even or an odd function; it turns out that these
two cases are not of similar difficulty and in the odd case, only an
asymptotic treatment is possible. Our results are given in the theorem

and lemma of the following section.

As one example of how constraints such as those cited may arise,
let ¢y (t) = [el™dF,(x) be the empirical characteristic function, and note
that by Parseval’s theorem T, may be represented in the form
B = fcn(t) dW(t). In this context it may be of interest to determine
the optimal real part and imaginary part based test statistics of the
type T3 = [Rec,(t)dW(t) and T = [Imc,(t)dW(t), both of which

are of the form (1.1) but with U(-) now being symmetric (even) and
antisymmetric (odd) respectively.

In the context of a simple null hypothesis and simple alternative,
asymptotic optimization may be suitably effected through the (exact)
Bahadur slope. For some helpful discussion and references, see
Feuerverger (1987).

2. THE RESULTS

Our principal result is the following:

Theorem: For testing Hy: f = f, versus Hy: f = f; the asymptotically

(n—00) optimal constrained test statistic of the form (1.1) is given:
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(i) in the symmetric case, but provided that f;(x)+ f;(—x) and
fo(x) + f,(—x) are not almost everywhere equal, by

hio) + f1<~x)] : B

e [fo(x) ()

(ii) in the antisymmetric case, but provided that f;(x) — f,(x) is not an
even function, by

U(x) = =+ log R(x) (2.2)

where

(%) + V(e (X)) + 41(x) fo(—x)

R‘(x) == 2'fo(X) ’ (2'3)
f4(x) = f;(x) — f;(—x), and ¢ is the unique positive root of
J VIR + 47 ,()f(—x) dx = 2. (2.4)
When f;(x) is even, the solution may be taken as
fo(_x)
U(x) = + log T (2.5)

Proof. We consider first the antisymmetric case (ii) where U(*) is con-

strained to be an odd function and write U(*) in the form
U(x) = V(x) — V(—x). (2.6)
Then

T, = 5[Ve0) = V=) (27)
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has, under H, and H, respectively, expectations

Eo =EoTy = [[V(x) — V(—x)Jf,(x) dx (28)
énd

By =E Ty = [[V(x) = V(—)] f;(x) dx (2.9)

and we may require E, T, < E;T, so that large values of T, constitute
evidence against H,. Then by a theorem of Bahadur (see Serfling (1980),
p-337) the exact slope of T, is

lim |— % log Py [Ta > E4] |, (2.10)

D =5 00

and by Chernoff’s large-deviation theorem (ibid pp.326-328) this
= ~2log inf [ V= V=0 =Bdp (3 dx. (2.11)
We thus seek to minimize
JeOB =Vi=x)-Bi) ¢ () gy (2.12)
subject to the additional constraint
JeW V=Bl V() —E;] f,x) dx =0  (2.13)

obtained by differentiating in z in (2.11). There are now two cases which
arise according as f(*) is or is not an even function. We consider first

the case where f;(*) is not even. In this case we may require that

E, = [[V(x) — V(—x)] f;(x) dx = 1 : (2.14)



AN ASYMPTOTIC NEYMAN-PEARSON TYPE RESULT 1561

thus fixing the scale of V. In the event that (2.14) violates the assump-
tion E, < E; we would take instead E; = —1 with only minor changes

resulting.

We shall thus extremize (2.12) subject to the constraints (2.13) and
(2.14). Let z, V(x) be the required solution and introduce variants 6z
and 6V(x). Then by (2.14) we must have

J18V(x) = 6V(=x)] 1,(x) dx = 0. L eae
Similarly (2.13) gives (ignoring second order terms)
J V0= [5 [VA(x) — 1]% + 8VAG) [o(VAR) — 1) + 1]] fo(x) dx = O
(2.16)

where we have introduced the notations VA(x) = V(x) — V(—x) and

6VA(x) = 6V(x) — 8V(—x). This relation is seen to give &z in terms of 6V

but plays no further role below. Next, introducing the variants in (2.12),
ignoring second order terms, and applying the standard argument, we
have that the first order term must be always zero since (2.12) is taken
to be already at its maximum; using (2.13) the resulting relation may be

written as
[e2(V0 = 1) gvA(x) £ (x) dx = 0. (2.17)
Rewriting (2.15) and (2.17) in the forms
JoV(x) [f1(x) — f1(—x)] dx =0 (2.18)
and

JVE) [fo(x) 2V W=D — g () (VW=D dx = 0, (2.19)
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we see that [fy(x) e2(ViX)=1) _ fo(=x) 2=V - 1)] must be orthogonal
to every function orthogonal to f;4(x) = f,(x) — f; (—x) so that

fo(x) e* (VW =1 _ g (Lx)ex (VA0 =1) = 5., A(y) (2.20)

where (a,z) must be chosen to satisfy (2.13) and (2.14).

Let now ¢ =a-e® so that (2.20) becomes
fo (%)™ ) — £, (—x) eV W) = cfh(x), © (2.21)

and observe next that this may be cast as a quadratic equation in the
unknown eZVA(x), which must be positive; this leads to the solution

et (x) + V(e ())” + 4£o(x)fo(—x)
2:f6(x)

VA(x) = % log (2.22)

Observe further that if [ dx [VA(x) — 1] is applied to (2.20) then in view
of (2.13) we obtain

- f P=VEE) = 1) [VA(x)—l] fo(—x) dx = a-f [VA(X) - 1] f(x) dx = 2-a

(2.23)

where we have used (2.14). This together with (2.13) establishes
—2 log (a) as the maximum attainable slope. On the other hand, if
(2.22) is substituted in (2.12) we obtain

— 2 log % e’ f’\/(C'f}l\(x)){" + 4, (x)fo(—x) dx as an alternate expres-

sion for that slope and equating the two expressions leads to the equa-
tion (2.4) for the constant c. The factor of z in (2.22) has been omit-
ted from the expression (2.2) without consequence.
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In the case that f,(x) is even, E; =0 and the constraint (2.14)

must be replaced by E, = —1. The result stated for this case follows

by appropriate modifications to the argument.

Finally, the symmetric case (i) can be treated in the manner above;
the calculations that result are somewhat simpler and lead to (2.1).
Alternatively, the result for this case follows more easily as a simple
consequence of the finite sample optimality result given in the lemma
stated below. u

In the case that U(‘) is even, the test statistic is invariant as
(Xi,...,Xp) ranges over the 2" possible sign changes of the X’s; the maxi-
mal invariant in this case is just the vector of absolute values

n
(il ..., X.]) and has density 11 [f(xi)+f(—xi)]. The Neyman-
i=1

Pearson lemma then applies to give the following elementary result:

Lemma: For arbitrary, fixed sample size n, the optimal statistic of
the form (1.1) for testing H, versus H; based on a symmetric U(*) is
given by (1.2).

The result for odd U() however appears not to have any finite
sample interpretation or analogue.

Finally, the asymptotic relative efficiency of the even and odd
based tests relative to the Neyman-Pearson test is of interest, and may
be taken to be the ratio of the respective Bahadur slopes. Now the
exact slope of the likelihood ratio test is well known to be twice the
Kullback-Leibler information number so that we obtain immediately,

for the even case, an efficiency of

oo fy (X) + fi (—X)
[0 + f1(=x) Lo [m] -
- 9 . : (2.24)
[ f1(x) log - dx

“eo fo(x)
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To obtain an expression for the asymptotic efficiency in the odd case,
we note that when f;(x) is not even, the slope is given by

—2loga = 2(z — logc). One expression for z may be obtained on sub-

stituting (2.22) in (2.14) and results in the representation

- 1) + VIERE) + 472 (x)fo(—)
2_{0 f1(x) log 2 1.) dx

e = (2.25)

_j;o f1(x) log 223 dx

for the efficiency where c is the positive root of equation (2.4). How-
ever, when f;(x) is even, the corresponding calculations show that the
asymptotic efficiency must be taken as

— 2 log oj?‘\/'fo(x)fo(—x) dx
e = = ; (2.26)

s f1(x)
_{o f1(x) log () dx
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