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Abstract. We develop methodology for conducting inference based on record values and record times derived

from a sequence of independent and identically distributed random variables. The advantage of using information

about record times as well as record values is stressed. This point is a subtle one, since if the sampling distribution

F is continuous then there is no information at all about F in the record times alone; the joint distribution of any

number of them does not depend on F. However, the record times and record values jointly contain considerably

more information about F than do the record values alone. Indeed, in the case of a distribution with regularly

varying tails, the rate of convergence of the exponent of regular variation is two orders of magnitude faster if

information about record times is included. Optimal estimators and convergence rates are derived under simple,

speci®c models, and shown to be surprisingly robust against signi®cant departures from those models. However,

even under our special models the estimators have irregular properties, including an unde®ned information

matrix. To some extent these dif®culties may be alleviated by conditioning and by considering the relationship

between maximum likelihood and maximum probability estimators.
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1. Introduction

Some statistical data are most easily accessed in terms of record values. That is to say, a

particular data point is archived for posterity if it exceeds all others recorded in the past,

but perhaps is not stored so accessibly otherwise. Indeed, data that are not records are

sometimes not available at all. The times achieved in athletic events are a case in point,

although of course one is then interested in the equivalent problem of minima rather than

maxima. Such data have been analyzed as record values of sequences of independent and

identically distributed random variables; see particularly Tryfos and Blackmore (1985),

and also De Haan and Verkade (1987) and Smith (1988) who looked at independent

observations with a trend. Related analyses of sporting events have been conducted by

Chatterjee and Chatterjee (1982), Morton (1983) and Ballerini and Resnick (1985, 1987).

Record value data arise naturally in a variety of other contexts. For example, Smith

(1988) noted that some hydrological and materials-testing data are of this form, and

similar data also arise in real-time machine monitoring, where only record values are

stored. There is a particularly extensive literature on the study of record values and related



data in terms of stochastic processes, to which two major contributors have been Shorrock

(1972, 1973, 1974, 1975) and Resnick (1973a,b,c; 1975). A thorough account of major

aspects of the stochastic theory of records may be found in Chapter 4 of Resnick (1987).

Contributions of a more statistical nature are discussed for example by Smith and Miller

(1986) and Smith (1988).

Our interest in this topic was aroused by a seminal paper of Berred (1992), who

(apparently for the ®rst time) considered estimation of tail parameters from record value

data. There are at least two striking aspects to Berred's work. First of all, his estimates of

the exponent of regular variation are based solely on record values, not at all on inter-

record times, and indeed the best-performing of his estimates depends only on the most

recent record value. Secondly, despite Berred's estimators being particularly close to those

developed by other authors (e.g. Hill 1975, Pickands 1975) based on a full set of data,

Berred does not need to employ a ``smoothing parameter'' in their construction. (A reader

familiar with the analysis of statistical properties of Hill-type estimators, for example that

given by Hall (1982) and CsoÈrgoÂÂ, Deheuvels and Mason (1985), will be aware that those

estimators do not achieve good performance unless they are con®ned to a relatively small

number of extreme values.)

It turns out that the best-performing of Berred's (1992) estimators is asymptotically

equivalent to a maximum likelihood estimator under a particularly simple model for

regular variation, assuming that only record value data are available; and that this

estimator is remarkably robust against even substantial departures from the model.

However, the estimator's convergence rate improves strikingly, by two orders of

magnitude, if information about inter-record times is incorporated in an appropriate way.

This is remarkable, since there is no information in record times themselves about the

sampling distribution. If the sampling distribution F is continuous then the joint

distribution of record times does not depend in any way on F. Nevertheless, there is crucial

information about F in the joint distribution of inter-record times and record values, and it

is this which makes possible the substantial improvement in convergence rates.

The estimators that attain this good performance are based on maximum likelihood

estimators under speci®c models, but have such a high degree of robustness that they

continue to enjoy excellent properties even when those models are signi®cantly in error.

However, even under the special models the maximum likelihood estimators are of

particular interest because of their irregular features. The information matrix is not well-

de®ned, and the usual CrameÂr±Rao theory is inapplicable, although the estimators are

asymptotically equivalent to those derived by the maximum probability method and so

have asymptotically minimum variance among estimators that are asymptotically Normal.

Somewhat similar dif®culties in a related setting have been noted by Smith (1985).

All these results are achieved without any need for ``statistical smoothing.''

Nevertheless, unlike earlier work our results do demonstrate the effect that departures

from the assumed model (which produced the estimators in the ®rst place) have on bias,

and we note that this impact can be reduced by smoothing appropriately. We choose the

manner of departure from the central model so as to produce bias terms of an explicit

polynomial order, which may be readily compared with the error-about-the-mean term.

Our primary emphasis is on inference in models whose tails decrease in a polynomial
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fashion, although related work for exponentially decreasing tails will be mentioned.

Results are similar in both cases, except that in the context of exponential tails there is a

greater variety of situations to consider and so a thorough examination is more tedious.

Note particularly that the distribution of the number of record values observed in a

sequence of n independent and identically distributed, continuous random variables does

not depend at all on the sampling distribution, and so the number of record values available

for inference is not affected by assumptions about the sampling distribution.

Our main results are described in Section 2. Numerical work con®rming their features

and elucidating small-sample properties is presented in Section 3. All technical arguments

are deferred to Section 4.

2. Main results

2.1. Summary

We begin by describing the type of data available. Let Y1; Y2; . . . and L�1�; L�2�; . . .
denote the consecutive record values and record times, respectively, observed in a

sequence of independent random variables fX1;X2; . . .g with common continuous

distribution function F. By convention, L�1� � 1 and Y1 � X1, and then for i � 2,

L�i� � inffj > L�iÿ 1�: Xj > XL�iÿ1�g, and Yi � XL�i�. Assume that the ®rst N of the Yi's

are observed.

Two cases may be identi®edÐthat where N denotes the number of records in a data

sequence fX1; . . . ;Xng of given length n, so that N is a random variable; and that where N
is predetermined. Statistical inference in the latter context has been considered before. See

Berred (1992).

Sections 2.2 through 2.4 treat inference based on distributions with regularly varying

tails, although we usually interpret the term ``regularly varying'' very generally, not in the

restricted, classical sense discussed by, for example, Bingham, Goldie and Teugels (1987).

Only in Section 2.3 do we demand a strict form of regular variation, and that is solely for

the purpose of motivating estimators, not for data modeling. Our main interest is in

estimating the shape parameter, a, of a distribution function F given by

F�x� � 1ÿ xÿaK�x� where log K�x� � o�log x� �2:1�

as x!1, and we do not insist that K be slowly varying. Similar methods and results in

the case of distributions with exponentially decreasing tails are addressed in Section 2.5.

Section 2.2 discusses estimators based solely on the record values Y1; Y2; . . . ; while

Sections 2.3 and 2.4 study inference when both the Yi's and the record times L�i� are

available. Section 2.3 treats maximum likelihood estimation under the special model

F�x� � 1ÿ dxÿa, principally for the purpose of producing estimators whose special

properties are later investigated under very general models in Section 2.4.

The estimators obtained assuming the special model are consistent under particularly

general conditions. In fact, if both record values and record times are employed then our
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estimator of a converges at rate Op�Nÿ1�, under even the very mild assumption (2.1).

The convergence rate equals Op�Nÿ3=2� if we ask of K in (2.1) that K�x� �
const.� Of�log x� ÿ 1=2g as x!1. In general, failure of the special model in¯uences

principally the bias of the estimator, and does not have a ®rst-order effect on variance,

which continues to be close to its optimum.

The convergence rate Op�Nÿ3=2� is a marked improvement on the optimal rate of only

Op�Nÿ1=2� available using record values alone. However, the constant multiplier of

variance is greater by a factor of 12 in the case where the actual rate is faster, indicating

that the estimator based on both record values and record times may not always have

superior performance in small samples.

2.2. Estimators based on record values alone

We begin by suggesting ad hoc estimators based on weighted averages of logarithms of

record values, and describe their performance under models that are substantially more

general than asking that the upper tail of F be regularly varying. Then we observe that the

best-performing of these estimators may be motivated as (approximately) a maximum

likelihood estimator under a restricted model for regular variation, thereby explaining its

relatively low variance. Nevertheless, under our more general models the latter estimator

has bias similar to that of many competitors that are based on weighted means of logged

record values. Furthermore, its variance, but not its bias, is robust against departures from

the model.

One class of estimators of a may be de®ned as follows. Given a nonnegative, piecewise-

continuous function w on [0, 1] with left- and right-hand limits everywhere, and not

identically zero, de®ne wi � w�i=N� for 1 � i � N, and let

~a �
XN

i�1

iwi

 !, XN

i�1

wi log Yi

 !
;

the inverse of a weighted sum of logged record values. Consider also the version of ~a that

arises when wN � 1 and wi � 0 otherwise; call the resulting estimator ~a0. This is one of the

estimators proposed by Berred (1992), and of all the estimators that he considered it has, in

the context of his assumptions, least asymptotic variance. One might suggest that judicious

choice of w in the de®nition of a should produce an estimator that outperforms ~a0, but this

argument does not take into account the particularly high positive correlation among

successive record values.

We assume of the distribution F that

1ÿ F�x� � xÿaK�x� where log K�x� � c�log x�b � of�log x�bg �2:2�

as x!1, with a > 0, 0 � b51 and ÿ15c51. This condition is more general than

restrictions imposed by Berred, and encompasses cases where the contribution of bias
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terms to mean squared error dominates that deriving from variance. To describe these

properties, let

Ix �
Z 1

0

uxw�u�du; J �
Z 1

0

Z 1

u

w�u�du

� �2

du;

b � ÿca1ÿbIbIÿ1
1 and s2 � a2JIÿ2

1 :

Theorem 2.1: Assume condition (2.2), and let z denote a random variable whose
asymptotic distribution is Normal N�0; 1�. (a) If N is non-random then we may write
~aÿ a � bNbÿ1 � sNÿ1=2z� op�Nbÿ1 � Nÿ1=2� as N increases. (b) If N equals the number
of records in a sequence of n independent data values Xi, then ~aÿ a �
b�log n�bÿ1 � s�log n�ÿ1=2z� opf�log n�bÿ1 � �log n�ÿ1=2g as n increases. (c) The
asymptotic variance s2 always exceeds a2, and indeed ~a never achieves the asymptotic
performance of ~a0, which in context (a) above satis®es ~a0 ÿ a � bNbÿ1�
aNÿ1=2z� op�Nbÿ1 � Nÿ1=2�, with an analogous formula (where log n replaces N) in
case (b).

The superior performance of ~a0 is more easily appreciated when it is noted that, under

the restricted model F�x� � 1ÿ dxÿa for a constant d, ~a0 is asymptotically equivalent to

the maximum likelihood estimator based solely on the record values �Y1; . . . ; YN�. Indeed,

under this model, and regarding N as ®xed, the random variables in the sequence

a � flog�Y1=d1=a�; log�Y2=Y1�; log�Y3=Y2�; . . . ; log�YN=YNÿ1�g

are independent and exponentially distributed with mean aÿ1, whose maximum likelihood

estimator (for the data in a) is the sequence mean,

Nÿ1 log�Y1=d1=a� �
XNÿ1

i�1

log�Yi�1=Yi�
( )

� ~aÿ1
0 ÿ �aN�ÿ1

log d:

Under the restricted model F�x� � 1ÿ dxÿa the parameter d cannot be estimated

consistently from record values alone.

2.3. Maximum likelihood estimation using both record values and inter-record times

We temporarily assume the restricted model F�x� � 1ÿ dxÿa, say for x � x0. Let

f �x� � daxÿaÿ1 denote the corresponding probability density. Given integers 1 � m � n
and 1 � l�1�5 � � �5l�m� � n, and real numbers y1; . . . ; ym satisfying x0 � y15 � � �5
ym51, write

l1fa; djm; l�2�; . . . ; l�m�; y1; . . . ; ymgdy1 . . . dym
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for the probability that N � m, L� j� � l� j� for 2 � j � m, and Yj 2 �yj; yj � dyj� for

1 � j � m. If N equals the number of record values in a sequence of n independent

data, and so is random, put L�N � 1� � n� 1; and if N is nonrandom, take

L�N � 1� � L�N� � 1. (This notation will greatly simplify our formulae, but to avoid

ambiguity it should not be assumed when we make assertions about quantities such as

EfL�i� 1� ÿ L�i� ÿ 1g, for general i.) Then l1 � R1l2, where R1 denotes a function of

the data alone, not depending on a or d, and

l2fN; L�2�; . . . ; L�N�; Y1; . . . ; YNg �
YN
i�1

f f �Yi�F�Yi�L�i�1�ÿL�i�ÿ1g: �2:3�

Indeed, l2 is proportional to the likelihood of V � �L�2�; . . . ; L�N�; Y1; . . . ; YN�,
conditional on �N; L�2�; . . . ; L�N��, since the marginal distribution of the latter vector

does not depend on the unknown F and so is subsumed into R1.

The fact that the parametric form assumed of F is only valid for x � x0 is problematical.

Even if that form were available for the entire distribution, the value of x0 would be a

function of unknown parameters and so inference would be awkward. This dif®culty may

be alleviated, but not eliminated, by conditioning on the smallest data value, Y1. The

likelihood of V conditional on Y1 is given by R2l3, where R2 does not depend on a or d,

and

l3fN; L�2�; . . . ; L�N�; Y1; . . . ; YNg � F�Y1�L�2�ÿ2
YN
i�2

f f �Yi�F�Yi�L�i�1�ÿL�i�ÿ1g:

De®ning l � log�l3

QN
i�2 Yi� we have

l�a; d� �lfa; djN; L�2�; . . . ; L�N�; Y1; . . . ; YNg

� �N ÿ 1� log�ad� �
XN

i�1

fL�i� 1� ÿ L�i� ÿ 1g

� log�1ÿ dYÿai � ÿ a
XN

i�2

log Yi:

Differentiating twice with respect to a and d we deduce that l�a; d� is concave in both

variables, and so is maximized at a unique point �â, d̂� which solves the following two

equations in �a, d�:

XN

i�1

fL�i� 1� ÿ L�i� ÿ 1g�1ÿ dYÿai �ÿ1 � L�N � 1� ÿ 2; �2:4a�
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�N ÿ 1�aÿ1 �
XN

i�1

fL�i� 1� ÿ L�i� ÿ 1g�1ÿ dYÿai �ÿ1
log Yi

�
XN

i�1

fL�i� 1� ÿ L�i�g log Yi ÿ log Y1: �2:4b�

This account is an oversimpli®cation, since it ignores the fact that F�x� � 1ÿ dxÿa

must be nonnegative. Even if the latter parametric form were available for the entire

distribution we would require d1=a � x0, and hence we should impose the restriction

d̂1=â � Y1 on the estimators �â; d̂�. Of course, with probability tending to one as N
increases this inequality will be satis®ed, but nevertheless the solution of equations (2.4) is

not necessarily the strictly-de®ned maximum likelihood estimator of �a; d�. This dif®culty

makes itself felt by rendering the (unconditional) information matrix inde®nite, as we shall

show in the next paragraph. Additionally it makes invalid the standard argument for

employing the inverse of the information matrix as an asymptotic variance bound,

although as we shall shortly see there are ways of circumventing this problem.

We claim that each element of the information matrix is in®nite. To appreciate why, let

us consider the simpler case where N is non-random. There, with Mi � L�i� 1� ÿ L�i� ÿ 1

we have

ÿE�q2l=qa2� � aÿ2�N ÿ 1� �
XNÿ1

i�1

EfMi�1ÿ dYÿai �ÿ2dYÿai �log Yi�2g:

Now, E�MijY1; Y2; . . .� � �dYÿai �ÿ1 ÿ 1 for i � 1. (See Section 5 of Shorrock (1972), and

note that in identities such as this we are not using the special notation for MN .) Hence,

ÿE�q2l=qa2� � aÿ2�N ÿ 1� �
XNÿ1

i�1

Ef�1ÿ dYÿai �ÿ1�log Yi�2g: �2:5a�

Similarly,

ÿE�q2l=qd2� � dÿ2�N ÿ 1� � dÿ1
XNÿ1

i�1

Ef�1ÿ dYÿai �ÿ1Yÿai g; �2:5b�

ÿE�q2l=qaqd� � ÿdÿ1
XNÿ1

i�1

Ef�1ÿ dYÿai �ÿ1
log Yig: �2:5c�

The ®rst term in each of the series on the right-hand sides of equations (2.5) is in®nite. This

problem is not alleviated by constructing the information matrix in its alternative form,

E�WWT�, where W � �ql=qa; ql=qd�T .

However, all subsequent terms (i.e. those corresponding to i � 2) are ®nite. Thus, if in

conducting inference we were to suppress the ®rst record value Y1 (which is only a record
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by convention, and not in the more accepted sense of exceeding the most recent record)

then we would obtain a ®nite information matrix. Denote the corresponding values

of ÿE�q2l=qa2�;ÿE�q2l=qd2� and ÿE�q2l=qaqd� by a1; a2 and a3, respectively.

Since, as i!1, Ef�1ÿ dYÿai �ÿ1�log Yi�kg � �aÿ1 log i�k for k � 1; 2, and

Ef�1ÿ dYÿai �ÿ1Yÿai g ! 0, then a1 � 1
3
aÿ2N3; a2 � dÿ2N and a3 � ÿ 1

2
aÿ1dÿ1N2.

Inverting the resulting matrix we ®nd that the asymptotic variances of â and d̂ are

suggested to be given by

asymp. var�â� � 12a2Nÿ3; asymp. var�d̂� � 4d2Nÿ1; �2:6�

and the correlation to be 31=2=2. The indicated asymptotic variance of â is two orders of

magnitude smaller than that of the estimators considered in Theorem 2.1, being of order

Nÿ3 rather than Nÿ1.

One way of overcoming the problem of an ill-de®ned covariance matrix is to calculate

the conditional information, given Y1, thus removing the expectation operator from the

®rst term in each series on the right-hand sides of equations (2.5). We also remark that for

purposes of inference conditional on the record times, the expectations in (2.5) may be

evaluated conditionally on the observed record time values; the required conditional

distributions are readily derived from the joint distribution results given in Shorrock

(1972).

Next we note that, even though the unconditional information matrix is not well-

de®ned, the maximum likelihood estimators do enjoy optimal properties.

Theorem 2.2: Assuming the model 1ÿ F�x� � dxÿa for all suf®ciently large x, the
estimators of a and d de®ned by solving equations (2.4) are asymptotically equivalent to
maximum probability estimators, and so enjoy minimum variance among asymptotically
Normal estimators.

The theory of maximum probability estimators was developed by Weiss and Wolfowitz

(1967, 1973, 1974). A proof of Theorem 2.2 is relatively straightforward and so is not

given here. That our estimators are indeed asymptotically Normal follows from Theorem

2.3 below.

We conclude this section by noting an approximation to the likelihood equations (2.4)

which allows d to be eliminated. Put Q1 � L�N � 1� ÿ 2,

Q2 �
X

1�i�N

fL�i� 1� ÿ L�i�g log Yi ÿ log Y1 ÿ �N ÿ 1�aÿ1:

By Taylor expansion, equations (2.4) may be written as

XN

i�1

Mi�1� dYÿai � � Q1 � Op�1�;
XN

i�1

Mi�1� dYÿai � log Yi � Q2 � Op�1�:
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(Here we have used the fact that
P

1�i�N MiY
ÿ2a
i log Yi � Op�1�, which may be

established under the model F�x� � 1ÿ dxÿa.) If we ignore the Op�1� terms above then

the approximate likelihood equations are linear in d, which may then be eliminated in the

obvious way. This leads to the following equation in a alone:

�N ÿ 1�
XN

i�1

MiY
ÿa
i log Yi

 !
ÿ

XN

i�2

log Yi ÿ �N ÿ 1�aÿ1

( ) XN

i�1

MiY
ÿa
i

 !
� 0:

�2:7�

The left-hand side is not a convex function of a, but with probability tending to 1 equation

(2.7) has a solution �a in the neighborhood of the true value of a which, under the model

F�x� � 1ÿ dxÿa, admits the same ®rst-order limiting behavior as â. Indeed, like â, �a is

consistent for a under conditions that are substantially more general than those of our

special model, as we shall show in the next section.

2.4. Asymptotic theory under general models

We begin by demonstrating asymptotic Normality of the estimators �â; d̂�, de®ned as the

solution of equations (2.4), under models that are substantially more general than that

which lead to (2.4). We ask that for constants a; a1; d > 0 and ÿ15d151,

1ÿ F�x� � xÿaK�x� where K�x� � d�1� d1�log x�ÿa1 � of�log x�ÿa1g�: �2:8�

Our next theorem shows that the asymptotic normality anticipated by Theorem 2.2 holds

under this condition, which is considerably more general than that assumed there. In fact,

if a1 >
1
2

then the estimators â and d̂ are asymptotically Normal with means a and d and

variances given by (2.6).

De®ne ba � ÿ6a1ÿa1 d1�1ÿ a1�ÿ1
and bd � ÿ4aÿa1 dd1�1ÿ a1�ÿ1

if 05a1 � 1
2
, and

ba � bd � 0 otherwise.

Theorem 2.3: Assume condition (2.8), and let �z1; z2� denote random variables with a
limiting bivariate Normal distribution having zero means, unit variances and correlation
coef®cient 31=2=2. (a) If N is non-random then we may write

âÿ a � baN
ÿ�a1�1� � 121=2aNÿ3=2z1 � op�Nÿ�a1�1� � Nÿ3=2�; (2.9a)

d̂ ÿ d � bdNÿa1 � 2dNÿ1=2z2 � op�Nÿa1 � Nÿ1=2� (2.9b)

as N increases. (b) If N equals the number of records in a sequence of n independent data
values Xi, then (2.9) continues to hold provided that N is replaced throughout by log n:

It may also be proved that under (2.8) there exists, with probability tending to 1, a
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solution �a of equation (2.7) in any given neighborhood of a; and that any sequence of such

solutions satis®es (2.9a), with �a there replacing â.

For relatively small values of a1, where bias dominates error about the mean, it is

possible to reduce the effect of bias and reduce the order of mean squared error by

employing only relatively extreme order statistics in the construction of â. In particular,

one could parallel arguments of Hall (1982) in the context of estimating a from a full data

set. However, there are at least three reasons for not persuing that matter in the present

context. First, determination of the optimal cut-off demands estimation of second-order

terms in (2.8), and in the context of inference using record values one typically has

relatively little data with which to do this. Secondly, if it should happen (as is commonly

assumed in the case of a full data set) that the function K in (2.8) satis®es

K�x� � d � O�xÿe� for some d, e > 0, then (2.8) holds with a1 >
1
2

and so the bias

contribution is negligible. And thirdly, even in the extreme case a1 � 0 the estimator â
converges at rate Op�Nÿ1� (see Theorem 2.4), so there is not a pressing need for such

modi®cation.

The ®rst terms on the right-hand sides of equation (2.9), i.e. those of orders Nÿ�a1�1�

and Nÿa1 , represent the dominant contributions to the biases of â and d̂, respectively. The

terms involving zi, and of orders Nÿ3=2 and Nÿ1=2 respectively, are the results of errors

about the mean. In each case these errors dominate those from bias if and only if a1 >
1
2
.

It is clear that as a1 gets closer to zero, the error in d̂ that results from bias increases

without bound until, in the limit a1 � 0, d̂ is no longer consistent. This comes as no

surprise, but it is perhaps unexpected that the same should not be true of the estimator of

a. Our next result investigates this matter further, and shows that both â and the estimator
�a de®ned by (2.7) admit a relatively fast convergence rate to a under very general

conditions.

Theorem 2.4: Assume condition (2.1), and let n � �aÿ e; a� e� denote any
neighborhood of the true parameter value a, where e > 0. Then with probability tending
to one there exists a solution �a of (2.7) which lies within n; and if �a � �aN denotes any
sequence of such solutions, �aÿ a � Op�Nÿ1�. The same rate of convergence applies to â,
the solution of equations (2.4).

2.5. Distributions with exponentially small tails

In many respects the situation here is similar to that for distributions with regularly varying

tails, and so we consider only the main features. In place of (2.1) or (2.2) let us assume that

1ÿ F�x� � c1 expfÿxaK�x�g where K�x� � c� 0�1�

as x!1, and a; c; c1 > 0. Curiously, in this setting a surprisingly minor modi®cation of

the estimator ~a de®ned in Section 2.2 is consistent for a, although it is so heavily biased

that it has a poor convergence rate. Indeed, de®ning here
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~a �
XN

i�1

wi log i

 !, XN

i�1

wi log Yi

 !
;

one may show that for a very wide range of choices of the weights, wi; ~a! a as N
increases. As in Section 2.2 the optimal choice of weights is wN � 1 and wi � 0 for

1 � i � N ÿ 1, and in that case, ~a � a� a�log c��log N�ÿ1 � opf�log N�ÿ1g.
Of course, ~a is no longer related to a maximum likelihood estimator of a, and the

logarithmic convergence rate that it exhibits can be substantially improved upon. The

approach suggested by work in earlier sections is to develop a maximum likelihood

estimator based on a speci®c model, and then determine the extent to which the estimator's

properties are preserved under departures from the model. While this method promises to

work well in many instances of distributions with exponentially decreasing tails, a detailed

account of its main features is complicated by the relatively wide variety of models

available. If the model depended only on shape and scale then it might be appropriate to

employ only two parameters, so that the assumed density of the sampling distribution

could be c1�a; c� exp�ÿcxa� where the function c1 was given. However, in other

circumstances c1 might not be expressible a priori as a known function of a and c, and so a

model involving at least three parameters would need to be ®tted. Nevertheless, the

convergence rates of estimators derived under such models are generally polynomial

rather than logarithmic, although the polynomials can include logarithmic factors. As in

the case of distributions with regularly varying tails, the rates improve if record times as

well as record values are included in the estimators in an appropriate way.

3. Numerical properties

The procedures discussed in Section 2 were implemented using the S statistical software

(Becker, Chambers and Wilks, 1988). Maximum likelihood estimation was implemented

in two distinct ways: ®rstly using a Newton-Raphson procedure based on equations (2.4),

with due attention to numerical stability and parameter boundaries, and secondly using a

successive grid search procedure based on the corresponding log-likelihood function. We

also implemented the estimator �a of equation (2.7), again using a Newton-Raphson

method, as well as the estimator N= log YN due to Berred (1992). Random vectors

�Y1; Y2; . . . ; YN� were generated from exponentially distributed random variables using

Proposition 4.1(ii) of Resnick (1987, p. 165); a description of this method is given in the

proof of Theorem 2.1 below. The corresponding vectors �L1; L2; . . . ; LN� were then

generated using the conditional geometric distribution for inter-record times (Shorrock,

1972, Section 5).

Table 1 summarizes our Monte Carlo trials for estimation of a by means of the Newton-

Raphson based MLE, Newton-Raphson solution for the estimate �a based on (2.7), and

Berred's estimator. For each combination of a � 1; 2; 5 and N � 5, 10, 20, we generated a

trial of 1000 samples from the distribution F�x� � 1ÿ dxÿa using the value d � 1. All

iterations were started at the known true values. In the case of the MLE's, only those trials
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for which the Newton-Raphson algorithm converged successfully to a value on the

d̂Yÿâ1 � 1 permissible region were used in computing the summary statistics; the number

of such successful trials (out of 1000) is shown in the ®nal column. For each Monte Carlo

trial we computed the mean, variance, and MSE for each of the three estimators. As may

be seen by comparisons with the asymptotic variance in (2.6), the trials behave more or

less as expected once N increases beyond the value 5, with the asymptotics becoming very

accurate for higher values of N. As may also be seen, the MLE outperforms the two other

estimators for all values of N tabulated. The results also suggest that bias is a negligible

problemÐat least when the model speci®cation is correct. Finally, we note that the

estimator �a of (2.7) converged successfully more frequently than did the MLE.

These Newton-Raphson based trials were augmented by Monte Carlo experiments

involving optimization of the log-likelihood function by means of a detailed successive

grid search algorithm. Table 2 provides the results of these MLE trials for the values

d � 1, a � 1; 2; 5 and N � 5, 8, 10, 12. For the experiments reported here our grid search

algorithm never failed to converge, but typically took more than ten times as long as

Newton-Raphson optimization.

Table 1. Summary of Monte Carlo trials for estimation of the parameter a by means of MLE (Newton-Raphson),

equation (2.7), and Berred's estimator.

Estimator a N Mean Variance MSE No. trials

MLE 1.0 5 1.143 0.287 0.307 608

10 1.0011 0.0147 0.0147 740

20 0.9962 0.00159 0.00160 795

2.0 5 2.29 0.82 0.91 561

10 2.025 0.065 0.066 723

20 1.993 0.0065 0.0066 815

5.0 5 5.84 6.32 7.03 603

10 5.054 0.47 0.477 738

20 4.988 0.043 0.043 818

Eqn (2.7) 1.0 5 1.71 2.04 2.54 836

10 1.150 0.098 0.120 956

20 1.025 0.032 0.0038 998

2.0 5 3.33 5.17 6.94 837

10 2.34 0.54 0.66 956

20 2.046 0.012 0.014 991

5.0 5 8.40 34 45 832

10 5.80 3.8 4.4 969

20 5.12 0.077 0.090 996

Berred 1.0 5 1.27 0.78 0.85 1000

10 1.111 0.16 0.17 1000

20 1.060 0.062 0.065 1000

2.0 5 2.52 2.09 2.36 1000

10 2.26 0.59 0.66 1000

20 2.11 0.26 0.27 1000

5.0 5 6.36 11 14 1000

10 5.63 3.7 4.2 1000

20 5.23 1.5 1.6 1000
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To save space, we do not report here the Monte Carlo results for estimation of d by the

two MLE procedures. In broad features, however, d proved to be much more variable and

so more dif®cult to estimate than a, with sample sizes in excess of N � 8 being required to

attain even tolerably accurate estimates. This is in accordance with the asymptotic

variance result (2.6) and so was not unexpected.

Finally, in order to assess performance of the estimators under departures from the

model, we implemented a Monte Carlo experiment by means of grid search for data from

the distribution F�x� � 1ÿ d�x2 � x�ÿa=2
. This distribution was chosen in part for

computational simplicity, but more importantly because it provides a high degree of

departure from the MLE model. The results for these simulations, given in Table 3, show a

marked degree of bias for a. (The estimates for d, of course, were entirely unreliable.)

Interestingly, the results for Berred's estimator (not included here) show that it possesses

less bias than the MLE in this case, for the sample sizes shown. This can be explained by

the fact that it uses only the largest value of Y, whereas the distributional distortion

introduced is greater at the lower end of values for the data. In practice, if the underlying

Table 2. Summary of Monte Carlo trials for estimation of the parameter a by means of MLE via successive

grid-search.

Parameter values N Mean Variance MSE No. trials

a� 1 5 1.12 0.23 0.24 200

d� 1 8 1.06 0.051 0.055 200

10 1.017 0.015 0.015 200

12 1.009 0.007 0.007 200

a� 2 5 2.50 0.85 1.10 100

d� 1 8 2.042 0.113 0.115 100

10 2.075 0.062 0.068 100

12 1.981 0.037 0.037 100

a� 5 5 5.64 4.76 5.17 100

d� 1 8 5.36 0.83 0.96 100

10 5.015 0.42 0.42 100

12 5.075 0.18 0.19 100

Table 3. Summary of Monte Carlo MLE via successive grid search for estimation of the parameter a in the

model F�x� � 1ÿ d�x2 � x�ÿa=2
.

Parameter values N Mean Variance MSE No. trials

a = 1 5 0.34 0.019 0.45 200

d = 1 10 0.34 0.018 0.45 200

15 0.43 0.017 0.34 200

a = 2 5 0.61 0.038 1.97 200

d = 1 10 0.66 0.060 1.85 200

15 0.75 0.063 1.61 200

a = 5 5 1.18 0.11 14 200

d = 1 10 1.33 0.18 13 200

15 1.85 0.34 10 200
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model is highly uncertain, one may wish to use estimators based on the larger record

values only, employing some form of ``statistical smoothing''; however, the ensuing lines

of enquiry are not pursued here.

Further details of the numerical properties of the procedures may be found in a technical

report available from the authors.

4. Proofs

4.1. Proof of Theorem 2.1

Put g � aÿ1;~g � ~aÿ1 and ~g0 � ~aÿ1
0 . It suf®ces to derive versions of the theorem for the

estimators ~g and ~g0. To this end, de®ne G�x� � ÿ logf1ÿ F�x�g and

H�x� � Gÿ1�x� � inffy : G�y� � xg. By Proposition 4.1 of Resnick (1987, p. 165), the

random variables Si de®ned by Yi � H�Si�, i � 1, are representable as Si �
P

1�j�i Zj,

where the Zj's are independent and identically distributed with densities eÿz, z > 0. By

(2.2), H�x� � egxK1�x� where log K1�x� � cgb�1xb � o�xb� as x!1. Therefore,

log H�x� � gx� cgb�1xb � o�xb�: �4:1�

Furthermore, since the wi's are bounded then

XN

i�1

wi

Xi

j�1

Zj

 !b

� Nb�1Ib � op�Nb�1�:

From these results we may deduce that, with Vi � Zi ÿ 1 and

D �
XN

i�1

Vi

XN

j�i

wi;

we have

XN

i�1

wi log Yi � g
XN

i�1

iwi � gD� Nb�1cgb�1Ib � op�Nb�1�:

This expansion and the fact that
PN

i�1 iwi � N2I1 � op�N2� permit us to conclude that

~gÿ g � ÿg2bNbÿ1 � gIÿ1
1 Nÿ2D� op�Nbÿ1 � Nÿ2jDj�: �4:2�

If the data are recorded in such a manner that N is non-random, then D is asymptotically

Normally distributed with zero mean and variance N3J, and so result (a) in the theorem

follows directly from (4.2). Result (b) is a consequence of the fact that if the length n of the
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data set is given the N= log n! 1 almost surely as n increases (see Propositions 4.1.3 and

4.1.4 of Resnick (1987, p. 190)); and D is asymptotically Normal Nf0; �log n�3Jg. The

latter result may be derived as a corollary of an invariance principle for the random

function D�t�, de®ned by replacing N in the de®nition of D by the integer part of t log n,

where t 2 �1ÿ e; 1� e� for some ®xed e > 0.

The claimed asymptotic formulae for ~a0 are easily veri®ed using a similar argument,

and the result s2 � a2 may be derived by standard variational methods.

4.2. Proof of Theorem 2.3

Let a and d denote the true values of those parameters, and initially, write â and d̂ for

general functions of the data

x � fL�2�; . . . ; L�N�; Y1; . . . ; YNg:

Given e > 0, and de®ning A � âÿ a and D � d̂ ÿ d, put

e � fjAj � Nÿ1ÿe; jDj � Nÿeg: �4:3�

We shall prove that with probability tending to 1 the event e applies to the maximum

likelihood estimators of a and d. (At this point in our argument we shall take �â; d̂� to be

those maximum likelihood estimators.) Then we shall show that conditional on e, the

maximum likelihood estimators possess the limit laws contained in the theorem. This

proves the theorem. During our argument, all remainder terms in our formulae that depend

on i; 1 � i � N, will be of the stated orders uniformly in i, given that the event e obtains.

These quali®ers will generally be omitted.

In view of (4.1), log Yi � log H�Si� � Op�N� uniformly in 1 � i � N. (Of course, (2.8)

implies (2.1), and hence (4.1), with c � 0 and any b51.) Therefore on e,

Yÿâi � Yÿai �1ÿ A log Yi � Opf�NA�2g�;
d̂Yÿâi � dYÿai �1� dÿ1�Dÿ dA log Yi � Opf�NA�2 � NjADjg��:

Therefore, with Mi � L�i� 1� ÿ L�i� ÿ 1 and for k � 0 or 1,

XN

i�1

Mi�1ÿ d̂Yÿâi �ÿ1�log Yi�k ÿ
XN

i�1

Mi�1ÿ dYÿai �ÿ1�log Yi�k

�
XN

i�1

Mi�1ÿ dYÿai �ÿ2Yÿai �log Yi�k�Dÿ dA log Yi � Opf�NA�2 � NjADjg�:
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More simply, Nâÿ1 ÿ Naÿ1 � Op�Nÿe�. Hence, since �â; d̂� solves equations (2.4), those

equations are equivalent to Ui � 0 for i � 1; 2, where

U1 �
XN

i�1

Mi�1ÿ dYÿai �ÿ2Yÿai �Dÿ dA log Yi � Opf�NA�2 � NjADjg� � V1; (4.4)

U2 �
XN

i�1

Mi�1ÿ dYÿai �ÿ2Yÿai �log Yi��Dÿ dA log Yi

� Opf�NA�2 � NjADjg� � V2 � Op�Nÿe�; (4.5)

V1 �
XN

i�1

Mi�1ÿ dYÿai �ÿ1 ÿ fL�N � 1� ÿ 2g

�
XN

i�1

MidYÿai �1ÿ dYÿai �ÿ1 ÿ �N ÿ 1�;

V2 � �N ÿ 1�aÿ1 �
XN

i�1

Mi�1ÿ dYÿai �ÿ1
log Yi ÿ

XN

i�1

�Mi � 1� log Yi � log Y1

� �N ÿ 1�aÿ1 �
XN

i�1

MidYÿai �1ÿ dYÿai �ÿ1
log Yi ÿ

XN

i�2

log Yi:

Let y � fY1; Y2; . . .g, and note that mi � E�Mi=y� � f1ÿ F�Yi�gÿ1 ÿ 1. We replace

Mi in the de®nition of Vj by mi, for 1 � i � N ÿ 1 (but not for i � N), and denote the

resulting quantity by V0j. It will emerge that V01 and V02 produce the dominant contributions

to the bias of â and d̂. Now, under condition (2.8),

�f1ÿ F�y�gÿ1 ÿ 1�dyÿa�1ÿ dyÿa�ÿ1 � 1ÿ d1�log y�ÿa1 � of�log y�ÿa1g

as y!1. Therefore, since iÿ1 log Yi ! aÿ1 in probability as i!1,

V01 �
XNÿ1

i�1

�f1ÿ F�Yi�gÿ1 ÿ 1�dYÿai �1ÿ dYÿai �ÿ1

�MNdYÿaN �1ÿ dYÿaN �ÿ1 ÿ �N ÿ 1�

�
XNÿ1

i�1

�1ÿ d1�log Yi�ÿa1 � opf�log Yi�ÿa1g� �MN�dÿ1Ya
N ÿ 1�ÿ1 ÿ �N ÿ 1�

� ÿ
XNÿ1

i�1

fd1�aÿ1i�ÿa1 � op�iÿa1�g �MN�dÿ1Ya
N ÿ 1�ÿ1;

(4.6)
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V02 � �N ÿ 1�aÿ1 �
XNÿ1

i�1

�f1ÿ F�Yi�gÿ1 ÿ 1�dYÿai �1ÿ dYÿai �ÿ1
log Yi

�MNdYÿaN �1ÿ dYÿaN �ÿ1
log YN ÿ

XN

i�2

log Yi

� ÿ
XNÿ1

i�1

fd1�aÿ1i�ÿa1 � op�iÿa1�g log Yi �MN�dÿ1Ya
N ÿ 1�ÿ1

log YN

� �N ÿ 1�aÿ1 � log Y1 ÿ log YN: (4.7)

We claim that

MN�dÿ1Ya
N ÿ 1�ÿ1 � Op�1�: �4:8�

In the case of nonrandom N this result is trivial, since then, MN � L�N� � 1ÿ L�N� ÿ 1 � 0.

When N is random, MN � nÿ L�N� � n and (dÿ1ya ÿ 1�ÿ1 � 1ÿ F�y�as y!1, and so in

that case (4.8) will follow if we prove that nf1ÿ F�YN�g � Op�1�. But 1ÿ F�YN� has the

distribution of the largest order statistic of a sample of size n from the Uniform distribution on

the interval �0, 1�, and so 1ÿ F�YN� � Op�nÿ1�. This completes the proof of (4.8).

Combining (4.6)±(4.8) we deduce that

V01 � aNa2 � op�Na2 � N1=2�; V02 � Op�N�; �4:9�

where �a; a2� � �ÿd1a
ÿa1�1ÿ a1�ÿ1

; 1ÿ a1� if 0 5a1 � 1
2
, and a � 0 otherwise.

The dominant contributions to the errors of â and d̂ about their means are produced by

V00j � Vj ÿ V0j for j � 1; 2. To study these quantities in detail, observe that

V00j �
XNÿ1

i�1

�Mi ÿ mi�dYÿai �1ÿ dYÿai �ÿ1�log Yi�jÿ1

�
XNÿ1

i�1

�Mi ÿ mi�mÿ1
i A�Yi��log Yi�jÿ1

;

where A�y� � f1ÿ F�y�gÿ1dyÿa�1ÿ dyÿa� ! 1 as y!1.

Note particularly that the mean of Mi, conditional on y, diverges to in®nity as i!1. If

the random variable Q is geometrically distributed with mean m then as m!1, Q=m is

asymptotically distributed as Z, say, which enjoys the exponential distribution with unit

mean. Furthermore, all the moments of Q=m converge to the corresponding moments of Z.

It follows that conditional on y, V00j is asymptotically distributed as

Tj �
XNÿ1

i�1

�Zi ÿ 1��aÿ1i�jÿ1
;
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where Z1; Z2; . . . are independent and identically distributed as Z; or equivalently, that the

conditional distribution of V00j is random. Normal with zero mean and variance

s2
j � aÿ2� jÿ1��2jÿ 1�ÿ1N2jÿ1. This limiting distribution depends on y only through the

value of N, and then only in the case where N is random. Moreover, in the case of random

N, there exists a nonrandom sequence cn such that N=cn ! 1 in probability as n!1.

Hence, the unconditional asymptotic distribution of V00j is also Normal N�0; s2
j ).

Combining this result with (4.9) we see that we may write

V1 � aNa2 � T1 � op�Na2 � N1=2�; V2 � T2 � op�N3=2�: �4:10�

Now we return to the de®nitions of U1 and U2 at (4.4) and (4.5), and simplify the ®rst

series in each. Employing the argument in the previous paragraph we see that for j � 0,

XN

i�1

�Mi ÿ mi��1ÿ dYÿai �ÿ2Yÿai �log Yi�j � Op�N�2j�1�=2�: �4:11�

More simply, using the fact that (a) conditional on y the Mi's are geometrically distributed

with respective means mi; and (b) in the case where N is a random variable, there exists a

nonrandom sequence cn such that N=cn ! 1 in probability; we may deduce that

XN

i�1

Mi�1ÿ dYÿai �ÿ2Yÿai j log Yijj � Op�Nj�1�: �4:12�

The argument leading to (4.6) and (4.7), together with the facts that mi � f1ÿ F�Yi�gÿ1 ÿ 1

and

�f1ÿ F�y�gÿ1 ÿ 1�yÿa�1ÿ dyÿa�ÿ2 � dÿ1 � Of�log y�ÿa1g;

produce the result

XN

i�1

mi�1ÿ dYÿai �ÿ2Yÿai �log Yi�j

� dÿ1aÿj� j� 1�ÿ1Nj�1 � op�Nj�1�: (4.13)

Combining results (4.11)±(4.13), and noting the relations between Uj and Vj at (4.4) and

(4.5), we deduce that

U1 ÿ V1 � dÿ1NDÿ 1
2
aÿ1N2A� op�N2jAj � NjDj�; (4.14a)

U2 ÿ V2 � 1
2
aÿ1dÿ1N2Dÿ 1

3
aÿ2N3A� op�N3jAj � N2jDj�: (4.14b)
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The ``o'' remainder terms here are of the stated orders uniformly in those functions â and d̂
of the data x that satisfy the event e, de®ned at (4.3).

Recall that, because of a convexity property, the likelihood equations (2.4) have no more

than one solution; and that this is the solution of �U1;U2� � �0; 0�. In view of (4.10) and

(4.14) there exists a solution of the likelihood equations that, with probability tending to 1,

satis®es event e, and so this must be the maximum likelihood estimator. It then follows

from (4.10) and (4.11) that the latter estimator, for which we now reserve the notation

�â; d̂� � �a� A; d � D�, satis®es the matrix equation

ÿ 1
2
aÿ1 dÿ1

ÿ 1
3
aÿ2 1

2
aÿ1dÿ1

� �
N2A
ND

� �
� aNa2 � T1

Nÿ1T2

� �
� op�N1=2�

op�N1=2�

 !
:

Solving for A and D we deduce that

A � 6aaNa2ÿ2 � Nÿ26a�T1 ÿ 2aNÿ1T2� � op�Na2ÿ2 � Nÿ3=2�; (4.15a)

D � 4adNa2ÿ1 � Nÿ12d�2T1 ÿ 3aNÿ1T2� � op�Na2ÿ1 � Nÿ1=2�: (4.15b)

The random vector �Nÿ1=2�a1T1 � a2aNÿ1T2�;Nÿ1=2�b1T1 � b2aNÿ1T2�� has an

asymptotic bivariate Normal distribution with zero means, respective variances

a2
1 � a1a2 � 1

3
a2

2 and b2
1 � b1b2 � 1

3
b2

2, and covariance a1b1 � 1
2
�a1b2 � a2b1� � 1

3
a2b2.

Theorem 2.3 follows from this result and (4.15).

4.3. Proof of Theorem 2.4

For the sake of brevity we treat only the case of �a, and assume that N is non-random. Put

J � log K, and use notation introduced during the proofs of Theorems 2.1 and 2.3, except

that �a replaces â. In particular, let A � �aÿ a where a is the true parameter value and,

initially, �a denotes any function of the data satisfying j�aj � C for any given constant

C > 0. Since 1ÿ F�x� � xÿa expfJ�x�g then

xÿ�a � f1ÿ F�x�g expfÿA log xÿ J�x�g:

Furthermore, aiÿ1 log Yi ! 1 in probability, and with mi � E�Mijy�; mif1ÿ F�Yi�g ! 1.

Hence, for j � 0 or 1,

sj��a� �
XN

i�1

MiY
ÿ�a
i �log Yi�j �

XNÿ1

i�1

MiY
ÿ�a
i �log Yi�j

� f1� op�1�g
XNÿ1

i�1

�Mi=mi� expfÿA log Yi ÿ J�Yi�g�aÿ1i�j

� Opfexp�ÿA log Y1�g: (4.16)
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The ``op�1�'' and ``Op�1�'' terms in (4.16) are of that order uniformly in functions �a of x
that satisfy j�aj � C.

By following the argument leading to (4.1), with only minor modi®cation, we may

deduce that under condition (2.1), a log H�x� � x� o�x� as x!1. Therefore,

log Yi � log H�Si� � aÿ1Si � op�Si� � aÿ1if1� op�1�g:

Since in addition, by (2.1), J�x� � o�log x�, then in view of (4.16), and writing

D � D��a� � NA=a � Nf��a=a� ÿ 1g, we have

sj��a� � f1� op�1�g
XNÿ1

i�1

�Mi=mi� exp�ÿ�i=N�Df1� op�1�g��aÿ1i�j;

where the ``op�1�'' terms are of that order uniformly in 1 � i � N ÿ 1 and functions �a
satisfying j�aj � C. More simply,

XN

i�2

log Yi ÿ �N ÿ 1�aÿ1 � f1� op�1�g1
2
aÿ1N2:

Hence, if we replace a by �a on the left-hand side of (2.7) then that quantity may be written

as N2aÿ1t�â�, where

t��a� � f1� op�1�g
XNÿ1

iÿ1

�Mi=mi� exp�ÿ�i=N�Df1� op�1�g��i=N�

ÿ f1� op�1�g1
2

XNÿ1

i�1

�Mi=mi� exp�ÿ�i=N�Df1� op�1�g�

� Opfexp�ÿA log Y1�g; �4:17�

where again the ``op�1�'' terms are of that order uniformly in 1 � i � N ÿ 1 and functions
�a satisfying j�aj � C.

By inspection of (2.7) and (2.16) it may be proved that if C > a is suf®ciently large then

with probability tending to 1 there exists at least one solution �a of (2.7) satisfying j�aj � C,

and that any sequence of such solutions satis®es �aÿ a � op�1�. We shall show that any

sequence �a � �aN of solutions satis®esD��a� � Op�1�. For this it suf®ces to show that for each

sequence l � l�N� of positive constants diverging to in®nity, and any sequence �a � �aN of

solutions of (2.7) that satisfy �aÿ a � op�1�;PfjD��a�j > lg ! 0. Let e�;eÿ denote the

events fD��a� > lg; fD��a�5ÿ lg respectively. We may deduce from (4.17) that on e�,

t��a� � �f1� op�1�g1
2

XNÿ1

i�1

�Mi=mi� exp�ÿD�i=N�f1� op�1�g�; �4:18�
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where the �;ÿ signs are to be taken respectively. Unless it is also true that P�e�� ! 0,

(4.18) contradicts the assumption that �a solves t��a� � 0.
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