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Rubinstein and Sarnak investigated systems of inequalities of the

form �(x; q, a1) > � � � > �(x; q, ar), where �(x; q, b) denotes the

number of primes up to x that are congruent to b mod q. They

showed, under standard hypotheses on the zeros of Dirichlet

L-functions mod q, that the set of positive real numbers x for

which these inequalities hold has positive (logarithmic) density�q;a1,���,ar
> 0. They also discovered the surprising fact that a cer-

tain distribution associated with these densities is not symmetric

under permutations of the residue classes aj in general, even if

the aj are all squares or all nonsquares mod q (a condition neces-

sary to avoid obvious biases of the type first observed by Cheby-

shev). This asymmetry suggests, contrary to prior expectations,

that the densities �q;a1,���,ar
themselves vary under permutations

of the aj.

Here we derive (under the hypotheses used by Rubinstein and

Sarnak) a general formula for the densities �q;a1,���,ar
, and we use

this formula to calculate many of these densities when q� 12

and r � 4. For the special moduli q = 8 and q = 12, and forfa1, a2, a3g a permutation of the nonsquares f3, 5, 7g mod 8

and f5, 7, 11g mod 12, respectively, we rigorously bound the

error in our calculations, thus verifying that these densities are

indeed asymmetric under permutation of the aj. We also deter-

mine several situations in which the densities �q;a1,���,ar
remain

unchanged under certain permutations of the aj, and some situ-

ations in which they are provably different.

1. INTRODUCTION AND SUMMARYIn 1853 Chebyshev remarked that there are moreprimes congruent to 3 than to 1 modulo 4, and sincethat time considerable e�orts have been expendedin attempts to determine in what sense this remarkis true. It follows from the prime number theoremfor arithmetic progressions (see [Davenport 1980],for instance) that, asymptotically, half of all primesare congruent to 3 mod 4 and half are congruent to1 mod 4, so that Chebyshev's observation cannot beinterpreted in that sense. However, when we com-pute the numbers of primes up to x that are congru-ent to 3 mod 4 and to 1 mod 4, we �nd that for most
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values of x, the primes congruent to 3 are more nu-merous than those congruent to 1. Similar \biases"have also been observed, notably by Shanks [1959],for moduli q other than 4; in particular, the num-bers of primes in nonsquare residue classes moduloq tend to exceed the numbers of primes in squareresidue classes. We refer to inequities of this typeas \Chebyshev biases".These observations lead naturally to the study ofinequalities of the type�(x; q; a1) > �(x; q; a2) > � � � > �(x; q; ar); (1–1)where �(x; q; a) denotes the number of primes p � xsuch that p � a mod q. Littlewood [1914] showed(unconditionally) that the inequalities�(x; 3; 1) > �(x; 3; 2) and �(x; 4; 1) > �(x; 4; 3);as well as the opposite inequalities, each hold forin�nitely many integer values of x. A number ofadditional results on single inequalities of this typewere subsequently derived under certain hypothe-ses by Knapowski and Tur�an in a series of papersbeginning with [Knapowski and Tur�an 1962], andKaczorowski wrote several papers concerning themultiple inequalities (1{1), the most recent of whichis [Kaczorowski 1996].A major advance was made recently by Rubin-stein and Sarnak [1994] who showed (conditionally)that for any modulus q and for any distinct re-duced residues a1; : : : ; ar mod q (i.e., integers rela-tively prime to q), the system of inequalities (1{1)holds for in�nitely many integers x. More precisely,they worked under the assumption of the General-ized Riemann Hypothesis for Dirichlet L-functions,which we shall abbreviate as GRH, and an addi-tional assumption (their \Grand Simplicity Hypoth-esis"), which we abbreviate as LI:
Hypothesis LI. The nonnegative imaginary parts ofthe nontrivial zeros of Dirichlet L-functions corre-sponding to primitive characters are linearly inde-pendent over the rationals .Rubinstein and Sarnak studied the quantities�q;a1;:::;ar ;de�ned as the logarithmic density of the set of posi-tive real numbers x for which the inequalities (1{1)

hold. (The logarithmic density �(�) of any subset� of the real numbers is de�ned as�(�) = limx!1 1log x Z�\[2;x] dtt ;
provided that this limit exists. Su�ce it to say herethat logarithmic densities are more appropriate forthese problems than ordinary densities; in this pa-per, by \density" we shall always mean logarithmicdensity.)Under the hypotheses above, Rubinstein and Sar-nak proved that the densities �q;a1;:::;ar exist and arepositive for any integer q � 2 and for any distinctreduced residues a1; : : : ; ar mod q. They obtained,for several small moduli q, numerical values for thedensity of those x for which the primes up to x thatare quadratic nonresidues mod q outnumber thosethat are quadratic residues. Rubinstein and Sarnakalso proved that �q;a;a0 = �q;a0;a = 12 if a and a0 areboth squares or both nonsquares mod q, and other-wise �q;a;a0 is greater than or less than 12 according towhether a or a0 is the nonsquare mod q, thus bearingout the biases of the type observed by Chebyshev.It was generally suspected for r > 2 as well thatwhenever the aj are all squares or all nonsquaresmodulo q, the densities �q;a1;:::;ar are invariant un-der permutations of the aj (and thus equal to 1=r!).However, Rubinstein and Sarnak showed that cer-tain distributions �q;a1;:::;ar on R r that are associatednaturally with the densities �q;a1;:::;ar are not sym-metric under permutations of the aj when r � 3,except in the special case when r = 3 and thereexists � 6� 1 mod q with �3 � 1 mod q such thata2 � a1� mod q and a3 � a1�2 mod q. (Note thatsince � � �4 mod q is a square, it follows that suchfa1; a2; a3g are all squares or all nonsquares mod q.)This result suggests, but does not imply, that the�q;a1;:::;ar are generally asymmetric under permuta-tion of the aj .In this paper, we rigorously establish a number ofasymmetries of this type, under the two aforemen-tioned hypotheses. Triples of nonsquares and triplesof squares occur for the moduli q = 7 and q = 9,but these triples fall under the special case that hasjust been mentioned. Thus the smallest moduli forwhich such asymmetries of the �q;a1;a2;a3 could ariseare q = 8 and q = 12, each of which has three non-squares (and a single square), and q = 11, which
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has �ve squares and �ve nonsquares. Our main the-orem provides results for the cases q = 8 and q = 12showing that these asymmetries do in fact exist:
Theorem 1. Assume GRH and LI . Let �q;a1;:::;ar de-note the (logarithmic) density of the set of positivereal numbers x for which the system of inequalities(1{1) holds . Then�8;3;5;7 = �8;7;5;3 = 0:1928013� 0:000001;�8;3;7;5 = �8;5;7;3 = 0:1664263� 0:000001;�8;5;3;7 = �8;7;3;5 = 0:1407724� 0:000001;and �12;5;7;11 = �12;11;7;5 = 0:1984521� 0:000001;�12;5;11;7 = �12;7;11;5 = 0:1215630� 0:000001;�12;7;5;11 = �12;11;5;7 = 0:1799849� 0:000001;where the indicated error bounds are rigorous .The pairwise equalities among the �'s in Theorem 1are not numerical coincidences, but are provably ex-act. In fact there are several situations in which wecan establish symmetries of this sort. To state theseresults, we �rst need to de�nec(q; a) = �1 + #f1 � b � q : b2 � a mod qg (1–2)for coprime integers a and q. Note that when q is anodd prime, c(q; a) simply equals the Legendre sym-bol �aq �. Note further that c(q; a) can take only twopossible values for a given q: certainly c(q; a) = �1for every nonsquare a mod q, while c(q; a) = c(q; 1)for every square a mod q. We can interpret c(q; 1)as the ratio of the number of invertible nonsquaresto the number of invertible squares mod q.We may now state our results concerning symme-tries:
Theorem 2. Assume GRH and LI . Let q; r � 2 beintegers and let a1; : : : ; ar be distinct reduced residueclasses mod q.
(a) Letting a�1j denote the multiplicative inverse ofaj modulo q, we have �q;a1;:::;ar = �q;a�11 ;:::;a�1r .
(b) If b is a reduced residue class modulo q such thatc(q; aj) = c(q; baj) for each 1 � j � r, then�q;a1;:::;ar = �q;ba1;:::;bar . In particular , this holdsif b is a square modulo q.
(c) If the aj are all squares modulo q and b is anyreduced residue class modulo q, then �q;a1;:::;ar =�q;ba1;:::;bar .

(d) If the aj are either all squares modulo q or allnonsquares modulo q, then �q;a1;:::;ar = �q;ar;:::;a1 .
(e) If b is a reduced residue class modulo q such thatc(q; aj) 6= c(q; baj) for each 1 � j � r, then�q;a1;:::;ar = �q;bar;:::;ba1 . In particular , this holdsif q is an odd prime power or twice an odd primepower and b is any nonsquare modulo q.The pairwise equalities in Theorem 1 are specialcases of part (d) of Theorem 2, which generalizesthe previously mentioned result of Rubinstein andSarnak that �q;a;a0 = �q;a0;a if a and a0 are either bothsquares or both nonsquares modulo q. Their othersymmetry result, that �q;a1;a2;a3 is invariant underpermutations of the aj when there exists � 6� 1(mod q) with �3 � 1 (mod q) such that a2 � a1�(mod q) and a3 � a1�2 (mod q), is also a conse-quence of Theorem 2 (speci�cally parts (b) and (d),the former applied with b = � and b = �2).To complement Theorem 2, we can also establishseveral inequalities concerning the densities �:
Theorem 3. Assume GRH and LI . Let q � 2 be aninteger , let N and N 0 be distinct (invertible) non-squares mod q, and let S and S0 be distinct (invert-ible) squares mod q. Then:
(a) �q;N;N 0;S > �q;S;N 0;N ;
(b) �q;N;S;S0 > �q;S0;S;N ;
(c) �q;N;S;N 0 > �q;N 0;S;N if and only if �q;N;S > �q;N 0;S;
(d) �q;S;N;S0 > �q;S0;N;S if and only if �q;S;N > �q;S0;N .Parts (c) and (d) of Theorem 3 are further exam-ples that the predisposition towards some orderingsof f�(x; q; a1); : : : ; �(x; q; ar)g over others cannot beexplained solely in terms of the Chebyshev bias thatencourages nonsquares to run ahead of squares inthe prime number race. (See also the discussion of\bias factors" in Section 6.)The most general result in this paper is an explicitformula for an arbitrary density �q;a1;:::;ar . Becauseof the amount of notation involved, we have deferredthe statement of this result (Theorem 4) to Section2E. We have used this general formula to calculatethe densities given in Theorem 1, and also a numberof the �q;a1;:::;ar in many interesting cases involvingq � 12 and r � 4. For instance, we verify that forq = 11, which is the smallest interesting case notcovered by Theorem 1, there are again asymmetriesin races among triples of squares and among triples
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of nonsquares. In these additional computations wehave not undertaken to rigorously bound the errorterms; nevertheless we believe, from numerical con-siderations, that the results given in Section 4 areaccurate to the number of decimal places indicated.We shall assume GRH and LI throughout this pa-per. In Section 2 we provide our main analysis lead-ing to Theorem 4, the general formula for �q;a1;:::;ar .The rigorous bounding of the error terms incurredduring the calculation of the densities in Theorem1 is carried out in Section 3. Details of the com-putations and the additional numerical results arecollected together in Section 4. The proofs of Theo-rems 2 and 3 are given in Section 5, while in Section6 we provide concluding remarks, noting some pos-sible directions for further work.
2. ANALYTIC DETERMINATION OF THE DENSITIES�q;a1,���,arThe goal for this section of the paper is to deriveTheorem 4 (see Section 2E), a general formula forthe densities �q;a1;:::;ar . We begin by developing somenotation and citing the relevant results of Rubin-stein and Sarnak in Section 2A. In Section 2B weinvestigate the function �̂q;a1;:::;ar which will �gureprominently in the arguments that follow, while inSection 2C we establish some facts about Cauchyprincipal values of multidimensional integrals; thesesections are technical rather than conceptual in na-ture, and the reader may wish to examine these onlybriey on the �rst reading. Because the general for-mula given in Theorem 4 and the arguments leadingto it are somewhat involved, in Section 2D we �rstdetail the derivation of this formula for the specialcases �8;a;b;c and �12;a;b;c occurring in Theorem 1; thederivation of the formula in the general case is thencarried out in Section 2E. We assume the hypothesesGRH and LI throughout.
2A. Notation and Background ResultsWe begin by establishing the notation necessary fordiscussing the results of Rubinstein and Sarnak. Forany coprime integers q and a and any real numberx � 1, de�ne

E(x; q; a) = log xpx �'(q)�(x; q; a)� �(x)�; (2–1)

so that E(x; q; a) is an error term for the numberof primes congruent to a mod q, normalized so asto vary roughly boundedly as x varies. Since theinequalities �(x; q; a1) > � � � > �(x; q; ar) hold if andonly if E(x; q; a1) > � � � > E(x; q; ar), we wish tostudy how often the vectorEq;a1;:::;ar(x) = �E(x; q; a1); : : : ; E(x; q; ar)� (2–2)lies in the region f(x1; : : : ; xr) 2 R r : x1 > � � � > xrg.Notice that if r = '(q) then the aj form a completeset of reduced residues mod q, in which case we seefrom equation (2{1) thatE(x; q; a1) + � � �+ E(x; q; ar) = � log xpx '(q)!(q);
(2–3)where !(q) denotes the number of distinct primefactors of q.Rubinstein and Sarnak showed, assuming GRH,that the function Eq;a1;:::;ar(x) has a limiting distri-bution �q;a1;:::;ar , in the sense that

limX!1 1logX Z X2 f(Eq;a1;:::;ar(x)) dxx= Z � � �ZRr f(x1; : : : ; xr) d�q;a1;:::;ar (2–4)

for all bounded, continuous functions f on R r. Un-der the further assumption of LI, they showed thatthe distribution �q;a1;:::;ar is absolutely continuouswith respect to the ordinary Lebesgue measure onR r. (The exception is the case r = '(q), when equa-tion (2{3) implies that the distribution �q;a1;:::;ar issupported on the hyperplane x1+� � �+xr = 0; in thiscase, �q;a1;:::;ar is absolutely continuous with respectto Lebesgue measure on this hyperplane.) Conse-quently, the equation (2{4) holds when f is the char-acteristic function of any reasonable subset of R r(speci�cally, a measurable subset whose boundaryhas Lebesgue measure zero in R r). In particular, itfollows from the de�nition of �q;a1;:::;ar that�q;a1;:::;ar = ��fx 2 R : �(x; q; a1)> � � �> �(x; q; ar)g�= �q;a1;:::;ar�fx 2 R r : x1 > � � �> xrg�= Z � � �Zx1>���>xr d�q;a1;:::;ar : (2–5)

Another consequence of the absolute continuity of�q;a1;:::;ar is that the set of positive real numbers x for
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which �(x; q; a) = �(x; q; a0) has density zero whena and a0 are distinct reduced residues; indeed this iseven true of the larger setfx : j�(x; q; a)� �(x; q; a0)j < �(x)gfor any function � such thatlimx!1 �(x)px=log x = 0:Next we develop the notation needed to writedown Rubinstein and Sarnak's seminal formula forthe Fourier transform �̂q;a1;:::;ar of the distribution�q;a1;:::;ar . In this paper we use the normalization
f̂(�1; : : : ; �n) = Z � � �Z e�i(�1x1+���+�nxn)� f(x1; : : : ; xn) dx1 : : : dxn (2–6)for the Fourier transform of an integrable functionf on R n, so that the Fourier inversion formula (as-suming that f̂ is itself integrable) isf(x1; : : : ; xn) = (2�)�n Z � � �Z ei(�1x1+���+�nxn)� f̂(�1; : : : ; �n) d�1 : : : d�n :Likewise we write�̂(�1; : : : ; �n) = Z � � �Z e�i(�1x1+���+�nxn) d�for the Fourier transform of a �nite measure � on R r,so that the Fourier inversion formula (assuming that�̂ is integrable with respect to Lebesgue measure) is
d� = (2�)�n�Z � � �Z ei(�1x1+���+�nxn)

� �̂(�1; : : : ; �n) d�1 : : : d�n� dx1 : : : dxn: (2–7)To write down the Fourier transform �̂q;a1;:::;ar , werecall the standard Bessel function of order zero,
J0(z) = 1Xm=0 (�1)m(z=2)2m(m!)2 = 1� z24 + z464 � � � � ;

(2–8)and then setF (z; �) = Y>0L( 12+i;�)=0 J0(�z) (2–9)

in terms of the Dirichlet L-function L(s; �) corre-sponding to the Dirichlet character �, where we havede�ned � = 2p14 + 2 : (2–10)(Since we are assuming GRH, the product in equa-tion (2{9) is indexed by all the nontrivial zeros ofL(s; �) in the upper half-plane.) For later use innumerical approximations of F (z; �) we also de�nethe truncated versionFT (z; �) = � Y0<<TL( 12+i;�)=0J0(�z)
�(1 + b1z2) (2–11)

for any positive real number T , whereb1 = b1(T; �) = �X�T 114 + 2 : (2–12)

The polynomial factor in the de�nition (2{11) of FTis motivated by the fact that, in view of the powerseries expansion (2{8) of J0, b1 is the coe�cient ofz2 in the power series expansion of Q>T J0(�z).With this notation in place, we can now give Ru-binstein and Sarnak's formula [1994, equation 1.2]for the Fourier transform �̂q;a1;:::;ar of the distribu-tion �q;a1;:::;ar . They showed, assuming GRH andLI, that
�̂q;a1;:::;ar(�1; : : : ; �r) = exp�i rXj=1 c(q; aj)�j�� Y�modq� 6=�0F

����� rXj=1 �(aj)�j
����; ��; (2–13)

where c(q; a) was de�ned in equation (1{2). Thisresult will be used extensively in the sequel.Since J0(0) = 1 we clearly haveF (0; �) = FT (0; �) = 1for any character �. It is known (see for instancethe arguments in [Davenport 1980, Chapters 15{16])that for a �xed character �, the number of zeros ofL(s; �) with imaginary part between 0 and T hasorder of magnitude T log T . From this it can beshown that the product (2{9) de�ning F (z; �) con-verges uniformly on bounded subsets of the complexplane, and hence F is an entire function. For lateruse we will need bounds for the decay rate of F (x; �)
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and its derivatives F (N)(x; �) on the real axis; thisis the subject of the following lemma.
Lemma 2.1. Given a modulus q � 2 and a nonnega-tive integer N , there exist positive constants �1 and�2 such that jF (N)(x; �)j � �1e��2jxjfor all real numbers x.
Warning. In the next three sections, the constants�1 and �2 will not necessarily have the same val-ues at di�erent occurrences; each statement shouldbe interpreted as holding for some suitable positivevalues of �1 and �2.
Proof. In this proof we will use the symbol , with orwithout subscript, exclusively to denote a positiveimaginary part of a nontrivial zero of L(s; �). Wealso use � to denote an orderedN -tuple (1; : : : ; N ),and we let m�() denote the number (possibly zero)of coordinates of � that equal . When convenientwe can also assume that x > 1, since F is an even,smooth function. From the de�nition of F (z; �) inequation (2{9), an N -fold application of the productrule gives us the expressionF (N)(x; �) = X�=(1;:::;N )�1 : : : �N Y J (m�())0 (�x)

=X� �(x;�)F (x; �;�) (2–14)

for the N -th derivative of F (x; �), where we haveset �(x;�) =Y2��m�() J (m�())0 (�x) (2–15)

and F (x; �;�) =Y =2�J0(�x):We can show that F (x; �) decays rapidly on thereal axis by using the standard bound [Rubinsteinand Sarnak 1994, equation 4.5]
jJ0(x)j � min�1;r 2�jxj �for the Bessel function on the real axis. This bound

implies that
jF (x; �)j �Y min�1;r 2�j�xj �

� JYj=1
s 2�j�jxj= (�jxj)�J=2 JYj=1� 14 + 2j �1=4 (2–16)

for any positive integer J , where the j have beenindexed in increasing order. Choose J = J(x) to bethe number of zeros of L(s; �) up to height x=2. Forany 0 <  � x=2, it is easily veri�ed that the fac-tor (�jxj)�1=2( 14 + 2)1=4 does not exceed 12 . There-fore the upper bound (2{16) implies that jF (x; �)j �2�J . Since the order of magnitude of J is x log x, thisargument shows that as x tends to in�nity, jF (x; �)jdecreases at least as fast as a function of the formcx log x for some constant c depending on �.The same conclusion holds for F (x; �;�), sinceremoving the indices j in equation (2{16) for whichj 2 � changes J by at most N and thus does nota�ect the order of magnitude of J . Certainly thenthere exist positive constants �1 and �2 (dependingonly on N and �) such that jF (x; �;�)j � �1e��2jxjfor all real numbers x. Since this implies from equa-tion (2{14) thatjF (x; �)j � �1e��2jxjX� ���(x;�)��; (2–17)

the lemma will be established (possibly with di�er-ent values of �1 and �2) if we can show that this lastsum is bounded by some polynomial function of jxj.To this end, we employ the crude bounds jJ 00(t)j �t=2 and jJ (n)0 (t)j � 1 for the derivatives of the Besselfunction, which follow easily from the integral rep-resentation
J0(t) = 2� Z �=20 cos(t sin �) d�:

Again supposing that x > 1, the de�nition (2{15) of�(x;�) leads to the bound
j�(x;�)j � � Y2�m�()=1�2 jxj�� Y2�m�()>1�m�() �:
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It follows thatX� ���(x;�)�� � jxjNX� �maxfm�();2g� jxjNN !Y (1+�2+�3+ � � �+�N ):
Since the j-th constant � has order of magnitude1j � log jj ;this last product converges to some constant de-pending only on �. Combining this bound with theinequality (2{17) establishes the lemma. �Of course it also follows from the �rst line of equa-tion (2{16) that jF (x; �)j is bounded above by 1 onthe real axis.In Sections 3A and 3E we will need to make use ofthe fact that �q;a1;:::;ar can also be thought of as thejoint distribution of a certain set of r real-valuedrandom variables, and it is convenient to exhibitthese random variables explicitly at this time. Forgiven values of q, r, and a1; : : : ; ar, de�ne the vectorbq;a1;:::;ar = ��c(q; a1); : : : ; c(q; ar)�:Next, for any character � mod q, de�ne both thevector vq;a1;:::;ar(�) = ��(a1); : : : ; �(ar)�and the random variableX(�) = X>0L( 12+i;�)=0 � sin(2�U); (2–18)

where the � are as in (2{10) and the U are in-dependent random variables uniformly distributedon [0; 1]. Note that by the hypothesis LI, the 'scorresponding to di�erent L-functions are distinct,so that a given U appears in the de�nition of onlyone of the X(�); consequently the random variablesfX(�)g are mutually independent. Then Rubinsteinand Sarnak showed that the distribution �q;a1;:::;ar isin fact the same as the probability measure corre-sponding to the random vectorbq;a1;:::;ar + X�modq� 6=�0 X(�)vq;a1;:::;ar(�): (2–19)

2B. The Function �̂q;a1,���,arIn this section we introduce the function �̂q;a1;:::;ar :R r�1 ! C , which we de�ne by the formula�̂q;a1;:::;ar(�1; : : : ; �r�1)= �̂q;a1;:::;ar(�1; �2��1; : : : ; �r�1��r�2;��r�1); (2–20)so that�̂q;a1;:::;ar(�1; : : : ; �r�1)
= exp� r�1Xj=1 �c(q; aj)� c(q; aj+1)��j�
� Y�modq� 6=�0 F����� r�1Xj=1 ��(aj)� �(aj+1)��j����; �� (2–21)

from the formula (2{13) for �̂q;a1;:::;ar . We will seein Sections 2D and 2E that �̂q;a1;:::;ar is the Fouriertransform of a certain measure �q;a1;:::;ar on R r�1associated with �q;a1;:::;ar . We remark that in thespecial case where the aj are all squares or all non-squares, we have c(q; a1) = � � � = c(q; ar) and sothe exponential term in the formula (2{21) is iden-tically 1, so that �̂q;a1;:::;ar is real-valued and sym-metric with respect to reection through the origin.The function �̂q;a1;:::;ar will feature signi�cantly inthe remainder of this paper, and it will be impor-tant to establish some of its smoothness and decayproperties. To avoid frequent repetition of the sameproperties, we shall say that a function f on R n iswell-behaved if it has continuous derivatives of all or-ders and if there exist positive constants �1 and �2such that, for every subset fj1; : : : ; jkg of f1; : : : ; ng,the mixed partial derivative @kf@xj1 :::@xjk satis�es theinequality���� @kf@xj1 : : : @xjk (x1; : : : ; xn)���� � �1e��2kxk; (2–22)where kxk = k(x1; : : : ; xn)k = px21 + � � �+ x2n isthe Euclidean norm of x. This criterion must alsobe satis�ed for the empty subset of f1; : : : ; ng, sothat the actual values of f must also be boundedby the right-hand side of (2{22). Certainly anywell-behaved function is integrable as well. We re-mark that all of the functions shown to be well-behaved below in fact satisfy an inequality analo-gous to (2{22) for partial derivatives of all orders;however our proof of Lemma 2.4 below requires this
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assumption only on the mixed linear partial deriva-tives.It is easily seen that �nite sums and productsof well-behaved functions are again well-behaved.If f and g are well-behaved functions on R m andR n, respectively, then fg is a well-behaved func-tion on R m+n; conversely, the restriction of a well-behaved function on R n to any subspace de�nedby setting certain variables equal to zero is a well-behaved function on that subspace. Also, if L :R m ! R n is an injective linear map and f is a well-behaved function on R n, then the composite func-tion f � L is a well-behaved function on R m: thepartial derivatives of f �L will just be linear combi-nations of the partial derivatives of f , and the factthat L is injective means that kL(x)k is boundedbelow by a constant multiple of kxk, so that the es-timate (2{22) for f on R n can be converted to asimilar estimate for f � L on R m.The following two lemmas establish the importantfact that the functions �̂q;a1;:::;ar are well-behaved.
Lemma 2.2. For every subset fj1; : : : ; jkg�f1; : : : ; rg,@k@xj1 : : : @xjk F����� rXj=1 �(aj)xj

����; ��
� �1 exp���2���� rXj=1 �(aj)xj

����� (2–23)

for some positive constants �1 and �2.
Proof. De�neH(x1; : : : ; xr;�) = F����� rXj=1 �(aj)xj����; ��:The argument of F on the right-hand side of thisde�nition involves a modulus and hence implicitly asquare root, which could potentially cause disconti-nuities in the derivatives of H when this argumentequals zero; however, the Bessel function J0 is even,whence the function F (x; �) involves only even pow-ers of x in its power series expansion about the ori-gin. Consequently, H has continuous derivatives ofall orders. Note also that it su�ces to establish theupper bound (2{23) when���� rXj=1 �(aj)xj

���� > 1;

since the bound on the complementary set followsimmediately from continuity, with some value of �1.If we write ~F (x; �) = F (pjxj; �), then it is easyto check by induction that the n-th derivative of ~Fequals~F (n)(x; �) = nXk=1 �n;kF (k)�pjxj; ��jxj�n+j=2
for some constants �n;k. In particular, when jxj > 1we see from Lemma 2.1 thatj ~F (n)(x; �)j � �1e��2pjxj (2–24)for some positive constants �1 and �2.In this notation we haveH(x1; : : : ; xr;�)= ~F��Re rXj=1 �(aj)xj�2 +� Im rXj=1 �(aj)xj�2; ��:
Suppressing the details, we note that the mixed par-tial derivative @kH@xj1 : : : @xjkcan be computed using the product rule as a combi-nation of three types of expressions: derivatives of~F evaluated at ���� rXj=1 �(aj)xj

����2;linear factors of the form 2Re(��(ak)Prj=1 �(aj)xj),and constants of the form 2Re(��(ak)�(ak0)). Fromequation (2{24), the expressions of the �rst type canbe bounded above by �1 exp(��2jPrj=1 �(aj)xj j),while the expressions of the other types grow onlyas fast as a polynomial in jPrj=1 �(aj)xj j. This es-tablishes the lemma for suitable positive values of�1 and �2. �
Lemma 2.3. The function �̂q;a1;:::;ar is well-behavedfor any integers q; r � 2 and any distinct reducedresidues fa1; : : : ; arg.
Proof. From (2{13), the function �̂q;a1;:::;ar certainlyhas continuous derivatives of all orders (see the proofof Lemma 2.2), and thus the same is true of �̂q;a1;:::;ar.We begin by examining the behavior of the mixedpartial derivatives of the function �̂q;a1;:::;ar . LetS = fj1; : : : ; jkg be a subset of indices from the setf1; : : : ; rg, and let @k@xS denote the result of taking
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the partial xj-derivatives for every j in S. The prod-uct rule applied to the formula (2{13) for �̂q;a1;:::;aryields@k@xS �̂q;a1;:::;ar(�) = XS0;fS�g
 @k@xS0 exp�i rXj=1 c(q; aj)�j�� Y�modq� 6=�0 @k@xS� F����� rXj=1 �(aj)�j

����; ��!; (2–25)

where the outer summation is taken over the �nitelymany partitions of the index set S intoS0 [ �S� 6=�0 S��:Each mixed partial derivative appearing in the expo-nential term is bounded, while from Lemma 2.2 eachmixed partial derivative of F (jPrj=1 �(aj)�j j; �) isexponentially decaying as a function of its argument.We conclude from equation (2{25) that there existpositive constants �1 and �2 such that���� @k@xS �̂q;a1;:::;ar(�)���� � �1 Y�modq� 6=�0 exp
���2���� rXj=1 �(ar)�j

�����
= �1e��2Q(�)1=2 ; (2–26)where we have de�ned

Q(�) = Qq;a1;:::;ar(�) = � X�modq� 6=�0
���� rXj=1 �(aj)�j

�����2:
We thus seek a lower bound on Q(�).We may certainly write

Q(�) � X�modq� 6=�0
���� rXj=1 �(aj)�j����2

= X�modq
���� rXj=1 �(aj)�j����2 �� rXj=1 �j�2:

NowX�modq
���� rXj=1 �(aj)�j����2 = rXi=1 rXj=1 �i�j X�modq �(ai)�(aj)= '(q) rXj=1 �2j

by the orthogonality of the characters �. Therefore
Q(�) � '(q) rXj=1 �2j �� rXj=1 �j�2: (2–27)

We assume for now that r is strictly less than '(q),commenting at the end of the proof on the slightdi�erences in the case r = '(q). The quadratic formon the right-hand side of the inequality (2{27) turnsout to be positive de�nite when r < '(q), and so wecan write Q(�) � '(q)�rk�k2; (2–28)where �r is the smallest eigenvalue of that quadraticform. From the inequalities (2{26) and (2{28), itfollows that���� @k@xS �̂q;a1;:::;ar(�)���� � �1e��2k�kfor some di�erent positive constants �1 and �2. Sincethe index set S � f1; : : : ; rg was arbitrary, thisshows that the function �̂q;a1;:::;ar is well-behaved.Furthermore, from its de�nition (2{20) the func-tion �̂q;a1;:::;ar is simply the composition of �̂q;a1;:::;arwith the injective linear transformation(�1; : : : ; �r�1) 7! (�1; �2��1; : : : ; �r�1��r�2;��r�1)from R r�1 to R r. As mentioned before, this impliesthat �̂q;a1;:::;ar is itself a well-behaved function.When r = '(q), the function �̂q;a1;:::;ar is invari-ant under translation in the direction of the vec-tor (1; : : : ; 1), and so it is not well-behaved eventhough it has the required decay properties on thehyperplane orthogonal to (1; : : : ; 1) (one can checkthat the quadratic form on the right-hand side ofthe inequality (2{27) is positive semi-de�nite whenr = '(q), with its zero set being the multiples of the(1; : : : ; 1) vector). However, the image of the lineartransformation(�1; : : : ; �r�1) 7! (�1; �2��1; : : : ; �r�1��r�2;��r�1)lies within this hyperplane, so we can still deducethat �̂q;a1;:::;ar is well-behaved even when r = '(q).This establishes the lemma. �Of course we also have the trivial boundj�̂q;a1;:::;ar j � 1:
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Lemma 2.3 implies in particular that �̂q;a1;:::;ar is in-tegrable, and consequently the Fourier inversion for-mula (2{7) is valid for �q;a1;:::;ar , becomingd�q;a1;:::;ar = (2�)�r�Z � � �Z ei(�1x1+���+�rxr)
� �̂q;a1;:::;ar(�1; : : : ; �r) d�1 : : : d�r� dx1 : : : dxr:

(2–29)

2C. Multidimensional Cauchy Principal ValuesIn one dimension, the Cauchy principal valueP:V: Z 1�1 f(x)x dx = lim"!0Zjxj>" f(x)x dxis a familiar object. For our purposes it will be nec-essary to make use of the multidimensional analogueP:V: Z � � �Z f(x1; : : : ; xn)x1 : : : xn dx1 : : : dxn= lim"!0 Z � � �Zminfjx1j;:::;jxnjg>"f(x1; : : : ; xn)x1 : : : xn dx1 : : : dxn; (2–30)

in particular, we would like to know that this limitexists. The purpose of this section is to establish theexistence of these multidimensional Cauchy princi-pal values for well-behaved functions, a class whichby Lemma 2.3 includes the functions �̂q;a1;:::;ar dis-cussed in the previous section. We remark thatwhile the lemmas in this section could certainly beobtained under somewhat weaker hypotheses, theysu�ce for our purposes as stated.
Lemma 2.4. Let f be a well-behaved function on R nthat vanishes whenever any of the �rst k coordi-nates x1, . . . , xk equals zero. Then the functionf(x1; : : : ; xn)=x1 : : : xk extends across the coordinatehyperplanes to a continuous integrable function sat-isfying the upper bound����f(x1; : : : ; xn)x1 : : : xk ���� � �1e��2kxk (2–31)for some positive constants �1 and �2.Although this lemma holds in one dimension with-out any assumptions on the derivatives of f , al-ready in R 2 one can construct an exponentially de-caying, smooth (even real-analytic) function f(x; y)that satis�es f(0; y) = 0 for all y but for whichf(x; y)=x is not integrable.

Proof. That f(x)=x1 : : : xk extends across the coor-dinate hyperplanes to a continuous function followsfrom the fact that f has continuous derivatives ofall orders; therefore only the upper bound (2{31)remains to be proved, since integrability is a conse-quence of this bound. Furthermore, by continuityit su�ces to establish this upper bound when noneof the variables equals zero. Also, if all of the jxj jare bounded by 1 then the function f(x)=x1 : : : xkis uniformly bounded; therefore we may assume (af-ter inating the constant �1 if necessary) that thereexists an xj with jxj j > 1.Permuting the �rst k variables if necessary, wecan choose an integer 1 � m � k such that0 < jx1j; : : : ; jxmj � 1 and jxm+1j; : : : ; jxkj > 1:Since f vanishes when x1 equals zero, there exists anumber t1 with jt1j � jx1j such thatf(x1; : : : ; xn) = f(x1; : : : ; xn)� f(0; x2; : : : ; xn)= x1 @f@x1 (t1; x2; : : : ; xn)by the mean value theorem in the variable x1. Simi-larly, f vanishes whenever x2 equals zero, so in par-ticular @f=@x1 equals zero when x2 = 0. Therefore,there exists a number t2 with jt2j � jx2j such that@f@x1 (t1; x2; : : : ; xn)= @f@x1 (t1; x2; : : : ; xn)� @f@x1 (t1; 0; x3; : : : ; xn)= x2 @2f@x1@x2 (t1; t2; x3; : : : ; xn)by the mean value theorem in the variable x2. Con-tinuing in this way, we �nd numbers ti with jtij �jxij for each 1 � i � m such thatf(x1; : : : ; xn)= x1 : : : xm @mf@x1 : : : @xm (t1; : : : ; tm; xm+1; : : : ; xn):It follows immediately that���� f(x)x1 : : : xk ���� � ���� @mf@x1 : : : @xm (t1; : : : ; tm; xm+1; : : : ; xn)����
(2–32)since jxm+1j; : : : ; jxkj > 1.
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Since f is well-behaved, there exist positive con-stants �1 and �2 such that���� @mf@x1 : : : @xm �t1; : : : ; tm; xm+1; : : : ; xn)����� �1 exp ���2qt21 + � � �+ t2m + x2m+1 + � � �+ x2n�:
(2–33)But notice thatt21 + � � �+ t2m + x2m+1 + � � �+ x2n� X1�j�njxj j>1 x2j � #f1 � j � n : jxj j > 1gn nXj=1 x2j :Since we are working under the assumption that atleast one of the jxj j exceeds 1, we can use this factin the inequality (2{33) to see that���� @mf@x1 : : : @xm (t1; : : : ; tm; xm+1; : : : ; xn)����� �1e��2kxk=pn:Combining this bound with the inequality (2{32),this establishes the lemma (upon replacing �2=pnby �2). �For the proof of the next lemma, as well as forthe formulation of the general formula for �q;a1;:::;ar(Theorem 4 in Section 2E), we require the followingnotation: for a function f on R n and a subset B off1; : : : ; ng, de�nef(B) = f(B)(fxj : j 2 Bg) = f(�1; : : : ; �n); (2–34)where �j = xj if j 2 B, and �j = 0 otherwise. Forexample, if n = 6 and B = f2; 4; 5g then f(B) is afunction of the three variables x2, x4, and x5, namelyf(B) = f(0; x2; 0; x4; x5; 0); in general f(B) will bea function on the appropriate jBj-dimensional sub-space of R n, where jBj denotes the cardinality ofB. In the case B = ? we simply have f(B) =f(0; : : : ; 0).

Lemma 2.5. If f is a well-behaved function on R n,then P:V: Z � � �Z f(x1; : : : ; xn)x1 : : : xn dx1 : : : dxnis well-de�ned ; i .e., the limit in equation (2{30) ex-ists .

Proof. Let g1(x) be an even, well-behaved functionon R 1 with g1(0) = 1 (for instance, we might havein mind g1(x) = e�x2), and letg(x1; : : : ; xn) = g1(x1) : : : g1(xn):De�ne an operator G on well-behaved functions fby G(f) = G(f)(x1; : : : ; xn)= XB�f1;:::;ng(�1)n�jBjf(B)g( �B) (2–35)

in the notation of equation (2{34), where �B denotesthe complement f1; : : : ; ng n B of B. Since f and gare well-behaved functions, the same is true of G(f).Consider the term in (2{35) corresponding to someparticular proper subset B of f1; : : : ; ng. Providedwe choose l =2 B, the term f(B)g( �B) can be writtenas g(xl) times a function independent of xl. Thusf(B)g( �B) is an even function of xl, and hence in-tegrates to zero against any odd function of xl. Inparticular,Z � � �Zminfjx1j;:::;jxnjg>" f(B)g( �B)x1 : : : xr dx1 : : : dxn = 0
for any proper subset B of f1; : : : ; ng and any posi-tive ". Since the term in the sum (2{35) correspond-ing to B = f1; : : : ; ng is simply the function f itself,we see thatZ � � �Zminfjx1j;:::;jxnjg>" f(x1; : : : ; xn)x1 : : : xn dx1 : : : dxn

= Z � � �Zminfjx1j;:::;jxnjg>" G(f)x1 : : : xn dx1 : : : dxn (2–36)

for any " > 0.On the other hand, we claim that G(f) evalu-ates to zero when any of the variables xl equalszero. To see this, let B be a subset of f1; : : : ; ngnot containing l. When xl = 0 we see that theterm (�1)n�jBjf(B)g( �B) corresponding to B in thesum (2{35) reduces to(�1)n�jBjf(B)g( �B n flg):The term(�1)n�jB[flgjf(B [ flg)g(B [ flg)= (�1)n�1�jBjf(B [ flg)g( �B n flg)
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corresponding to B [ flg reduces to(�1)n�1�jBjf(B)g( �B n flg)when xl = 0. It follows that when xl = 0, the termsin (2{35) will cancel pairwise in the natural pairingbetween the subsets of f1; : : : ; ng not containing land those containing l.Because of this, Lemma 2.4 tells us that the func-tion G(f)=x1 : : : xn is integrable, whence the domi-nated convergence theorem implies
lim"!0 Z � � �Zminfjx1j;:::;jxnjg>" G(f)x1 : : : xn dx1 : : : dxn

= Z � � �Z G(f)x1 : : : xn dx1 : : : dxn: (2–37)This together with equation (2{36) shows that theprincipal value (2{30) exists| in fact it equals theintegral on the right-hand side of equation (2{37).�
Lemma 2.6. If f is a well-behaved function on R n,then for any 1 � k � n,

limc!0+cn�k Z � � �ZRn f(x1; : : : ;xn)x1 : : :xk(c2 + x21) : : : (c2 + x2n) dx1 : : : dxn= �n�kP:V:Z � � �ZRk f(x1; : : : ;xk;0; : : : ;0)x1 : : :xk dx1 : : : dxk:
(2–38)

Proof. We proceed along lines similar to the proof ofLemma 2.5. Analogously to the de�nition (2{35) ofthe operator G(f), de�ne the operatorGk(f) = Gk(f)(x1; : : : ; xn)= XB�f1;:::;kg(�1)k�jBjf�B [ fk+1; : : : ; ng�g( �B);
so that Gk(f) is itself a well-behaved function. Thearguments leading to the validity of equation (2{36)in the proof of Lemma 2.5 show that the functionGk(f)� f integrates to 0 against any function thatis odd in each of the variables x1, . . . , xk separately.In particular,cn�k Z � � �Z f(x1; : : : ; xn)x1 : : : xk(c2 + x21) : : : (c2 + x2n) dx1 : : : dxn= cn�k Z � � �Z Gk(f)(x1; : : : ; xn)x1 : : : xk(c2 + x21) : : : (c2 + x2n) dx1 : : : dxn:

Making the change of variables xj 7! cxj for k <j � n and rearranging terms, we see that
cn�k Z � � �Z Gk(f)(x1; : : : ; xn)x1 : : : xk(c2 + x21) : : : (c2 + x2n) dx1 : : : dxn

=Z � � �Z ~Gk(f)(x1; : : : ; xk; cxk+1; : : : ; cxn)x21 : : : x2k(c2 + x21) : : : (c2 + x2k)(1 + x2k+1) : : : (1 + x2n)� dx1 : : : dxn; (2–39)where we have de�ned~Gk(f)(x) = Gk(f)(x)x1 : : : xk :As in the proof of Lemma 2.5, we can check thatGk(f) evaluates to zero whenever any of the �rstk variables equals zero, and thus by Lemma 2.4 thefunction ~Gk(f) is continuous and integrable and sat-is�es an upper bound of the formj ~Gk(f)(x)j � �1e��2kxk (2–40)for some positive constants �1 and �2.Now de�ne Sc(x1; : : : ; xk) to be equal to�1e��2ckxkif kxk > 1=pc and to
maxjtk+1j;:::;jtnj�pc ����� ~Gk(f)(x1; : : : ; xk; tk+1; : : : ; tn)(1 + x2k+1) : : : (1 + x2n)

�����if kxk � 1=pc. One can check that the integrand onthe right-hand side of equation (2{39) is boundedin absolute value by Sc(x1; : : : ; xk) when 0 < c < 1.Moreover, the continuity of ~Gk(f) implies that Sc isbounded on the set fx 2 R k : kxk � 1=pcg, andtherefore Sc is integrable. Furthermore, both Scand the integrand on the right-hand side of equa-tion (2{39) tend pointwise to the function~Gk(f)(x1; : : : ; xk; 0; : : : ; 0)(1 + x2k+1) : : : (1 + x2n)as c tends to zero, and this function is also integrableby the exponential decay (2{40) of ~Gk(f). There-fore, taking limits on both sides of equation (2{39)and using the generalized dominated convergencetheorem, we conclude thatlimc!0+ cn�k Z � � �Z Gk(f)(x1; : : : ; xn)x1 : : : xk(c2 + x21) : : : (c2 + x2n) dx1 : : : dxn
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= Z � � �Z ~Gk(f)(x1; : : : ; xk; 0; : : : ; 0)(1 + x2k+1) : : : (1 + x2n) dx1 : : : dxn
= �n�k Z � � �Z Gk(f)(x1; : : : ; xk; 0; : : : ; 0)x1 : : : xk dx1 : : : dxk:But just as in the proof of Lemma 2.5, this lastintegral equals the principal value of the integralof f(x1; : : : ; xk; 0; : : : ; 0)=x1 : : : xk, which establishesthe lemma. �Of course, the lemma would also hold if both occur-rences of the product x1 : : : xk in equation (2{38)were replaced by any product xj1 : : : xjk of k dis-tinct variables (and the variables of integration onthe right-hand side adjusted accordingly).

2D. Analysis for the Special CaseIn this section we derive analytic expressions for thelogarithmic density �8;3;5;7 of the setfx 2 R : �(x; 8; 3) > �(x; 8; 5) > �(x; 8; 7)gand for the other densities in Theorem 1. These for-mulas are special cases of Theorem 4, which will beestablished in the next section; however, we presenta complete analysis in these special cases to illus-trate and motivate the techniques in the generalcase.We begin by noting the special case�8;3;5;7 = Z Z Zx>y>z d�8;3;5;7(x; y; z)
of equation (2{5). Making the change of variablesu = x� y, v = y � z, and w = z gives�8;3;5;7 = Z

u>0
Z
v>0

Z
w2R d�8;3;5;7(u; v; w);

where the measure �q;a1;:::;ar is de�ned, in obviousnotation, by�8;3;5;7(u; v; w) = �8;3;5;7(u+v+w; v+w; w);
(2–41)or equivalently�8;3;5;7(x; y; z) = �8;3;5;7(x�y; y�z; z):Integrating out the w variable, we obtain�8;3;5;7 = Z

u>0
Z
v>0 d�8;3;5;7(u; v); (2–42)

where we have de�ned, again in obvious notation,�8;3;5;7(u; v) = Z
w2R d�8;3;5;7(u; v; w): (2–43)

It is easily checked that the Fourier transform of�8;3;5;7 is related to that of �8;3;5;7 via�̂8;3;5;7(�; �) = �̂8;3;5;7(�; ���; ��);which is a particular case of equation (2{20).We can appeal to the formula (2{21) for �̂q;a1;:::;arto write �̂8;3;5;7(�; �) explicitly. Recall that a dis-criminant is an integer congruent to 0 or 1 mod 4,and a fundamental discriminantD is an integer thatcannot be written in the form D = dn2 for some dis-criminant d and integer n � 2. For any fundamentaldiscriminant D, let �D denote the character�D(n) = �Dn �where we use Kronecker's extension of the Legen-dre symbol [Davenport 1980, Chapter 5]. Then thethree nonprincipal characters mod 8 are simply ��8,��4, and �8. In this setting, equation (2{21) be-comes�̂8;3;5;7(�; �)= F (j2�j; ��8)F (j2��2�j; ��4)F (j�2�j; �8); (2–44)showing that �̂8;3;5;7 is real-valued and symmetricwith respect to reection through the origin. Thesame argument gives formulas for �q;a;b;c for any per-mutation fa; b; cg of f3; 5; 7g, where the argumentsof the F (�; �) functions in equation (2{44) simplyare permuted accordingly. Since each F (z; �) is aneven function, we can omit the absolute value signsin these arguments. Similar remarks hold for themodulus 12, where the three nonprincipal charac-ters are (induced by) ��4, ��3, and �12.Using the monotone convergence theorem and theFourier inversion formula (2{29), equation (2{42)becomes�8;3;5;7 = limc!0+ Zu>0
Z
v>0 e�c(u+v) d�8;3;5;7(u; v)= limc!0+ Zu>0
Z
v>0 e�c(u+v)

� 14�2 Z Z ei(u�+v�)
� �̂8;3;5;7(�; �) d� d�� du dv:
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We next use Fubini's theorem to write�8;3;5;7= 14�2 limc!0+Z Z �̂8;3;5;7(�; �)� Z
u>0

Z
v>0 eu(�c+i�)+v(�c+i�) du dv

� d� d�
= 14�2 limc!0+Z Z �̂8;3;5;7(�; �)(c�i�)(c�i�) d� d�= 14�2 limc!0+Z Z �̂8;3;5;7(�; �)(c2+ic(�+�)���)(c2+�2)(c2+�2) d� d�
= 14�2 (G8;3;5;7+iH8;3;5;7�I8;3;5;7); (2–45)where we have de�ned
G8;3;5;7 = limc!0+ c2 Z Z �̂8;3;5;7(�; �)(c2+�2)(c2+�2) d� d� ; (2–46)

H8;3;5;7 = limc!0+ cZ Z �̂8;3;5;7(�; �)(�+�)(c2+�2)(c2+�2) d� d� ; (2–47)

I8;3;5;7 = limc!0+Z Z �̂8;3;5;7(�; �)��(c2+�2)(c2+�2) d� d� : (2–48)

In equation (2{46) we make the change of vari-ables � = �=c and � = �=c to obtain
G8;3;5;7 = limc!0+Z Z �̂8;3;5;7(c�; c�)(1 + �2)(1 + �2) d� d�= Z Z �̂8;3;5;7(0; 0)(1 + �2)(1 + �2) d� d� = �2;

where we have again used the dominated conver-gence theorem together with the trivial boundj�̂8;3;5;7(�; �)j � �̂8;3;5;7(0; 0) = 1:Next, we note that H8;3;5;7 equals zero since the in-tegrand in equation (2{47) is odd under reectionthrough the origin. Finally, we observe that equa-tion (2{48) may be written asI8;3;5;7 = limc!0+Z Z (�̂8;3;5;7(�; �)��̂8;3;5;7(�; 0)�̂8;3;5;7(0; �)) ��(c2 + �2)(c2 + �2) d� d�;

since the term introduced is odd in either variableseparately and so integrates to zero. This is thesame asI8;3;5;7= limc!0+Z Z �̂8;3;5;7(�; �)� �̂8;3;5;7(�; 0)�̂8;3;5;7(0; �)��� �2�2(c2 + �2)(c2 + �2) d� d�:Note that the expression�̂8;3;5;7(�; �)� �̂8;3;5;7(�; 0)�̂8;3;5;7(0; �)is well-behaved by Lemma 2.3, and since�̂8;3;5;7(0; 0) = 1;it evaluates to zero when either � or � equals zero.Therefore, the �rst fraction in the integrand can beextended across the � and � axes to a continuousintegrable function by Lemma 2.4. We may thususe the dominated convergence theorem to see thatI8;3;5;7= Z Z �̂8;3;5;7(�; �)� �̂8;3;5;7(�; 0)�̂8;3;5;7(0; �)�� d� d�:
(2–49)This integral may be written as the multivariateCauchy principal value

I8;3;5;7 = P:V: Z Z �̂8;3;5;7(�; �)�� d� d� (2–50)as discussed in Section 2C, since �̂8;3;5;7(�; 0) and�̂8;3;5;7(0; �) are even functions and hence the termomitted in passing from (2{49) to (2{50) is odd ineither variable. (Of course, we could have arrived at(2{50) directly from the de�nition of I8;3;5;7 by in-voking Lemma 2.6; however, not only is this deriva-tion more concrete, in keeping with the spirit of thissection, but we will also need the formula (2{49)during our error analysis in Section 3.)It follows that the right-hand side of (2{45) canbe evaluated to give�8;3;5;7 = 14 � 14�2 I8;3;5;7= 14 � 14�2 P:V: Z Z �̂8;3;5;7(�; �)�� d� d� ;
(2–51)
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where �̂8;3;5;7 is given explicitly in equation (2{44).The identical argument, of course, applies for evalu-ating �8;a;b;c for any permutation fa; b; cg of f3; 5; 7gto yield�8;a;b;c = 14 � 14�2 P:V: Z Z �̂8;a;b;c(�; �)�� d� d�;
(2–52)where �8;a;b;c is de�ned via obvious analogy to (2{41)and (2{43), and similarly�12;a;b;c = 14 � 14�2 P:V: Z Z �̂12;a;b;c(�; �)�� d� d�;
(2–53)for any permutation fa; b; cg of f5; 7; 11g.We remark that the numerator of the integrand in(2{49) may be viewed as a \measure of dependence"in the Fourier domain for the bivariate distributionof a random vector (X;Y ) in R 2 having density�8;3;5;7. In fact, the integrand in (2{49) is the Fouriertransform of the natural dependence measure basedon factorizability of the bivariate cumulative distri-bution function corresponding to �8;3;5;7. This inter-pretation is important in Section 3A, where a ran-dom vector (X;Y ) of this type is analyzed to yieldbounds for the tail of the measure �8;3;5;7.

2E. Analysis for the General CaseWe are now at the point where we have the notationand tools needed for the statement and proof of ageneral formula for the densities �q;a1;:::;ar .
Theorem 4. Assume GRH and LI . Let q; r � 2 be in-tegers , and let a1, . . . , ar be distinct reduced residueclasses mod q. Then�q;a1;:::;ar = 2�(r�1)�1+ XB�f1;:::;r�1gB 6=?

� i��jBj
� P:V: Z � � �Z �̂q;a1;:::;ar(B)Yj2B d�j�j �; (2–54)

where �̂q;a1;:::;ar(B) uses the notation of (2{34) ap-plied to the function�̂q;a1;:::;ar(�1; : : : ; �r�1)= exp� r�1Xj=1(c(q; aj)� c(q; aj+1))�j�
� Y�modq� 6=�0 F����� r�1Xj=1(�(aj)� �(aj�1))�j����; ��:

Proof. We follow the strategy used for the specialcases in Section 2D. For notational simplicity weuse the abbreviations� = �q;a1;:::;ar ; � = �q;a1;:::;ar ;and so on.Our starting point is equation (2{5),
� = Z � � �Zx1>x2>���>xr d�(x1; : : : ; xr):We make the change of variables u1 = x1 � x2, . . . ,ur�1 = xr�1 � xr, ur = xr to obtain� = Z � � �Zu1>0; :::; ur�1>0ur2R d�(u1; : : : ; ur);

where the measure � is de�ned, in obvious notation,by�(u1; : : : ; ur) = �(u1+ � � �+ur; u2+ � � �+ur; : : : ; ur);or equivalently�(x1; : : : ; xr) = �(x1�x2; : : : ; xr�1�xr; xr):Integrating out the ur variable leads to� = Z
u1>0: : :

Z
ur�1>0 d�(u1; : : : ; ur�1); (2–55)

where we have de�ned (again in obvious notation)
�(u1; : : : ; ur�1) = Zv2R d�(u1; : : : ; ur�1; v):

It is easily checked that the Fourier transform of �is related to that of � by the identity (2{20).At this point, our goal is to evaluate the integralon the right-hand side of equation (2{55) in termsof the Fourier transform �̂ of �. The correct �nalformula could be obtained by writing this as the in-tegral of d� against the characteristic function of theregion of integration, and using Parseval's identityin the context of the theory of generalized functions;the following analysis derives this �nal formula rig-orously.



550 Experimental Mathematics, Vol. 9 (2000), No. 4

Using �rst the monotone convergence theorem andthen the Fourier inversion formula (2{29), equation(2{55) becomes� = limc!0+ Z
u1>0� � �

Z
ur�1>0 e�c(u1+���+ur�1) d�(u1; : : : ; ur�1)

= limc!0+ Z
u1>0� � �

Z
ur�1>0 e�c(u1+���+ur�1)

� �(2�)�(r�1) Z � � �Z ei(u1�1+���+ur�1�r�1)
� �̂(�1; : : : ; �r�1) d�1 : : : d�r�1�� du1 : : : dur�1:Then by Fubini's theorem this becomes(2�)(r�1)� �= limc!0+Z � � �Z �̂(�1; : : : ; �r�1)�� Zu1>0� � �

Z
ur�1>0 eu1(�c+i�1)+���+ur�1(�c+i�r�1)

� du1 : : : dur�1� d�1 : : : d�r�1= limc!0+Z � � �Z �̂(�1; : : : ; �r�1)(c�i�1) : : : (c�i�r�1) d�1 : : : d�r�1
= limc!0+Z � � �Z �̂(�1; : : : ; �r�1)(c+i�1) : : : (c+i�r�1)(c2+�21) : : : (c2+�2r�1)�d�1 : : : d�r�1;and expanding the product (c + i�1) : : : (c + i�r�1)leads to� = (2�)�(r�1) XB�f1;2;:::;r�1g ijBj I(B); (2–56)

where we have de�nedI(B) = limc!0+ cr�1�jBjZ � � �Z �̂(�1; : : : ; �r�1)�Qj2B �j�(c2 + �21) : : : (c2 + �2r�1) d�1 : : : d�r�1:Appealing to Lemma 2.6 with n = r�1 and k = jBj,we see thatI(B) = �r�1�jBj P:V: Z � � �Z �̂(B)Yj2B d�j�j ;which includes the special case I(?) = �r�1. Usingthis fact in equation (2{56) establishes the theorem.�

The measure �q;a1;:::;ar is the limiting distribution ofthe vector'(q) log xpx ��(x; q; a1)� �(x; q; a2); : : : ;�(x; q; ar�1)� �(x; q; ar)�in R r�1, so its usefulness to the investigation of thosex with �(x; q; a1) > � � � > �(x; q; ar) is not surpris-ing.To conclude this section, we consider two specialcases of Theorem 4. In the case r = 2 (in otherwords, when we are comparing simply a pair a1; a2of residues modulo q) the formula (2{54) reduces to�q;a1;a2 = 12�1 + i� P:V: Z �̂q;a1;a2(�)d�� �
= 12 � 12� Z sin(fc(q; a1)� c(q; a2)g�)�� Y�modq� 6=�0F�

�j�(a1)� �(a2)j�� d�; (2–57)

the corresponding cosine term in the last integral be-ing omitted by virtue of symmetry. When c(q; a1) =c(q; a2), the integrand is identically zero and hence�q;a1;a2 = 12 , as was proved by Rubinstein and Sar-nak. In fact, our formula (2{57) is analogous to oneof theirs [Rubinstein and Sarnak 1994, equation 4.1].In the case r = 3, Theorem 4 becomes�q;a1;a2;a3 =14 + i4� P:V: Z ��̂q;a1;a2;a3(�; 0)+�̂q;a1;a2;a3(0; �)�d��� 14�2 P:V: Z Z �̂q;a1;a2;a3(�1; �2) d�1d�2�1�2 :If the aj are all squares or all nonsquares, the one-dimensional integral again vanishes due to symme-try, yielding a generalization of the formulas (2{52)and (2{53) of Section 2D.
3. RIGOROUS ERROR BOUNDSIn this section, we describe how the densities in The-orem 1 were calculated and provide a rigorous anal-ysis bounding the error between the calculated andtrue values.Suppose that we wish to evaluate �8;3;5;7. Accord-ing to equation (2{51), we need only to evaluateP:V: Z Z �̂8;3;5;7(�; �)�� d� d�;
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which in turn by formula (2{44) equalsP:V:Z Z F (2�;��8)F (2��2�;��4)F (�2�;�8)�� d� d�:
(3–1)We shall approximate this integral by sampling theintegrand on the (symmetrically o�set) grid of pointsn�m"2 ; n"2 � : ���m"2 ���; ���n"2 ��� � C; m; n oddofor some appropriately small " > 0 and some ap-propriately large C > 0. In fact the quantity weactually compute is 4S8;3;5;7("; C; T ), where we de-�neS8;3;5;7(";C;T ) =XXjmj;jnj�2C="m;nodd FT (m";��8)FT ((n�m)";��4)FT (�n";�8)mn ;
(3–2)here FT (z; �) is the approximation to F (z; �) de-�ned in equation (2{11), and as before �D is thecharacter given by the Kronecker symbol�D(n) = �Dn �:The quantity S8;3;5;7("; C; T ) is a discrete, trun-cated approximation to the integral (3{1) involvingan approximated summand as well. The overall er-ror incurred in evaluating (3{1) by means of (3{2)thus consists of three components: error due to dis-cretizing the integral, error due to truncating theresulting in�nite sum, and error due to approximat-ing the summand. In Sections 3A to 3C we obtainrigorous bounds for each of these sources of error,and in Section 3D we combine these bounds to es-tablish Theorem 1. Section 3E provides some tech-nical bounds that are required for our argumentsin Section 3A. While in the sections to follow, allof the speci�c expressions we write down (such asS8;3;5;7("; C; T )) are those that arise in the calcula-tion of the single density �8;3;5;7, the given constantsand error bounds were chosen so as to apply also tothe analogous quantities arising during the calcula-tion of any of the densities listed in Theorem 1.

3A. Error Due To DiscretizationThe �rst step is to discretize the calculation of I8;3;5;7by converting the integral de�ning I8;3;5;7 into a sum;we may bound the error incurred by doing so using

the Poisson summation formula, as we now explain.Let f(�; �) be a continuous, integrable function onR 2 such that both f and f̂ decay rapidly enoughnear in�nity (for instance, exponential decay cer-tainly su�ces). Then f satis�es the Poisson sum-mation formula"1"2 1Xk=�1 1Xl=�1 f(k"1 + �; l"2 + �)
= 1X�=�1 1X�=�1 f̂ �2��"1 ; 2��"2 � e2�i(��="1+��="2)(see for instance [Stein and Weiss 1971, Corollary2.6 of Chapter VII], although we are using a Fouriertransform (2{6) with a di�erent choice of constants).In this formula, set "1 = "2 = " and � = � = "=2,and make the change of variables m = 2k + 1 andn = 2l + 1 on the left-hand side, to obtain"2XXm;n2Zm;n odd f

�m"2 ; n"2 �
= f̂(0; 0) +XX�;�2Z(�;�)6=(0;0) f̂

�2��" ; 2��" �(�1)�+�: (3–3)

Now letf(�; �) = �̂8;3;5;7(�; �)� �̂8;3;5;7(�; 0)�̂8;3;5;7(0; �)�� ;which can be extended continuously over the coordi-nate axes as was noted in Section 2C. This functionf is integrable and has exponential decay near in�n-ity by Lemmas 2.3 and 2.4, and its Fourier transformcan be seen to equalf̂(u; v) = �4�2(P (u; v)� P 1(u)P 2(v)); (3–4)where P (u; v) = Z 1u Z 1v d�8;3;5;7is the upper cumulative distribution function of themeasure �8;3;5;7 and P 1(u) = P (u;�1) and P 2(v) =P (�1; v) are the corresponding \upper marginals".(Note that f̂(u; v) is a dependence measure of thetype mentioned at the end of Section 2D.) At theend of this section we will show that the function f̂decays exponentially as well, so that we are justi�edin applying the form (3{3) of the Poisson summationformula to f .
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Now observe from equation (2{49) thatI8;3;5;7 = Z Z f(�; �) d� d� = f̂(0; 0);so applying equation (3{3) to f we haveI8;3;5;7 ="2XXm;n2Zm;n odd �̂8;3;5;7(m"2 ; n"2 )� �̂8;3;5;7(m"2 ; 0)�̂8;3;5;7(0; n"2 )(m"2 )(n"2 ) +Err1; (3–5)where Err1, the error due to discretization, is givenbyErr1 = 4�2 XX�;�2Z(�;�)6=(0;0)
�P�2��" ; 2��" �

� P 1�2��" �P 2�2��" ��(�1)�+�: (3–6)De�ningQ(u; v) = �P (2�u; 2�v)� P 1(2�u)P 2(2�v)�+�P (�2�u; 2�v)� P 1(�2�u)P 2(2�v)�+�P (2�u;�2�v)� P 1(2�u)P 2(�2�v)�+�P (�2�u;�2�v)�P 1(�2�u)P 2(�2�v)�;and grouping the terms on the right-hand side ofequation (3{6) analogously, we obtainErr1 = 4�2�XX�;�2Z+ (�1)�+�Q��" ; �"�+12 X�2Z+(�1)�Q��" ; 0�+ 12 X�2Z+(�1)�Q�0; �"�
�;

so that jErr1j � 4�2 XX�;��0(�;�)6=(0;0)
����Q��" ; �"�����: (3–7)

Now let (X;Y ) denote a pair of real-valued ran-dom variables whose joint distribution is given by�8;3;5;7 (these random variables are given explicitly inequation (3{33) below, though their explicit form isnot needed here). Then P (u; v) = Pr(X>u; Y >v)and hence P 1(u)=Pr(X>u) and P 2(v)=Pr(Y >v).With this interpretation, and using the fact that�8;3;5;7 is symmetric about the origin, the identityQ(u; v) = Pr(X>2�u; Y >2�v)� Pr(X>2�u; Y <�2�v) (3–8)

is easily veri�ed. Clearly0 � Pr(X>u; Y >v) � minfPr(X>u);Pr(Y >v)g:Moreover, since �8;3;5;7 is symmetric about the ori-gin, each component X and Y is a symmetric ran-dom variable, so that0� Pr(X>u; Y <�v)�minfPr(X>u); Pr(Y <�v)g=minfPr(X>u); Pr(Y >v)g:It therefore follows from the identity (3{8) thatjQ(u; v)j � minfPr(X>2�u); Pr(Y >2�v)g: (3–9)In Section 3E we shall establish the boundsPr(X � u) � exp(�0:04(u� 3)2)Pr(Y � u) � exp(�0:04(u� 3)2) (3–10)for any u � 3. Hence by the inequality (3{9),jQ(u; v)j � exp ��0:04(2�maxfu; vg � 3)2�if either u or v exceeds 1, so that by equation (3{7),jErr1j � 4�2� 1X�=0 1X�=maxf�;1g exp��0:04�2��" � 3�2�
+ 1X�=0 1X�=maxf�;1g exp��0:04�2��" � 3�2��

� 8�2 1X�=0 1X�=maxf�;1g exp
��0:04�2��" � 3�2�

(3–11)if " < 1, say. Now, for any positive integer �0,1X�=�0 exp
��0:04�2��" � 3�2�

� 2 exp��0:04�2��0" � 3�2�;since each term of the sum is at most half of thepreceding term. Applying this inequality twice insuccession to the bound (3{11) givesjErr1j � 8�2�2 exp��0:04�2�" � 3�2�
+ 2 1X�=1 exp��0:04�2��" � 3�2�

� 48�2 exp��0:04�2�" � 3�2�:We therefore conclude thatjErr1j < 5� 10�12 (3–12)
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for any choice of " < 15 , which is more than adequatefor our purposes.To conclude this section, we return to the mat-ter of showing that the function f̂ given in equa-tion (3{4) decays exponentially. In terms of the ran-dom variables X and Y , the formula (3{4) becomesf̂(u; v)= �4�2(Pr(X>u; Y >v)� Pr(X>u) Pr(Y >v)):By an argument similar to the one used for the func-tion Q, we see that��f̂(u; v)��� 4�2maxfPr(X>u; Y >v);Pr(X>u) Pr(Y >v)g� 4�2minfPr(X>u);Pr(Y >v)g: (3–13)On the other hand, elementary considerations yieldf̂(�u;�v)= 4�2(Pr(X>�u; Y >�v)�Pr(X>�u) Pr(Y >�v))= 4�2�(1� Pr(X��u)� Pr(Y��v)+ Pr(X��u; Y��v))�(1� Pr(X��u))(1� Pr(Y��v))�= 4�2(Pr(X��u; Y��v)�Pr(X��u) Pr(Y��v)):By the same argument as in equation (3{13) we get��f̂(�u;�v)�� � 4�2minfPr(X��u);Pr(Y ��v)g= 4�2minfPr(X�u);Pr(Y �v)g;since X and Y are symmetric. We can thereforeapply the bounds (3{10) to conclude that��f̂(�u;�v)�� � 4�2 exp ��0:04(maxfjuj; jvjg � 3)2�if either juj or jvj exceeds 3. In particular, the func-tion f̂ decays (faster than) exponentially, as claimed.
3B. Error Due to Truncating the Infinite SumsFrom equation (3{5) we haveI8;3;5;7 = 4XXm;n2Zm;n odd

� �̂(m"2 ; n"2 )mn� �̂(m"2 ; 0)�̂(0; n"2 )mn �+Err1= 4S8;3;5;7(") + Err1; (3–14)where � = �8;3;5;7 and we have de�nedS8;3;5;7(") =XXm;n2Zm;n odd �̂8;3;5;7(m"2 ; n"2 )mn : (3–15)

(The term that has been omitted in the latterequality in equation (3{14) equals zero, since�̂8;3;5;7�m"2 ; 0��̂8;3;5;7�0; n"2 �(mn)�1is odd in either variable separately due to the sym-metry of the functions �̂8;3;5;7(m"2 ; 0) and �̂8;3;5;7(0;n"2 )through the origin.) At this point we have accom-plished the �rst step of converting our integral I8;3;5;7into a discrete sum, with a manageable error; thenext step is to truncate the ranges of summation sothat the resulting sum has only �nitely many terms.From the formula (2{44) for �̂8;3;5;7, the de�ni-tion (3{15) becomesS8;3;5;7(")=XXm;n2Zm;n odd F (m"; ��8)F ((n�m)"; ��4)F (�n"; �8)mn
= S8;3;5;7("; C) + Err2; (3–16)where we have de�ned the truncated seriesS8;3;5;7("; C) =X0X0jmj;jnj�2C=" F (m"; ��8)F ((n�m)"; ��4)F (�n"; �8)mn

(3–17)(the primes indicating that the sums are taken overonly odd values of m and n) and the error due totruncationErr2 =X0X0maxfjmj;jnjg>2C="F (m"; ��8)F ((n�m)"; ��4)F (�n"; �8)mn :
We rewrite this as
Err2 = 2� X0m>2C="

m=2X0n=�m+ X0m>2C=" mX0n=m=2
+ X0n>2C="

n=2X0m=�n+ X0n>2C=" nX0m=n=2
�

F (m"; ��8)F ((n�m)"; ��4)F (�n"; �8)mn ; (3–18)where the factor of 2 comes from grouping togetherthe terms corresponding to (m;n) and (�m;�n) bythe symmetry of the summand through the origin.
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To bound Err2, we will certainly need explicit es-timates for the functions F (x; �) on the real axis.We recall the upper bound (2{16),
jF (x; �)j � (�jxj)�J=2 JYj=1� 14 + 2j �1=4;where J is any positive integer and 0 < 1 < 2 <: : : are the imaginary parts of the nontrivial zeros ofL(s; �). Any particular choice of J gives an upperbound of the formjF (x; �)j � d(�)jxj�e(�) (3–19)for some positive constants d(�) and e(�). For any�xed x the optimal choice of J is the largest integersuch that (�x)2 > 14 + 2J ; but for our present pur-poses, we obtain su�ciently good results that areeasy to apply uniformly in x by choosing J so thatJ is just less than 30. Table 1 lists, for each ofthe �ve characters � relevant to the densities mod 8and mod 12, the values of J chosen and the resultingvalues of d(�) and e(�) in the bound (3{19), whichwe computed from the lists of zeros of the L(s; �)supplied to us by R. Rumely.� J d(�) e(�)��8 56 1:3� 1032 28�8 56 2:1� 1032 28��4 46 8:5� 1026 23��3 42 7:5� 1024 21�12 62 3:0� 1035 31

TABLE 1. Allowable constants in the bound (3{19)for jF (x; �)j.Since jF (x; �)j is also bounded by 1 on the realaxis, we can estimate the �rst double sum in equa-tion (3{18) by���� X0m>2C="
m=2X0n=�mF (m";��8)F ((n�m)";��4)F (�n";�8)mn ����

� Xm>2C=" m=2Xn=�1
����F (m";��8)F ((n�m)";��4)m ����� d(��8)d(��4)"�e(��8)�e(��4)

� Xm>2C=" m=2Xn=�1m�e(��8)�1(m�n)�e(��4) (3–20)

using the bound (3{19) for ��8 and ��4.

Now we claim thatXm>M m=2Xn=�1m��(m�n)�� = Xm>M 1Xn=m=2m��n��
< 2��1M 1���� � 2�+��1+ M(�+��2)(��1)�

(3–21)for any real numbers �; � > 1. The equality is clearupon making the change of variables n 7! m � n,while the inequality follows from the elementary ar-gumentXm>M 1Xn=m=2m��n��
< Xm>Mm���lm2 m�� + Z 1dm=2e t�� dt�� Xm>Mm����m2 ��� + 1��1 �m2 �1���
< 2� Z 1M t���� dt+ 2��1��1 Z 1M t1���� dt
= 2��+��1M 1���� + 2��1(��1)(�+��2)M 2����;this last expression being equivalent to the right-hand side of (3{21).For the rest of this section we use the abbrevia-tions eD = e(�D) and dD = d(�D). Applying theupper bound (3{21), with � = e�8+1 and � = e�4,to equation (3{20) gives���� X0m>2C="

m=2X0n=�mF (m";��8)F ((n�m)";��4)F (�n";�8)mn ����
< d�8d�4"�e�8�e�42e�4�1�2C" ��e�8�e�4

�� 2e�8 + e�4 + 2C="(e�8 + e�4�1)(e�4�1)�= d�8d�42�e�8C�e�8�e�4�� 1e�8 + e�4 + C="(e�8 + e�4�1)(e�4�1)�:
(3–22)Substituting the appropriate values from Table 1, we�nd that this last expression is less than 1:85�10�7when " = 120 and C = 15.
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The second double sum in equation (3{18) maybe similarly bounded as���� X0m>2C=" mX0n=�m=2F (m";��8)F ((n�m)";��4)F (�n";�8)mn ����
� Xm>2C=" 1Xn=m=2

����F (m";��8)F (�n";�8)m ����
� d�8d8"�e�8�e8 Xm>2C=" 1Xn=m=2m�e�8�1n�e8 :

Applying (3{19) to bound this last expression yieldsjust the right-hand side of equation (3{22) exceptwith ��4 replaced with �8; upon substituting valuesfrom Table 1 we �nd that this expression is also lessthan 1:85�10�7 when " = 120 and C = 15. The thirdand fourth double sums in (3{18) are treated thesame way, and so we conclude from equation (3{18)that jErr2j < 8(1:85� 10�7) < 1:5� 10�6 (3–23)when " = 120 and C = 15.
3C. Error Due to Approximating F(z,�) by FT(z,�)We have accomplished the second step of approxi-mating the in�nite sum S8;3;5;7(") by the �nite sumS8;3;5;7("; C); however, this latter sum is still unsuit-able for computation, since it involves the functionsF (z; �) which are in�nite products. The last step isto replace the functions F (z; �) by their truncatedcounterparts FT (z; �) de�ned in equation (2{11).Recall the de�nition (2{12) of b1,b1 = b1(T; �) = �X�T 114 + 2 ;and put

�T (z; �) = Q>T J0(�z)1 + b1z2 � 1: (3–24)From the de�nitions (2{9) and (2{11) of F and FTwe see thatF (z; �) = FT (z; �)(1 + �T (z; �)):Making this substitution in equation (3{17) for ��8,��4, and �8, we then obtainS8;3;5;7("; C) = S8;3;5;7("; C; T ) + Err3; (3–25)

where S8;3;5;7("; C; T ) is as de�ned in (3{2) andErr3 =X0X0jmj;jnj�2C="FT (m"; ��8)FT ((n�m)"; ��4)FT (�n"; �8)mn� �(1 + �T (m"; ��8))(1 + �T ((n�m)"; ��4))� (1 + �T (�n"; �8))� 1�: (3–26)Regarding the size of the function �T , Rubinsteinand Sarnak [1994, Section 4.3] established that����� Y>T J0(�x)�� (1 + b1x2)���� � b21x42(1� jb1jx2)for real numbers x satisfying jb1jx2 < 1. From thede�nition (3{24) of �T this immediately yields
j�T (x; �)j = ��Q>T J0(�x)� (1 + b1x2)��j1 + b1x2j< b21x42(1� jb1jx2)2 if jb1jx2 < 1:

(3–27)The quantities b1 can be computed if we know allthe zeros of L(s; �) up to height T , sinceb1 = X0<<T 114 + 2 �X>0 114 + 2and we have the formula [Davenport 1980, p. 83]X>0 114 + 2 = 12X 114 + 2= 12 log q� � 02 � (1 + �(�1)) log 22 + L0(1; �)L(1; �)
(3–28)for a real primitive character � mod q, where 0 =0:577215 : : : is Euler's constant. The values L(1; �)can be calculated in closed form by classical for-mulas [Davenport 1980]; the values L0(1; �) can becalculated in closed form using a formula of Selbergand Chowla [1967] for the odd characters and a for-mula of Deninger [1984] for the even characters. Theformer formula expresses L0(1; �) in terms of the log-arithm of the �-function, while the latter expressesL0(1; �) in terms of a function R(x) de�ned asR(x) = �@2�(s; x)@s2 ����s=0;here �(s; x) is the Hurwitz zeta function, de�nedwhen x>�1 by �(s; x) =P1n=1(n+x)�s for Re s> 1
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and extended by meromorphic continuation to thecomplex s-plane.Mathematica can calculate log �(x) and R(x) toarbitrary precision, and thus by the formula (3{28)the sumsP>0 1=� 14 +2� can also be so calculated.Table 2 contains the results of such calculations forthe �ve characters relevant to the densities mod 8and mod 12. (The third column actually lists thevalues of L0(1; �)�(0+log 2�)L(1; �), to save spacein the individual entries.)For all �ve of these characters, when we chooseT = 10,000 we �nd that jb1j < 0:000173. The upperbound (3{27) can then be written more simply asj�T (x; �)j � D(x) for jxj < 74, where we've setD(x) = 1:5� 10�8x4(1� 0:00018x2)2 : (3–29)Consequently, the de�nition (3{26) of Err3 impliesjErr3j �X0X0jmj;jnj�2C=" ����FT (m";��8)FT ((n�m)"; ��4)FT (�n"; �8)mn ����� �(1 +D(m"))(1 +D((n�m)"))(1 +D(�n"))� 1�:
(3–30)The quantity on the right-hand side of this inequal-ity was computed at the same time as S8;3;5;7("; C; T )was computed, and we obtained the boundjErr3j < 5:5� 10�6: (3–31)

3D. ConclusionFrom the relationships (3{15), (3{16), and (3{25)among the various intermediate sums S8;3;5;7, wehaveI8;3;5;7 = 4S8;3;5;7("; C; T ) + Err1 + 4Err2 + 4Err3:Using this identity in equation (2{51) yields�8;3;5;7 = 14 � 14�2 I8;3;5;7= 14 � 14�2 �4S8;3;5;7("; C; T )+Err1 + 4Err2 + 4Err3�;whence it follows that�����8;3;5;7 ��14 � S8;3;5;7("; C; T )�2 ������ jErr1j4�2 + jErr2j+ jErr3j�2 :

Thus by the inequalities (3{12), (3{23), and (3{31),we conclude that�����8;3;5;7 ��14 � S8;3;5;7("; C; T )�2 ����� < 8� 10�7
when " = 120 , C = 15, and T = 10,000. Using thesevalues for ", C, and T , the sum S8;3;5;7("; C; T ) wascalculated and found to equal 0:5645285 : : : , andtherefore we have rigorously that�8;3;5;7 = 0:1928013 � 9� 10�7;which is slightly stronger than the �rst assertion ofTheorem 1.The error analysis in Sections 3A{3C can be re-peated for each of the densities in Theorem 1; theconstants mentioned in the error analysis have beenchosen to apply to all of these densities. Therefore,the densities calculated for Theorem 1 are all cor-rect to within the same margin 9 � 10�7, which isenough to establish the theorem.
3E. Appendix: Probability BoundsIn this section we establish the bounds (3{10) forPr(X � u) and Pr(Y � u) which were used for thecomputations in Section 3A.To do so, we �rst recall from Section 2A the ex-plicit form of the random variables having the dis-tribution �q;a1;:::;ar . Specializing the representation(2{19) to the case q = 8 and fa1; a2; a3g = f3; 5; 7g,we �nd that �8;3;5;7 is the distribution of the randomR 3-vector(1; 1; 1) +X(��8)(1;�1;�1)+X(��4)(�1; 1;�1) +X(�8)(�1;�1; 1):Next, recalling the changes of variables (2{41) and(2{43) that took us from � to � and then to �, weobserve that �8;3;5;7 is the distribution of of the ran-dom R 2-vectorX(��8)(2; 0) +X(��4)(�2; 2) +X(�8)(0;�2):

(3–32)Now de�ne the two real-valued random variablesX = 2 X>0L( 12+i;��8)=0� sin(2�U)� 2 X>0L( 12+i;��4)=0� sin(2�U);
Y = 2 X>0L( 12+i;��4)=0� sin(2�U)� 2 X>0L( 12+i;�8)=0� sin(2�U):(3–33)
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� L(1; �) L0(1; �)� (0 + log 2�)L(1; �) X>0 114 + 2
��8 �2p2 �2p2 log �� 58���78��� 18���38� 0:158037
�8 log(1 +p2)p2 12p2�R� 18��R� 38��R� 58�+R� 78�� 0:117716
��4 �4 �2 log �� 34��� 14� 0:077784
��3 �3p3 �p3 log ��23���13� 0:056615
�12 log(2 +p3)p3 12p3�R� 112��R� 512��R� 712�+R� 1112�� 0:165083

TABLE 2. Values of L(1; �), L0(1; �), and P>0 1=�14 + 2�.We see from the de�nition (2{18) of the X(�) thatthe random vector (X;Y ) equals the random vec-tor (3{32).The following lemma gives information about thetails of random variables of this type.
Lemma 3.1. Let r1 � r2 � : : : be a sequence ofpositive real numbers such that P1k=1 rk = 1 butP1k=1 r2k = R < 1. Let U1, U2, . . . be independentrandom variables uniformly distributed on [0; 1], andde�ne the random variableW = 1Xk=1 rk sin(2�Uk):Then, for any real number w � 2r1,Pr(W � w) � exp��3(w � 2r1)216R �:
Proof. By [Montgomery 1980, Section 3, Theorem 1],under the assumptions of this lemma, we have
Pr�W � 2 KXk=1 rk� � exp��34� KXk=1 rk�2.Xk>K r2k�

(3–34)for any integer K � 1. Since the rk are decreasingand P1k=1 rk = 1, it is clear that for any w � 2r1there exists a K � 1 such thatw2 � r1 � KXk=1 rk � w2 :With this choice of K, inequality (3{34) simpli�es to

Pr(W�w) � exp��34�w2 � r1�2. 1Xk=K r2k�� exp��3(w � 2r1)216R �: �We now apply this lemma to the random variablesX and Y de�ned in equation (3{33). (Note that be-cause each variable U is uniformly distributed on[0; 1], we may replace the U in the second sum oneach line with U+ 12 ; this has the e�ect of changingthe subtraction signs in the equations (3{33) to ad-dition signs, thus rendering X and Y into the formto which Lemma 3.1 applies.) For the variable X,the sequence corresponding to rk is�2� : L( 12 + i; ��8) = 0;  > 0	[ �2� : L( 12 + i; ��4) = 0;  > 0	:For this sequence, the largest element r1 is less than1:5, and the sum R of the squares of the elementsdoes not exceed 4:5. Therefore an application ofLemma 3.1 givesPr(X � u) � exp(�0:04(u� 3)2)for any u � 3. One shows similarly that Y satis�esthe same estimate, establishing the upper bounds(3{10). In fact, the constants mentioned above willwork for every pair of characters that arises in thecomputations of �8;a1;a2;a3 , where fa1; a2; a3g is apermutation of f3; 5; 7g, and in �12;a1;a2;a3 , wherefa1; a2; a3g is a permutation of f5; 7; 11g.
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4. COMPUTATIONAL RESULTSThe mathematical and numerical computations de-scribed in this paper were implemented on an SGIChallenge computer using Mathematica, which hasthe capability to perform computations to arbitraryand veri�able precision. A typical quantity to becalculated is the expression S8;3;5;7("; C; T ) de�nedin equation (3{2), which depends on the functionsFT (z; �) de�ned in equation (2{11). In order tocompute these functions we needed, for the Dirich-let L-functions corresponding to characters to themoduli q � 12, lists of the zeros whose imaginaryparts are bounded by T = 10,000. These lists ofimaginary parts of zeros (accurate to twelve deci-mal places) were kindly supplied to us by R. Rumely[1993]. For the estimation of Err3 in Section 3C itwas also necessary to compute quantities typi�ed bythe right-hand side of equation (3{30), which is noharder than computing S8;3;5;7("; C; T ) itself.In addition to the results reported in Theorem 1,further computations were carried out involving cer-tain cases with q � 12 and r � 4. In these addi-tional results, which are presented below, we reportonly the numbers of decimal places in which we havesome degree of con�dence; speci�cally, we expect theentries to be correct to within one or two units inthe last decimal place reported.Table 3 shows the calculated densities �q;a1;a2 forthe two-way races between �(x; q; a1) and �(x; q; a2),for the moduli q = 3, 4, and 5. For example, the �rstline of the table indicates that �3;2;1 = 0:9990633(rounded to seven decimal places). Throughout thissection we use the symbol N to stand for any non-square mod q and S to stand for any square mod qq a1a2 �q;a1;a2NS: 21 0.99906333 SN : 12 0.0009367NS: 31 0.99592804 SN : 13 0.0040720NS: 21, 24, 31, 34 0.952140NN: 23, 325 SS : 14, 41 12SN : 12, 13, 42, 43 0.047860
TABLE 3. Two-way races for the moduli q = 3; 4; 5.N and S stand for nonsquare and square (mod q).

(although distinct occurrences of N or S in a singleentry stand for distinct residues) to make the Cheby-shev biases more clearly evident where appropriate.Of course, since '(3) = '(4) = 2, the two-wayraces shown are the only possible races for the mod-uli 3 and 4. The densities for these moduli werecalculated by Rubinstein and Sarnak, and our calcu-lations agree with theirs to six decimal places. (Al-though they were only reported in [Rubinstein andSarnak 1994] truncated to four decimal places, theyhad in fact been calculated to higher accuracy.)For the races modulo 5, it turns out that the den-sities �q;a1;a2 depend only on whether or not a1 anda2 are squares mod 5, due to the symmetry resultsgiven in Theorem 2. (In fact this is true for the racesbetween multiple residues mod 5 as well.) For in-stance, applying Theorem 2(b) with a1 = 2, a2 = 1,and b = 4 shows that �5;2;1 = �5;3;4; then apply-ing Theorem 2(a) to each of these expressions showsfurther that �5;2;1 = �5;3;1 and �5;3;4 = �5;2;4. Sincethe two nonsquares mod 5 are f2; 3g while the twosquares are f1; 4g, these equalities show that all fourdensities represented by �5;N;S are equal, as indi-cated in Table 3.The fact that �q;N;N = �q;S;S = 12 , as shown inthe penultimate entry of the table, was proved byRubinstein and Sarnak, and it also follows from ourTheorem 2(d). We calculated these densities any-way, and the calculated answers di�ered from 12 byat most 10�16, which is the default machine preci-sion for our Mathematica calculations. This degreeof accuracy is not unexpected in this instance, asthe integral in the formula (2{57) is identically zerowhen a1 and a2 are both squares or both nonsquaresmod q.Table 4 provides the calculated densities �q;a1;a2;a3for the three-way races modulo 5. Again, in this casethe densities only depend on whether a1, a2, and a3a1a2a3 �5;a1;a2;a3NNS: 231, 234, 321, 324N SS: 214, 241, 314, 341 0.45678NSN : 213, 243, 312, 342SN S : 124, 134, 421, 431 0.03859SNN : 123, 132, 423, 432SSN : 142, 143, 412, 413 0.00464
TABLE 4. Three-way races modulo q = 5.
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are squares mod 5, by the symmetry results (a) and(b) of Theorem 2. In addition, each density matchestwo di�erent types of permutations: for instance,Theorem 2(e) with a1 = 2, a2 = 3, a3 = 1, andb = 2 asserts that �5;2;3;1 = �5;2;1;4, as indicated inthe �rst entry of the table.As mentioned at the beginning of this section, weare con�dent from numerical considerations that thenumbers reported in Table 4 are accurate to the �vedecimal places given there, with a possible error ofone or two units in the �fth decimal place. Thus, forinstance, if we choose a particular triple of residuessuch as f1; 2; 3g and add up the densities from Ta-ble 4 corresponding to the six permutations of thattriple, the result is 1:00002. Moreover, the three or-dered triples f3; 2; 1g, f2; 3; 1g, and f2; 1; 3g are thethree permutations in which 2 is ahead of 1, and sowe have the identity�5;2;1 = �5;3;2;1 + �5;2;3;1 + �5;2;1;3; (4–1)compare equation (5{1). Table 3 gives 0:952140 forthe left-hand side of this identity, while adding theappropriate entries from Table 4 gives 0:95215 forthe right-hand side.There are two reasons why our calculations of thedensities in three-way races for moduli other than 8and 12 are less accurate than the full six-decimal-place accuracy proven in Theorem 1, both stem-ming from the fact that there are complex-valuedDirichlet characters associated with the other mod-uli. First, when we calculate the function FT (z; �)we do so only on a discrete set of points, evenlyspaced at intervals of "=2. These points are the onlyones needed to evaluate sums such as S8;3;5;7("; C; T ),as we see from the de�nition (3{2), but for the sumscorresponding to other moduli we need to know thevalue of FT (z; �) at irrational multiples of ". We es-timated this value by interpolating linearly betweenthe two nearest values, and this estimation intro-duces an additional error into the calculations.Second, the zeros of L-functions corresponding tocomplex characters are not symmetric with respectto the real axis, and so the quantityP>0 1=(14+2),needed to compute b1(T; �), cannot be evaluatedin closed form. Since we can evaluate b1(T; �) +b1(T; ��) in closed form, we used half of this quan-tity in place of both b1(T; �) and b1(T; ��); this givesthe correct �rst-order approximation to the tail of

F (z; �)F (z; ��), but the absolute error in our cal-culations can be somewhat higher as a result. Forhigher moduli, the sheer number of characters willalso play a role, as the product of the '(q)� 1 func-tions FT (z; �) required for the evaluation of �̂q;a1;:::;arwill gradually erode the accuracy of the calculatednumber.Since there are exactly four reduced residues mod-ulo 5, it is natural to look at the complete four-wayrace mod 5; Table 5 shows the calculated densitiesfor this four-way race. Here again, the densities onlydepend on whether a1, a2, a3, and a4 are squaresmod 5, by the symmetry results from parts (a) and(b) of Theorem 2, with the added symmetry be-tween the densities in the third and fourth lines ofthe table following from Theorem 2(e). Once againwe can estimate the accuracy of these densities bycomparing the sum of all twenty-four densities to 1,and also by comparing the values here to those inTable 4 using identities such as�5;1;2;3 = �5;4;1;2;3 + �5;1;4;2;3 + �5;1;2;4;3 + �5;1;2;3;4:In all cases, these sums of densities from Table 5are precise to within a few units in the �fth decimalplace.In the calculation of these four-way densities, thegeneral formula given in Theorem 4 involves a three-dimensional integral which must be computed nu-merically. Performing this calculation with a rea-sonable degree of accuracy lies at the limit of thecomputing capabilities of the method used for thecalculations in this paper; in particular, we foundit necessary to reduce the value of C and increasethe value of " somewhat to make the computationsfeasible.Since the distribution of the primes into residueclasses modulo 6 is fully determined by their distri-bution mod 3, the next modulus of interest is q = 7.Table 6 shows the calculated densities �7;a1;a2 for thetwo-way races modulo 7. Here, for the �rst time,we see that the density does not depend merely onwhether a1 and a2 are squares mod 7: the squaresmod 7 are f1; 2; 4g, so the �rst and third lines of thetable list densities of the form �7;N;S, while the sec-ond and fourth lines list densities of the form �7;S;N .In other words, Chebyshev's bias is not the only fac-tor causing asymmetries in the Shanks{R�enyi racegames. (For a somewhat more precise discussion of
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a1a2a3a4 �5;a1;a2;a3NNSS: 2314, 2341, 3214, 3241 0:21136NSNS: 2134, 2431, 3124, 3421 0:02985NSSN : 2143, 2413, 3142, 3412 0:00424SNNS: 1234, 1324, 4231, 4321 0:00424SNSN : 1243, 1342, 4213, 4312 0:00028SSNN : 1423, 1432, 4123, 4132 0:00007
TABLE 5. The full four-way race modulo q = 5.

a1a2 �7;a1;a231; 51; 32; 62; 54; 64 0.87434913; 15; 23; 26; 45; 46 0.12565161; 52; 34 0.84521016; 25; 43 0.15479012; 21; 14; 41; 24; 42; 35; 53; 36; 63; 56; 65 12
TABLE 6. Two-way races modulo q = 7.

Chebyshev biases for r-tuples with r � 3, see thediscussion of bias factors in Section 6.) The bottomrow of the table again indicates the known fact thatall densities of the form �7;N;N and �7;S;S equal 12 .Table 7 gives the calculated densities for the three-way races modulo 7. Because the number of dif-ferent values for the densities in Tables 6 and 7 islarger than in the previous cases, we have not orga-nized them strictly by decreasing size, but ratherwe have grouped together the values correspond-ing to isomorphic race games . We will say thattwo r-tuples fa1; : : : ; arg and fb1; : : : ; brg of reducedresidue classes mod q have isomorphic race games ifthere exists a bijection � from the set f1; : : : ; ng toitself such that each residue aj acts exactly like the

corresponding residue b�(j), that is, if�q;a�(1);:::;a�(r) = �q;b�(�(1));:::;b�(�(r))for any permutation � of f1; : : : ; ng.For instance, Theorem 2(a) tells us that �7;1;2;5 =�7;1;3;4 and similarly for the corresponding permuta-tions of f1; 2; 5g and f1; 3; 4g. Therefore the bijec-tion � : f1; 2; 5g ! f1; 3; 4g given by�(a) � a�1 (mod 7)shows that these triples have isomorphic race games.Table 7 shows that there are ten triples whose racegames are in the isomorphism class determined byf1; 2; 5g; the six densities for the race games in thisclass are all distinct. In addition, there are �vetriples in the isomorphism class of f1; 2; 3g; the racegames in this class have only three distinct densitiesdue to an internal symmetry generated by Theorem2(a). Finally, the two special triples fS; S; Sg =f1; 2; 4g and fN;N;Ng = f3; 5; 6g each give com-pletely symmetric race games; this is the smallestmodulus to which parts (d) and (e) of Theorem 2can be applied, since three distinct squares or non-squares are needed. The complete symmetry forthese two race games was also proven by Rubinsteinand Sarnak. We remark that our computations ofthese densities yielded 16 to �ve decimal places. Wedid not proceed further with computations modulo7, since there is no natural four-way race and raceswith �ve or more residues are beyond the presentcapabilities of our computing set-up.Table 8 shows the calculated densities for the two-way races modulo 8. Because only one fourth of theresidues mod 8 are squares (that is, c(8; 1) = 3),in contrast to the lower moduli, there are fewera1a2a3 �7;a1;a2;a3512; 314; 631; 651; 621; 324; 532; 562; 641; 542; 354; 364 0.4038521; 341; 361; 561; 612; 342; 352; 652; 614; 524; 534; 634 0.3678251; 431; 316; 516; 162; 432; 325; 625; 164; 254; 543; 643 0.1027152; 134; 613; 615; 261; 234; 523; 526; 461; 452; 345; 346 0.0736215; 413; 136; 156; 126; 423; 235; 265; 146; 245; 453; 463 0.0295125; 143; 163; 165; 216; 243; 253; 256; 416; 425; 435; 436 0.0226312, 321; 351, 531; 514, 541; 362, 632; 624, 642; 564, 654 0.3943132, 231; 315, 513; 154, 451; 326, 623; 264, 462; 546, 645 0.0857123, 213; 135, 153; 145, 415; 236, 263; 246, 426; 456, 465 0.0200124, 142, 214, 241, 412, 421; 356, 365, 536, 563, 635, 653 16
TABLE 7. Three-way races modulo q = 7.
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a1a2 �8;a1;a231 0.999568813 0.000431251 0.997394615 0.002605471 0.998937817 0.001062235, 53; 37, 73; 57, 75 12
TABLE 8. Two-way races modulo q = 8.symmetries among the densities. (This is some-what counterintuitive, since the multiplicative groupmodulo 8 is highly symmetric.) This higher value ofc(8; 1) also causes a larger bias towards nonsquares,as can be seen by the fact that the values in Table 8are more extreme than those in Tables 3 and 6.Table 9 shows the densities we calculated for thethree-way races modulo 8, including the values for�8;N;N;N highlighted in Theorem 1. Since all of thecharacters mod 8 are real, the additional sources ofcomputational error mentioned in the discussion ofTable 4 are not present here, and so we feel justi�edin reporting these �gures to seven decimal places; infact note that the appropriate three-way densitiessum to the two-way densities in Table 8 in a man-ner analogous to equation (4{1), with the sums allagreeing to within one or two units in the seventhdecimal place.

As with the modulus 5, it is natural to look at thecomplete four-way race modulo 8; Table 10 showsthe calculated densities for this four-way race, listedin the lexicographical ordering on the permutationsof f1; 3; 5; 7g. Despite the need to use slightly crudervalues of C and " in the calculations of the three-dimensional integrals that arise in the formulas forthese densities, the sum of all 24 densities and nu-merical checks against Table 9 suggest that thesedensities are also accurate to within one or two unitsin the seventh decimal place.Tables 11 and 12 show the calculated densities forthe two-way and three-way races modulo 9. Sincethe multiplicative group mod 9 is isomorphic to themultiplicative group mod 7 (both are cyclic of or-der 6), the various symmetries present in Tables 11and 12 mirror those found in Tables 6 and 7, withthe squares mod 9 being f1; 4; 7g.Again, the distribution of the primes into residueclasses modulo 10 is determined by their distributiona1a2 �9;a1;a221; 51; 24; 84; 57; 87 0.88158412; 15; 42; 48; 75; 78 0.11841681; 27; 54 0.86423018; 72; 45 0.13577014; 41; 17; 71; 25; 52; 28; 82; 47; 74; 58; 85 12
TABLE 11. Two-way races modulo q = 9.a1a2a3 �8;a1;a2;a3 a1a2a3 �8;a1;a2;a3 a1a2a3 �8;a1;a2;a3 a1a2a3 �8;a1;a2;a3531 0:4996015 731 0:4995765 571 0:4990135 357 0:1928013351 0:4974123 371 0:4989440 751 0:4974474 753 0:1928013315 0:0025550 317 0:0010483 715 0:0024769 375 0:1664263513 0:0003808 713 0:0004173 517 0:0009337 573 0:1664263135 0:0000327 137 0:0000077 175 0:0000757 735 0:1407724153 0:0000177 173 0:0000062 157 0:0000528 537 0:1407724

TABLE 9. The four three-way races modulo q = 8.a1a2a3a4 �8;a1;a2;a3;a4 a1a2a3a4 �8;a1;a2;a3;a4 a1a2a3a4 �8;a1;a2;a3;a4 a1a2a3a4 �8;a1;a2;a3;a41357 0:0000014 3157 0:0000500 5137 0:0000027 7135 0:00002611375 0:0000029 3175 0:0000696 5173 0:0000023 7153 0:00001541537 0:0000007 3517 0:0007972 5317 0:0001315 7315 0:00089831573 0:0000006 3571 0:1919526 5371 0:1406374 7351 0:13984561735 0:0000023 3715 0:0015371 5713 0:0000848 7513 0:00029101753 0:0000009 3751 0:1648170 5731 0:1663386 7531 0:1924939
TABLE 10. The full four-way race modulo q = 8.



562 Experimental Mathematics, Vol. 9 (2000), No. 4a1a2a3 �9;a1;a2;a3514; 217; 821; 851; 841; 247; 524; 584; 871; 574; 257; 287 0.4010541; 271; 281; 581; 814; 274; 254; 854; 817; 547; 527; 827 0.3814451; 721; 218; 518; 184; 724; 245; 845; 187; 457; 572; 872 0.0992154; 127; 812; 815; 481; 427; 542; 548; 781; 754; 275; 278 0.0819415; 712; 128; 158; 148; 742; 425; 485; 178; 475; 752; 782 0.0194145; 172; 182; 185; 418; 472; 452; 458; 718; 745; 725; 728 0.0172214, 241; 517, 571; 251, 521; 284, 824; 847, 874; 587, 857 0.3965124, 421; 157, 751; 215, 512; 248, 842; 487, 784; 578, 875 0.0885142, 412; 175, 715; 125, 152; 428, 482; 478, 748; 758, 785 0.0149147, 174, 417, 471, 714, 741; 258, 285, 528, 582, 825, 852 16
TABLE 12. Three-way races modulo q = 9.mod 5, so the next modulus of interest is q = 11.In Table 13 we show the calculated densities for thetwo-way races modulo 11, the symbol T representingthe residue 10 mod 11.We do not include the calculations of the three-way races mod 11 for reasons of space. Using The-orem 2 it can be checked that of the 120 distinct(unordered) triples of residues mod 11, the twentytriples of the form fab�1; a; abg with b � 3 or b � 5(mod 11), in which ab�1, a, and ab are all non-squares or all squares mod 11, comprise two iso-morphism classes of race games of ten triples each;a race game in either of these isomorphism classeshas only two distinct densities, one taken by fourpermutations of the triple and the other taken bythe other two permutations. The twenty triples ofthe form fab�1; a; abg withb � 2 or b � 7 (mod 11),in which ab�1 and ab have the opposite quadratica1a2 �11;a1;a271; 81; 23; 25; T3; 64; T4; 75; 69; 89 0.76112117; 18; 32; 52; 3T; 46; 4T; 57; 96; 98 0.23887921; 61; 24; 63; 73; 84; 85; T5; 79; T9 0.73113512; 16; 42; 36; 37; 48; 58; 5T; 97; 9T 0.268865T1; 29; 83; 74; 65 0.7139431T; 92; 38; 47; 56 0.286057NN ; SS 12

TABLE 13. Two-way races modulo q = 11. The entry\NN ; SS" refers to the forty pairs fa1; a2g wherea1 and a2 are either both among the nonsquaresf2; 6; 7; 8;Tg or both among the squares f1; 3; 4; 5; 9gmod 11.

character mod 11 from a, also form two isomor-phism classes with ten triples in each class; a racegame in one of these classes has three distinct densi-ties. Finally, the remaining eighty triples form fourisomorphism classes of twenty race games each; arace game in one of these classes has all six densi-ties distinct. There are 34 densities that remain tobe calculated after these symmetries from Theorem2 are taken into account, and the calculations revealthat these 34 densities are indeed distinct.As mentioned previously, determining the densi-ties in a �ve-way race game lies beyond the scopeof the computing methods used for the calculationsin this paper (though this barrier is only techno-logical, as Theorem 4 is valid for arbitrarily largerace games). If this barrier were overcome (for ex-ample, by recoding in a lower level computing lan-guage), the �ve-way race among the squares mod 11and the �ve-way race among the nonsquares mod 11would be natural and interesting questions to con-sider, especially in light of the nearly-cyclic behaviorof the leaders in these �ve-way race games reportedby Bays and Hudson [1983]. Because of the sym-metries of Theorem 2, it turns out that only eightdistinct densities would need to be calculated forboth of these �ve-way race games to be completelydetermined.Tables 14{16 show the two-way, three-way, andfour-way race games modulo 12, using the symbolE to represent the residue 11 mod 12. Since themultiplicative group mod 12 is isomorphic to themultiplicative group mod 8 (both groups being iso-morphic to the Klein group of order 4), the vari-ous symmetries present in Tables 14{16 mirror thosefound in Tables 8{10. As with the modulus 8 case,
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a1a2 �12;a1;a251 0.999205915 0.000794171 0.998606117 0.0013939E1 0.99997661E 0.000023457, 75; 5E, E5; 7E, E7 12
TABLE 14. Two-way races modulo q = 12.all the characters mod 12 are real-valued, and so wefeel justi�ed in reporting seven decimal places of thenumbers in these tables.Notice from Table 15 that the densities �12;5;11;1and �12;7;11;1 only di�er by one unit in the sixthdecimal place, and that there are several other en-tries that di�er by similarly small amounts owingto their small sizes. Nevertheless, we see no rea-son to believe that any of the twenty-one densitiesin Table 15 is equal to any other. Similar remarkshold for the twenty-four densities in Table 16 andfor the corresponding Tables 9 and 10 for the racegames modulo 8. One observation supporting ourview is that whenever the symmetries of Theorem2 imply that two densities are equal, the computeddensities agree to within a few multiples of the de-fault machine precision rather than to only �ve orsix decimal places.

5. EQUALITIES AND INEQUALITIES BETWEEN
DENSITIESWe will now establish Theorem 2, concerning sym-metries of the densities �q;a1;:::;ar under certain per-mutations of the residue classes fa1; : : : ; arg, andTheorem 3, giving some strict inequalities in thesame setting. We �rst present the proof of Theo-rem 3 since it is simpler than that of Theorem 2.

Proof of Theorem 3. Let a1, a2, and a3 be distinct re-duced residue classes mod q. We begin with the sim-ple observation that if x is a real number such that�(x; q; a1) > �(x; q; a2), then the quantity �(x; q; a3)must either equal one of �(x; q; a1) and �(x; q; a2),lie between them, exceed both, or be exceeded byboth. This observation leads to the density identity�q;a1;a2 = �q;a3;a1;a2 + �q;a1;a3;a2 + �q;a1;a2;a3 ; (5–1)since the set of real numbers x such that�(x; q; a3) = �(x; q; a1) or �(x; q; a3) = �(x; q; a2)has density zero, as mentioned in Section 2A. It fol-lows that�q;a1;a2;a3 � �q;a3;a2;a1 = �q;a1;a2 � �q;a3;a2 ; (5–2)by using the appropriate identity of the type (5{1)on both terms on the right-hand side of (5{2) andsimplifying.Now we can use our knowledge of the two-waydensities to study the di�erence on the left-hand
a1a2a3 �12;a1;a2;a3 a1a2a3 �12;a1;a2;a3 a1a2a3 �12;a1;a2;a3 a1a2a3 �12;a1;a2;a3751 0:4992728 5E1 0:4999772 7E1 0:4999780 57E 0:1984521571 0:4986582 E51 0:4992062 E71 0:4986066 E75 0:1984521517 0:0012750 E15 0:0007931 E17 0:0013919 E57 0:1799849715 0:0006751 51E 0:0000225 71E 0:0000214 75E 0:1799849157 0:0000668 1E5 0:0000006 1E7 0:0000015 5E7 0:1215630175 0:0000521 15E 0:0000003 17E 0:0000006 7E5 0:1215630

TABLE 15. The four three-way races modulo q = 12.a1a2a3a4 �12;a1;a2;a3;a4 a1a2a3a4 �12;a1;a2;a3;a4 a1a2a3a4 �12;a1;a2;a3;a4 a1a2a3a4 �12;a1;a2;a3;a4157E < 10�7 517E 0:0000004 715E 0:0000001 E157 0:000066415E7 0:0000001 51E7 0:0000010 71E5 0:0000002 E175 0:0000519175E < 10�7 571E 0:0000152 751E 0:0000059 E517 0:001133217E5 < 10�7 57E1 0:1984364 75E1 0:1799788 E571 0:17878501E57 0:0000002 5E17 0:0001403 7E15 0:0000243 E715 0:00065051E75 0:0000001 5E71 0:1214216 7E51 0:1215384 E751 0:1977496
TABLE 16. The full four-way race modulo q = 12.
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side of (5{2). In particular, if c(q; a1) = c(q; a2)then �q;a1;a2 = 12 , and hence �q;a1;a2;a3 � �q;a3;a2;a1 =12 � �q;a3;a2 , an expression whose sign is known fromthe work of Rubinstein and Sarnak. More speci�-cally, if N and N 0 are nonsquares mod q while S is asquare mod q, then �q;N;N 0;S��q;S;N 0;N = 12��q;S;N 0 >0; therefore �q;N;N 0;S > �q;S;N 0;N , which establishespart (a) of the theorem. Similarly, if N is a non-square mod q while S and S0 are squares mod q,then �q;S0;S;N < �q;N;S;S0 , which establishes part (b)of the theorem.Another application is to the di�erence �q;N;S;N 0��q;N 0;S;N whenN and N 0 are nonsquares mod q whileS is a square mod q. In this case equation (5{2)becomes�q;N;S;N 0 � �q;N 0;S;N = �q;N;S � �q;N 0;S ;which immediately implies part (c) of the theorem.The analogous observation about the di�erence�q;S;N;S0 � �q;S0;N;Swhen S and S0 are squares mod q while N is a non-square mod q establishes part (d) of the theorem. �We remark that the identity (5{2), applied whena1, a2, and a3 are all nonsquares mod q, becomes�q;a1;a2;a3 � �q;a3;a2;a1 = 0; this is another way of see-ing that the densities calculated in Theorem 1 areequal in pairs as indicated.Our next goal is to establish Theorem 2. Beforedoing so, it will be helpful to recall the relation-ships between the density �q;a1;:::;ar and the measures�q;a1;:::;ar and �q;a1;:::;ar . We begin by recalling fromequation (2{5) that�q;a1;:::;ar = Z � � �Zx1>���>xr d�q;a1;:::;ar : (5–3)

We remark that if � is a permutation of the in-dices f1; : : : ; rg, then we can express the density�q;a�(1);:::;a�(r) in two di�erent ways: we have�q;a�(1);:::;a�(r) = Z : : : Zx1>���>xr d�q;a�(1);:::;a�(r)corresponding to the formula (5{3), but we also havethe alternate form�q;a�(1);:::;a�(r) = Z : : : Zx�(1)>���>x�(r) d�q;a1;:::;ar

since �q;a1;:::;ar is the limiting distribution of the vec-tor (E(x; q; a1); : : : ; E(x; q; ar)), whose coordinatesare ordered by size exactly as the coordinates of thevector (�(x; q; a1); : : : ; �(x; q; ar)).If we make the change of variables u1 = x1 � x2,. . . , ur�1 = xr�1 � xr, ur = xr and integrate outthe variable ur, as in Section 2E, the formula (5{3)becomes�q;a1;:::;ar = Z � � �Zu1>0; :::; ur�1>0 d�q;a1;:::;ar : (5–4)

For the special permutation � that reverses the setf1; : : : ; ng, we see thatx�(1) > � � � > x�(r) (=) xr > � � � > x1(=) ur�1 < 0; : : : ; u1 < 0:Consequently, we have
�q;ar;:::;a1 = Z � � �Zu1<0; :::; ur�1<0 d�q;a1;:::;ar (5–5)

as a companion formula to equation (5{4).As a �nal prerequisite to the proof of Theorem 2,we recall from equation (2{13) the explicit formula�̂q;a1;:::;ar(�1; : : : ; �r)= exp�i rXj=1 c(q; aj)�j� Y�modq� 6=�0 F����� rXj=1 �(aj)�j
����; ��
(5–6)for the Fourier transform of �q;a1;:::;ar , and the re-lated formula (2{21)�̂q;a1;:::;ar(�1; : : : ; �r�1)= exp� r�1Xj=1(c(q; aj)� c(q; aj+1))�j�

� Y�modq� 6=�0 F����� r�1Xj=1(�(aj)� �(aj�1))�j����; �� (5–7)

for the Fourier transform of �q;a1;:::;ar .
Proof of Theorem 2. Let a�1j denote the inverse ofaj mod q. We will show that the Fourier trans-forms �̂q;a1;:::;ar and �̂q;a�11 ;:::;a�1r are the same func-tion. This is enough to establish part (a), since the
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densities �q;a1;:::;ar and �q;a�11 ;:::;a�1r will then be iden-tical, which by equation (5{3) will imply�q;a1;:::;ar = Z � � �Zx1>x2>���>xr d�q;a1;:::;ar= Z � � �Zx1>x2>���>xr d�q;a�11 ;:::;a�1r = �q;a�11 ;:::;a�1r :
We use the formula (5{6) for �̂q;a1;:::;ar and theanalogous formula for �̂q;a�11 ;:::;a�1j . Notice that thesquare roots of a�1j are precisely the inverses mod qof the square roots of aj . In particular, c(q; a�1j ) =c(q; aj), and so the exponential term in (5{6) is un-changed if we replace each aj by a�1j . Moreover, wesee that for each character � mod q,���� rXj=1 �(a�1j )�j���� = ���� rXj=1 �(aj)�j

���� = ���� rXj=1 �(aj)�j
����since the �j are real, so that each term F (�; �) in(5{6) is also unchanged by replacing all of the ajwith the a�1j . This shows that�̂q;a1;:::;ar = �̂q;a�11 ;:::;a�1r ;which establishes part (a) of the theorem.We use a similar strategy to prove part (b). Let bbe a reduced residue class mod q such that c(q; aj) =c(q; baj) for each 1 � j � r. Because of this hypoth-esis, the exponential term in the formula (5{6) isunchanged if we replace each aj by baj as above.Moreover, for each character � mod q,���� rXj=1 �(baj)�j

���� = �����(b) rXj=1 �(aj)�j
����

= j�(b)j ���� rXj=1 �(aj)�j
����

= ���� rXj=1 �(aj)�j
����; (5–8)

so that each term F (�; �) in (5{6) is also unchangedby replacing all of the aj with the baj. This showsthat �̂q;a1;:::;ar = �̂q;ba1;:::;bar , which establishes part(b) of the theorem.The proofs of parts (c) and (d) rely on the for-mula (5{7) for the function �̂q;a1;:::;ar . When the ajare all squares mod q, then the exponential termin (5{7) is identically 1. Moreover, if b is a squaremod q then each baj is also a square, while if b is a

nonsquare mod q then each baj is a nonsquare; ineither case we have c(q; ba1) = � � � = c(q; bar), sothat the exponential term in the analogous formulato equation (5{7) for �̂q;ba1;:::;bar is also identically 1.Since the chain of equalities (5{8) again shows thateach term F (�; �) is unchanged upon replacing theaj with baj, we see that �̂q;a1;:::;ar = �̂q;ba1;:::;bar andso �q;a1;:::;ar = �q;ba1;:::;bar by virtue of equation (5{4),which establishes part (c) of the theorem.For part (d) we begin with the formula (5{5) for�q;ar;:::;a1 . As noted above, the exponential term of�̂q;a1;:::;ar is identically 1 when the aj are all squaresmod q, so that �̂q;a1;:::;ar will be real valued. Since�q;a1;:::;ar is real-valued as well, we conclude that�q;a1;:::;ar is symmetric through the origin. Hencemaking the change of variables uj 7! �uj for each1 � j � r in equation (5{5), we obtain�q;ar ;:::;a1 = Z � � �Zu1>0;:::;ur�1>0 d�q;a1;:::;ar = �q;a1;:::;ar ;
which establishes part (d) of the theorem.To establish part (e), we �rst consider the rela-tionship between �̂q;a1;:::;ar and �̂q;ba1;:::;bar (note thatthe residue classes baj have not yet been reversed inthe second subscript). Again, equation (5{8) showsthat replacing each aj with baj does not change theterms of the form F (�; �), and so we only need toconsider the exponential term. Because the quan-tity c(q; a) can only take the two values �1 andc(q; 1), we see that if c(q; a0) 6= c(q; a) then c(q; a0) =c(q; 1)� 1� c(q; a). It follows, under our hypothesisthat c(q; baj) 6= c(q; aj) for each 1 � j � r, that wealso havec(q; baj+1)� c(q; baj) = �(c(q; aj+1)� c(q; aj));and so the imaginary expression in the exponentialterm in equation (5{6) is negated upon replacingeach aj by baj. The end result is that�̂q;ba1;:::;bar = �̂q;a1;:::;ar ;which implies that when the measure �q;ba1;:::;bar isreected through the origin, the resulting measureis identical to �q;a1;:::;ar .Since we can express�q;bar;:::;ba1 = Z � � �Zu1<0; :::; ur�1<0 �q;ba1;:::;bar
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as in equation (5{5), we can make the change ofvariables uj 7! �uj for each 1 � j � r � 1 to seethat�q;bar;:::;ba1 = Z � � �Zu1>0; :::; ur�1>0 �q;a1;:::;ar = �q;a1;:::;ar :
This establishes the �nal assertion of the theorem.�
6. REMARKS, QUESTIONS, AND OPEN PROBLEMSIn this �nal section, we collect together several ob-servations, unanswered questions, and conjecturesconcerning the results of this paper.
Systems of Inequalities with One EqualitySince we know that �q;a;b and �q;b;a are both positive(assuming GRH and LI), each inequality �(x; q; a) >�(x; q; b) and �(x; q; b) > �(x; q; a) has arbitrarilylarge solutions, and therefore �(x; q; a) = �(x; q; b)for in�nitely many integers x. However, knowingthat �q;a;b;c and �q;b;a;c are both positive| i.e., thateach string of inequalities�(x; q; a) > �(x; q; b) > �(x; q; c)and �(x; q; b) > �(x; q; a) > �(x; q; c)has arbitrarily large solutions|does not imply thatthere are necessarily any solutions to �(x; q; a) =�(x; q; b) > �(x; q; c). Undoubtably, the equality�(x; q; a) = �(x; q; b) should hold in�nitely oftenboth when their common value exceeds �(x; q; c)and when their value is exceeded by �(x; q; c). Weconjecture more generally that for any given integer1 � j � r and reduced residue classes a1, . . . , arand a0j mod q, the conditions�(x; q; a1) > � � � > �(x; q; aj)jj�(x; q; a0j)

> � � � > �(x; q; ar)
should be satis�ed for in�nitely many integers x.
Multiple EqualitiesAnother question along these lines involves solutionsto �(x; q; a1) = �(x; q; a2) = � � � = �(x; q; ar) (6–1)

when r � 3. If we consider the vectorsVq;a1;:::;ar(n) = ��(pn; q; a1)� �(pn; q; a2);�(pn; q; a2)� �(pn; q; a3); : : : ;�(pn; q; ar�1)� �(pn; q; ar)�; (6–2)where pn denotes the n-th prime, then the sequenceof vectors fVq;a1;:::;ar(n)g might reasonably be ex-pected to resemble a random walk on Z r�1, wherethe possible steps at each stage are (1; 0; : : : ; 0),(�1; 1; 0; : : : ; 0), . . . , (0; : : : ; 0;�1; 1), and (0; : : : ; 0;�1) and are chosen with roughly equal probabilities.(Even though the Chebyshev bias will cause a driftin the mean behavior of the vectors (6{2), this drifthas the same order of magnitude as the standarddeviation of the random walk).Since random walks on Z n return to any point in-�nitely often with probability 1 when n = 1 or 2 butfail to do so with probability 1 when n � 3 [Polya1921], this heuristic leads to the prediction that thesystem of equalities (6{1) has in�nitely many solu-tions when r � 3 but only �nitely many solutionsfor r � 4. Similar reasoning suggests that any pairof equalities�(x; q; a1) = �(x; q; a2); �(x; q; a3) = �(x; q; a4)with a1, . . . , a4 distinct should simultaneously holdfor arbitrarily large values of x, but three or moreequalities will hold simultaneously only �nitely manytimes. Further, we might expect that the conditions�(x; q; a1) > � � � > �(x; q; aj)jj�(x; q; a0j)jj�(x; q; a00j )
> � � � > �(x; q; ar)

and
�(x; q; a1) > � � � >

�(x; q; a0i)jj�(x; q; ai) > � � �> �(x; q; aj)jj�(x; q; a0j)
> � � � > �(x; q; ar)

should hold for in�nitely many integers x, but thatanalogous conditions involving three or more equal-ities would not.
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Bias FactorsTo try to quantify the Chebyshev biases for r-tuplesof reduced residue classes aj mod q for all r � 2, letus de�ne the \bias factor" �q;a1;:::;ar to be the di�er-ence between the number of nonsquares precedingsquares among the aj and the number of squarespreceding nonsquares:�q;a1;:::;ar = #fi < j : ai 6= �; aj = �g�#fi < j : ai = �; aj 6= �g=XX1�i<j�r c(q; aj)� c(q; ai)c(q; 1) + 1
= 1c(q; 1) + 1 X1�j�r(2j � r � 1)c(q; aj):

(6–3)For instance, when r = 2 the possible bias factorsare �q;N;S = 1, �q;N;N = �q;S;S = 0, and �q;S;N =�1. Rubinstein and Sarnak proved that the sign of�q;a;b � 12 equals the sign of �q;a;b in this notation,thereby showing that�q;a;b > �q;a0;b0 ==) �q;a;b > �q;a0;b0 :The converse to this statement is false: the �rst twolines of Table 6 show that �q;a;b and �q;a0;b0 can bedi�erent even when �q;a;b = �q;a0;b0 , for instance.We might hope that the bias factors �q;a1;:::;arwouldprovide some information about the relative sizes ofthe �q;a1;:::;ar , perhaps in the form of the implication�q;a1;:::;ar > �q;b1;:::;br ==) �q;a1;:::;ar > �q;b1;:::;br
(6–4)for any �xed r. In this regard, it is worth remarkingthat all of the symmetries in Theorem 2 are equali-ties between two r-tuples of residues with equal biasfactors. Examining the densities computed in Sec-tion 4, we observe that the implication (6{4) holdsmost of the time, but we do note the following twoanomalies:� �8;5;1;3;7 = �8;5;1;7;3 = �1 > �3 = �8;1;3;7;5, but itappears from Table 10 that �8;1;3;7;5 slightly ex-ceeds both �8;5;1;3;7 and �8;5;1;7;3;� �12;7;1;11;5 = �12;7;1;5;11 = �1 > �3 = �12;1;11;5;7,but it appears from Table 16 that �12;1;11;5;7 isslightly greater than both �12;7;1;11;5 and �12;7;1;5;11.It would therefore be of interest, in connection withdetermining whether the implication (6{4) is always

valid, to compute more precisely the densities justmentioned in order to verify the apparent inequali-ties.Unfortunately, the computation of the densitiesto arbitrary precision is not simply a matter of re-ducing " and increasing C and letting a bigger com-puter run for a longer period of time. The majorsource of error in these computations is the e�ectof truncating the in�nite product de�ning the func-tions F (z; �) to form the approximations FT (z; �)(see Section 3C); to decrease this error it wouldbe necessary to compute zeros of the relevant L-functions to a height greater than 10,000, and per-haps to greater precision than twelve decimal placesas well.It is certainly conceivable that some de�nitionof bias factor di�erent from (6{3) might be bettersuited to the role of �q;a1;:::;ar , although it is hardto imagine what natural de�nition would be ableto explain the apparent anomalies noted above. Itmight also be the case that the implication (6{4) isvalid in more limited settings| for instance, whenwe restrict to r-tuples fa1; : : : ; arg and fb1; : : : ; brgwhere exactly half of the aj are nonsquares and halfsquares, and similarly for the bj .
Convergence to Unbiased DistributionRubinstein and Sarnak [1994, Theorem 1.5] provedthat for a �xed integer r � 2,� maxa1;:::;ar jr! �q;a1;:::;ar � 1j �! 0 (6–5)as q tends to in�nity (where the maximum is takenover all r-tuples of distinct reduced residue classesmod q), so that biases of any sort become less andless evident with increasing moduli. Thus althoughthe biases in the two-way races mod 8 and mod12 are more pronounced than those in the two-wayraces mod 4, 5, and 7 owing to the larger valuesof c(8; 1) = c(12; 1) = 3, these sorts of extremebiases will not continue (even with a sequence ofmoduli such as qn = 4p2p3 : : : pn, say, which satis�esc(qn; 1) = 2n � 1).On the other hand, it might happen that an ex-tremely negatively biased density such as�q;S1;:::;Sn;N1;:::;Nnmight tend to zero much more rapidly than 1=(2n)!as n increases, while an extremely positively biased
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density such as �q;N1;:::;Nn;S1;:::;Sn might behave morelike 1=(n!)2. In general, one could investigate theuniformity of the statement (6{5), i.e., attempt toshow that the statement holds uniformly for all r �r0 for some integer-valued function r0 = r0(q) sat-isfying 2 � r0 � '(q). For instance, is it the casethat lim supq!1 � maxa1;:::;ar0 r0! �q;a1;:::;ar0� =1;lim infq!1 � mina1;:::;ar0 r0! �q;a1;:::;ar0� = 0 (6–6)

if r0 = r0(q) grows su�ciently quickly, and if so, howquickly must r0 grow with q for these phenomena toemerge? We certainly conjecture thatlimq!1 � maxa1;:::;ar0 �q;a1;:::;ar0� = 0 (6–7)for any arbitrary function r0 = r0(q) tending to in-�nity with q, but at this point it seems nontrivial toprove this modest result even for r0 = '(q) itself.
Race-game Symmetries, Isomorphisms, and Order

EquivalencesAnother question of interest is whether there existmore symmetry results of the type arising in The-orem 2. Reviewing the proof of Theorem 2, we seethat all of the symmetries therein are consequencesof provable equalities between two distributions ofthe type �q;a1;:::;ar or �q;a1;:::;ar (possibly after reect-ing one of the distributions through the origin). Wecan then ask
(1) whether there exist any equalities between thesedistributions other than those used in the proofof Theorem 2;
(2) whether there can be numerical \coincidences"between two densities even though their under-lying distributions are not related.An answer to question (1) might be forthcomingfrom a careful analysis of the Fourier transforms�̂q;a1;:::;ar of the distributions �q;a1;:::;ar . As for ques-tion (2), it seems reasonable to believe the phe-nomenon addressed therein can never occur, butproving such a claim seems very di�cult.In support of the possibility that Theorem 2 ac-counts for all numerical equalities between the den-sities �q;a1;:::;ar , we remark that among the densitiescomputed in Section 4, each time a symmetry from

Theorem 2 was applicable the corresponding com-puted densities were equal to within a small multi-ple of the machine precision. Conversely, all suchnumerical equalities observed among the computeddensities are accounted for by the symmetries al-ready asserted in Theorem 2.Symmetries among individual densities �q;a1;:::;arare of course closely related to isomorphisms be-tween complete race games of r-tuples. Theorem2 implies that the following bijections between r-tuples induce isomorphisms of race games:� the map �(aj) � a�1j (mod q) between the r-tuples fa1; : : : ; arg and fa�11 ; : : : ; a�1r g;� the map �(aj) � baj (mod q) between the r-tuples fa1; : : : ; arg and fba1; : : : ; barg, if eitherc(q; aj) = c(q; 1) for each 1 � j � r or c(q; aj) =c(q; baj) for each 1 � j � r;� the map �(aj) � bar+1�j (mod q) between the r-tuples fa1; : : : ; arg and fbar; : : : ; ba1g, if c(q; aj) 6=c(q; baj) for each 1 � j � r;� either bijection � : fa; bg ! fa0; b0g, if c(q; a) =c(q; b) and c(q0; a0) = c(q0; b0);� any bijection � : fa; b; cg ! fa0; b0; c0g, if thereexists � 6� 1 (mod q) with �3 � 1 (mod q) suchthat b � a� (mod q) and c � a�2 (mod q) andan analogous �0 (mod q0).(Our de�nition of isomorphic race games requiredthat the r-tuples consist of reduced residues to thesame modulus, but the de�nition has an obvious ex-tension to two r-tuples of residues to di�erent mod-uli which encompasses the last two isomorphisms.)We conjecture that any isomorphism between tworace games is induced by a composition of bijectionsfrom this list; in particular, the only isomorphismsbetween race games of distinct moduli are those racegames with complete internal symmetry, which weredetermined by Rubinstein and Sarnak.A weaker relationship than isomorphic race gamesis order-equivalent race games , where there exists abijection � on the set f1; : : : ; ng such that�q;a�(1);:::;a�(r) > �q;a�0(1);:::;a�0(r) (=)�q0;b�(�(1));:::;b�(�(r)) > �q0;b�(�0(1));:::;b�(�0(r)) (6–8)for any two permutations �, �0 of f1; : : : ; ng. Order-equivalent race games seem common for small val-ues of r. For instance, any two race games both
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of the form fN;Sg are order-equivalent by Rubin-stein and Sarnak's results. The tables in Section 4indicate many three-way race games that are order-equivalent. The triples fN;N 0; 1gmod 7 withNN 0 6��1 mod 7, the triples fN;N 0; 1g mod 8, the triplesfN;N 0; 1g mod 9 with NN 0 6� �1 mod 9, and thetriples fN;N 0; 1g mod 12 are all order-equivalentto one another. Also, the triples fN;N�1; Sg mod5, the triples fN;N�1; Sg mod 7, and the triplesfN;N�1; Sg mod 9 are all order-equivalent as well(but note that these are not order-equivalent to thetriples fN;N;Ng mod 8 and mod 12).We remark that, in view of the values in Tables 10and 16, the bijection�(1) = 1; �(3) = 11; �(5) = 7; �(7) = 5is quite close to inducing an order-equivalence be-tween the full four-way race games modulo 8 and 12,respectively (in the sense that the values in these ta-bles would only have to be modi�ed by at most 6�10�5 in order for the condition (6{8) to always hold).It would certainly be interesting to try to establish(or even classify) order-equivalent race games, espe-cially for larger values of r and between r-tuples todi�erent moduli.
Another Problem of Knapowski and TuránKnapowski and Tur�an [1962] posed a number ofproblems in comparative prime number theory, sev-eral of which have been answered in [Rubinstein andSarnak 1994] and in this paper. In their Problem 9they ask whether, for any r-tuple a1; : : : ; ar of re-duced residue classes mod q, the inequalities�(x; q; ai) > li(x)'(q) ; for i = 1; : : : ; r; (6–9)simultaneously hold for arbitrarily large values ofx. Each individual inequality is unbiased if aj is anonsquare mod q and biased negatively if aj is asquare mod q. We remark here that if we apply themethod of Rubinstein and Sarnak to the error termE1(x; q; a) = log xpx �'(q)�(x; q; a)� li(x)�;which has been centered in a slightly di�erent waythan in the de�nition (2{1) of E(x; q; a), we can seethat this question of Knapowski and Tur�an is an-swered in the a�rmative, and in fact the set of real

numbers x satisfying the inequalities (6{9) has pos-itive density as well.
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