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Abstract: The bound (19) is derived for the asymptotic efficiency of estimates of the parameter t3 in the nonlinear time series 
model (1) when the estimation is based on testing for independence of the estimated residuals from the series past. For 
intrinsically linear time series models efficiency is attainable regardless of the distribution of the error terms. 
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The object of this note is to point out that estimation in time series models through procedures based on 
independence testing is subject to certain efficiency limitations. Let )(1, X 2 . . . . .  X T be a realization from a 
stationary time series model of the general type 

X t = h / ~ ( X t _  1, X,_ 2 . . . .  ) + ~ ,  (1) 

where the ~t a r e  iid and independent of the process past. The nature of h a is required to be such that its 
values can be suitably approximated using only a finite segment of the process past, but otherwise h a is 
not assumed to be linear and the error terms ~, are not assumed to be Gaussian. We do assume however 
that sufficient regularity holds so that the maximum likelihood procedure results in an asymptotically 
normal and (in the appropriate sense) asymptotically efficient estimator which may be taken as being 
essentially equivalent to a consistent root of the equation 

T ~ l o g f ( X _ h a ( X ~ _ l . . . ) )  

Off = 0 (2) 
t = l  

where f ( . )  is the density of the ~'s. For simplicity here, the parameter /3 is taken as univariate; the 
multiparameter extension is straightforward and given below. Evaluating the derivative in (2) results in 

T 

, -  ) 0 (3) 
t = l  

where primes on h a denote differentiation with respect to/3 and where 

d log f ( y )  (4) 
g ( Y )  d y 

and 

=X,-hB(Xt-1 . . . .  ). 
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Observe that f t ( f l o ) -  ft. It should be noted that the estimating equation (3) is an orthogonality-type 
assertion involving the estimated residuals and the series past; indeed (3) is the (asymptotically) optimal 
estimation equation of the form ~ =  1U( f t ( f l ) ) .  VB(X t_ a . . . .  ) = 0 essentially because of the optimality of 
maximum likelihood that has been assumed. 

Now the idea of estimation through testing for independence is a highly natural one. Thus, in the 
context of Box and Jenkins (1970) for example, one might ask whether the minimization of 'portmanteau'  
statistics (ibid., Section 2.2 of Chapter 8) could lead to meaningful procedures. In nonlinear times series 
modelling, estimation based on independence testing is proposed, for example, in Feuerver~er and 
McDunnough (1981, Section 7). Some background and general discussion of nonlinear time series is given, 
for example, in Priestley (1981, Chapter 11), and references therein. An example of the most general 
models of the type (1) occurs when the h~ are infinite Volterra series as on the right side of equations 
11.5.7 in Priesley (ibid., page 869). Unfortunately - -  with the specific exception of the linear case - -  when 
the Volterra expansion is truncated, a stationary solution generally does not exist, and for this reason 
nonlinear model families, while abundant, are generally less 'natural '  in appearance than linear families. 
As a simple example of (1) consider X t = f l t a n - l X t _ l  + ft. Note that although the parameter fl enters here 
in a linear way, we nevertheless shall refer to this model as being intrinsically nonlinear since the 
dependence on the series past is of a nonlinear nature. By the same token, a model such as X t --- e~Xt_l  + it 
is considered to be intrinsically linear. The exponential autoregressive model (ibid., page 889) 

X t = ( d p + e r e x p ( - - Y X 2 - 1 ) } X t - 1  + f ,  

provides an example of a practical, multiparameter, intrinsically nonlinear model of the form (1). 
Now independence among two sets of variates is equivalent to the absence of correlation, or covariance, 

among arbitrary functions of the variate sets. In the model (1) at the true value/3 =/3o we would have 
ft(/3o) = i t  uncorrelated with every function of the series past (Xt_l ,  Xt_ 2 . . . .  ) .  This motivates the 
examination of estimation procedures based on measuring the correlation between some function of it(~3) 
and some function of (X,_ ~, Xt_ 2 . . . .  ). We are thus led to consider a modification of (3), namely the 
covariance based equation 

cov, r = l [ U ( X , - h ~ (  X' 1 . . . .  ) ) ,  V ( X , _  1 . . . .  )] = 0  (6) 

which we may write as 

T 
~_, U ( X , - h p ( X , _ ~ ,  . . . ) ) "  [V(X,_,  . . . .  ) -  V] = 0  (7) 
t=l 

where V = ( 1 / T ) 5 2 r _ l V ( X t _ l  . . . .  ). [The notation employed in (6) is defined by covtr=l(Yt, Z , ) -  
Etr=I(Y, - Y ) ( Z , -  Z).]. To investigate the maximum efficiency attainable by means of estimation proce- 
dures of the general type (6, 7) we shall need to optimize over (U, V). To determine the optimal selections 
for U(.) and V(-) Taylor expand (7) about /3o to obtain 

T 
E . . . .  ) -  ½(/3- /3o)2R,][V( X,_, . . . .  ) -  = 0  (8) 
t=l 

tt t 2 t pt where R, = U (f,)(hB.) - U (f~)h~. for some/3,  between /3 and /3o and then drop the second order 
term to obtain the approximate solution/~ given by 

Ev( f , ) v ( x , _ ,  . . . .  ) -  Ev(x,_  . . . .  )/ 
= ( 9 )  

1 
. . . .  ) [ v ( x ,  . . . .  
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Now since (6) is unchanged if a constant term is subtracted from either argument we may introduce 
constraints 

EIU (~) = 0 (10) 

and 

EnoV(X,_ ,, . . .  ) = 0 (11) 

under which (9) is seen to take on the asymptotic behaviour 

1 T 
E , u ( ¢ ) v ( x , _ l  . . . .  ) 

v ~ (  f i -  flo) - EnU, (~ t )  .h ,o(  X,_ ~ . . . .  ) .  V( X,_I . . . .  ) .  (12) 

This is asymptotically normal with mean zero and variance 

EU2(~, )  • E~oV2 ( X,_,  . . . .  ) 

(E&[ U'(~ , )  . h'~o( X,_a . . . .  ) .  V( X,_I . . . .  )])2 (13) 

L ( E U , ( ~ ) ) 2  (Efloh~flo(Xt_l . . . .  ) .  V ( X t _ I  . . . .  ))2 " 

Thus it turns out that the optimization problem for U and V separates and we find - -  except for arbitrary 
constants - -  the optimal choices to be U = g and V = h'#o - Eh'~o. (The result for V follows by virtue of the 
Cauchy-Schwartz inequality upon noting that because V is constrained by (11) then h'  in (14) can be 
replaced there by h' - Eh'. To obtain that for U, observe that EU2/ (EU ' )  2 does not depend on the scale 
of U, and minimize the numerator f U 2 ( ~ ) f ( ~ )  d(  subject to the denominator being unity; applying 
integration by parts, the denominator constraint may be written as f U ( ~ ) f ' ( ~ )  d (  = 1 and the result of U 
now follows using straightforward variational arguments.) Substituting these values in (14) yields 

Eg2( ) 1 
(Eg , (~}) )  2 VARfloh;3o( X,_ ,  . . . .  ) (15) 

= / - l ( f )  , ( V A R ~ o h ( 8 o ( X t _  1 . . . .  ) ) - 1  (16) 

where I ( f )  is the Fisher information per observation from the location family based on f ( . ) .  (We remark 
here that V in (6, 7) is considered constant; the fact that the optimal V depends on the unknown true fl0 
does not affect the argument towards the efficiency bound given below.) 

To determine the asymptotic efficiency of this optimal covariance procedure we need to compare (16) 
with the result from the likelihood equation. Thus, expanding (3) now about flo as before gives, 
approximately, 

1 

~ ( f i M L E - -  fl0) V~ E g ( f , ) h ~ o ( X , _  1 . . . .  ) 
= ( 1 7 )  

¢ t! . . . .  ) + , . . . .  ) ]  

which is asymptotically normal with mean zero and variance 

. . . .  ))2]-1 (18) 
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since the second denominator term in (17) is negligible by the Central Limit Theorem. Consequently the 
asymptotic efficiency of the best covariance-based procedure, given as the ratio of (18) to (16) is 

e = 

VAR&( Oh( Xt-l~-~-o .... ) ) 

ahB(Xt 1 . . . .  ) )2 ' 
e~° Otto 

(19) 

The expression (19) apparently provides a measure of the intrinsic nonlinearity of a time series model of 
the form (1). In the essentially linear cases 

X , = # X , _ I + ~  , o r  Xt=p(~)Xt_l-}-~t (20) 

(where p(/~) need not be linear in /3)  for example, we obtain e = 1 regardless of the unknown distribution 
f ( - )  of the errors. Here, as before, the term linearity relates to the nature of the dependence of X, on the 
previous X ' s  and not on the nature of the parameterization 

We remark here that alternative to procedures based on the independence of ~,(/3) from ( X  t_l, X,_ 2, 
. . . )  are procedures based on measuring the extent to which the {~,(13)} sequence is iid. Under  

stationarity and mild regularity, independence of the { ~,(/3)) sequence is equivalent to the independence 
of ~,(fl) from ( ~ t _ l ( / ~ ) ,  ~ t _ 2 ( / ~ )  . . . .  ) with this latter being a function of (X,_ 1, X,_ 2 . . . .  ). Now under 
suitable invertibility conditions the use of (~, l(fl), ~,- 2 (/~) . . . .  ) will be equivalent to ( X,_ 1, X,_ 2 . . . .  ); 
failing this, the former leads to a subset of the procedures based on the latter. Hence the bound (19) will 
remain valid but not necessarily attainable. 

Straightforward multiparameter extension of the calculations above leads to expressions (16) and (18) 
except with the second terms in these expressions replaced by the obvious matrices. Specifically, the 
expressions become I -  1 ( f ) .  A - ] and I -  1 ( f ) .  B -  1 respectively where A = cov(Y), and B = E Y Y '  are the 
covariance and second moment  matrices for the p × 1 vector Y whose entries are ahl~o(X,_ 1 . . . .  )/jSi, 
i =  1, 2 . . . . .  p where f l=( /~ l ,  /32 . . . . .  /3p). Note  that B - A  = ( E Y ) ( E Y ) '  is in general a nonnegative 
definite matrix of unit rank and will be zero if E Y  = 0. We see from these multiparameter expressions that 
for linear models such as 

P 

( X , - I ~ )  = Y'. f l , ( X , _ l - I  ~) +~,  (21) 
l = 1  

the optimal independence based estimation procedure will be asymptotically efficient for the autoregres- 
sive parameters, i.e. for estimating the/3l's and, for example, that the same will continue to hold for the 0 's 
if the/~t's in (21) should be linked in some narrower and not necessarily linear parameterization fit =/~t(0)  • 
This holds regardless of the distribution of the error terms. The parameter/~ of course cannot be estimated 
in this manner. 

We remark that for models having essentially nonlinear character (19) may yield values e < 1, but not 
necessarily poor efficiencies. 
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